
Shelve in
Databases/General

User level:
Intermediate–Advanced

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Tollefson

SOURCE CODE ONLINE

www.apress.com

R Quick Syntax Reference
The R Quick Syntax Reference is a handy reference book detailing the
intricacies of the R language. R is a free open-source tool that offers you
power, flexibility, and state-of-the-art statistical techniques. R Quick Syntax
Reference lays out the multitude of details you need to master R, as you
would for any language.

Starting with the basic structure of R, the book takes you on a journey
through the terminology used in R and the syntax required to make R work.
You will find looking up the correct form for an expression quick and easy.
With a copy of the R Quick Syntax Reference in hand, you will find that you
are able to use the multitude of functions available to the R user and are even
able to write your own functions to explore and analyze data.

What You’ll Learn:

• Download R and R packages for your platform
• Work with R within your file structure
• Enter data from the keyboard and from external files
• Determine and assign modes, classes, and types of objects
• Do calculations using the computational tools in R
• Use R functions and create new functions

9 781430 266402

51999
ISBN 978-1-4302-6640-2

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author �� xv

About the Technical Reviewer �� xvii

Acknowledgments �� xix

Introduction �� xxi

Part 1: R Basics ■ �� 1

Chapter 1: Downloading R and Setting Up a File System ■ ��������������� 3

Chapter 2: The R Prompt ■ �� 9

Chapter 3: Assignments and Operators ■ �� 11

Part 2: Kinds of Objects ■ �� 23

Chapter 4: Modes of Objects ■ ��� 25

Chapter 5: Classes of Objects ■ ��� 37

Part 3: Functions ■ �� 57

Chapter 6: Packaged Functions ■ �� 59

Chapter 7: User-Created Functions ■ ��� 65

Chapter 8: How to Use a Function ■ �� 71

www.it-ebooks.info

http://www.it-ebooks.info/

vi

■ Contents at a GlanCe

 Part 4: Inputting and Creating Data, Outputting Data ■
and Output, and Manipulating Objects ������������������������� 77

Chapter 9: Importing and Creating Data ■ ��������������������������������������� 79

Chapter 10: Exporting from R ■ ��� 95

Chapter 11: Descriptive Functions and Manipulating Objects ■ ���� 105

Part 5: Flow Control ■ �� 127

Chapter 12: Flow Control ■ �� 129

Chapter 13: Examples of Flow Control ■ ��������������������������������������� 133

Chapter 14: The Functions ifelse() and switch() ■ ������������������������ 145

 Part 6: Some Common Functions, Packages, and ■
Techniques ��� 151

Chapter 15: Some Common Functions ■ �� 153

Chapter 16: The Packages base, stats, and graphics ■ ����������������� 163

Chapter 17: Tricks of the Trade ■ ��� 189

Index �� 197

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Introduction

R is a programming language that provides the user with powerful data and graphical
analysis options. R is both flexible and broad. From tasks as simple as adding two
numbers to tasks as complex as fitting an ARIMA model, R is capable of crunching the
numbers.

The purpose of R Quick Syntax Reference is to provide the reader with the basic
syntax of R. Often an R user gets stuck if, for example, a mode is incorrect or a logical
test does not work. Because the full spectrum of R packages uses the same fairly simple
syntax, R Quick Syntax Reference provides the reader with the necessary information to
get unstuck and run and create all R functions and code.

The R language is based on the language S, a high-level programming language
developed mainly by Richard A. Becker, John M. Chambers, and Allan R. Wilks in the
AT&T laboratories in 1975. The R version of the language first became available in 1993
and was developed by Ross Ihaka and Robert Gentleman at the University of Auckland,
New Zealand.

R is open source and is a GNU project. As open-source code, the R language is
free and constantly being improved. The R Development Core Team currently does the
development. Packages for specific analysis techniques are added often. At the present
time, there are 4,986 packages available in R. Most users will use only a few packages.
Although GUI versions of R are available, we discuss using R at the command prompt in
R Quick Syntax Reference.

This book is about the S3 version of R—S3 standing for the third version of S, the
commercial program on which R is based. The developers of R have a new version,
S4—the fourth version of S—running concurrently with S3. Even though version S4 is
quite different from S3, it is necessary to know the syntax of S3 in order to use S4. And S3
remains a powerful, flexible language in its own right—hence, this book.

Part I covers the basics of R. Chapter 1 describes how to download and install R for
the Windows, Mac, and Linux operating systems and also how to download packages.
Because keeping separate folders for different projects is very useful, Chapter 1 gives
instructions for running R from different folders. It also gives the methods for updating
the R program itself.

Chapter 2 introduces the R prompt, gives a sample calculation, and describes the
three parts of R—objects, operators, and assignments. Chapter 3 covers the assignment
of names to objects, demonstrates the ls() function that allows you to see the objects in a
folder, and discusses the operators in R.

Part II describes R objects. Objects have modes, classes, and types. Chapter 4 lists the
modes and describes some of them. It also shows how modes and types differ. Chapter 5
discusses some of the classes.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

■ IntroduCtIon

Part III covers functions. Chapter 6 starts with a list of the 30 default packages in R
and follows with instructions on how to use functions. Because packaged functions all
have help pages, the chapter provides instructions on how to access and use the help
page of a function. Chapter 7 describes how to create a function. Chapter 8 explains how
to run a function—with a detailed approach to the argument list.

Part IV focuses on importing and exporting data in R and methods for creating and
manipulating some kinds of object. Chapter 9 describes several methods for importing data,
gives a number of functions to create data objects, and discusses some random-number
generators. Chapter 10 gives several methods for exporting from R. Chapter 11 gives a
number of functions that operate on objects—to bind objects together, to find descriptive
qualities of an object, to assign qualities to an object, to aggregate an object in some way,
or to apply functions to portions of an object.

Part V covers flow conditioning commands and functions. Chapter 12 presents the
flow conditioning statements, and Chapter 13 supplies examples of them. Chapter 14
describes the two flow conditioning functions and gives examples.

Part VI discusses functions related to formatting and outputting output, looks at
the results from packaged functions and at what some of the default packages contain,
and provides some tips for using R. Chapter 15 gives some rounding functions and some
functions for outputting from a function. It also gives some functions that vary according
to the class of the object on which the function operates and that summarize the results
of the function, either textually or visually. Chapter 16 takes a look at the contents of the
packages base, stats, and graphics and glances at the datasets, grDevices, methods, and
utils packages. Chapter 17 describes how to deal with some common frustrations in R.
More information is given on outputting from functions, plus an example of a recursive
function and some advice on using R.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 1

R Basics

Part I introduces you to the basics of the R language.
To use R, you must first download the program from the Internet. Chapter 1

describes how to install R on the Windows, OS X, and Linux operating systems. It
also describes how to install and update packages and how to update R and use R
within a file system.

Once you’ve installed and opened R, you are faced with an R prompt and
little else. Chapter 2 presents the parts of R (objects, operators, and assignments),
the R prompt, and an example of using R as a calculator from the R prompt.

Chapter 3 shows you how to assign names to expressions to create R objects
and describes two functions: ls() for listing the objects in the workspace and rm()
for removing objects from the workspace. It then discusses the operators that
operate on objects and expressions: logical, arithmetic, matrix, relational, and
subscripting operators, plus a few other special operators.

www.it-ebooks.info

http://www.it-ebooks.info/

3

Chapter 1

Downloading R and Setting
Up a File System

The first step in using R is to download R from the Internet. R can be downloaded for
the modern operating systems Windows, OS X, and Linux. In this chapter, you will learn
how to download and install R and the 30 basic packages as well as how to install other
packages and update R. You will also learn how to use R in individual folders within the
file system of the computer.

Downloading R
You can download R from the web site of the Comprehensive R Archive Network (CRAN).
CRAN updates the installation process from time to time; however, the instructions in this
book are for the current steps at time of publication. CRAN provides instructions on the
web site if the process has changed.

Begin the download process by going to the web site http://cran.r-project.org.
At the web site, links to current versions for Windows, OS X, and Linux are listed at the top
of the opening window. Select the appropriate link.

Windows
On the page that opens with the Windows link, select the link base, which is the top
link. In the next window, click on the download link for the given Windows version.
(Currently, the link is Download R 3.0.2 for Windows.) If R has not already been installed
on the computer, the downloader will create a default folder in the Documents folder
to hold R files. Unless there is a reason to change the folder name or location, accept the
default. R will begin to download.

When the program finishes downloading, find the downloaded file in your file
system. Downloads are put in C://Users/User_folder/Downloads, where User_folder is
the folder of the user, unless another folder was specified earlier in the installation. Click
on the downloaded file, which is an .exe installation file (currently R-3.0.2-win.exe.)
A question about the safety of the program may pop up. The installation program is safe,
so run the program.

www.it-ebooks.info

http://cran.r-project.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ DownloADing R AnD SETTing UP A FilE SySTEm

4

The installation wizard will open. The installation process steps through several
pages. On the first page, read the GNU GENERAL PUBLIC LICENSE; then click on Next.
For the rest of the pages, accepting the defaults on each page is fine, so click on Next on
each page.

At the page of additional choices, click on Next, and the program will begin to
install. When the installation is finished, click on Finish to complete the installation.
The program and the 30 base packages are now installed. An icon for R will be on the
computer desktop and, for Windows 8, in the charms. To run R, click on the icon or charm.

OS X
On the page that opens from the OS X link, first read the section under R for Mac OS X.
The R project gives the advice to check the files for viruses and other problems.

Under Files: there are two package choices: the current version and latest version.
Selecting the current version (the .pkg link, currently R-3.0.2.pkg) will download both
packages. When the packages have finished downloading, open the download box on
the icon bar (the yellow and brown box) or the downloads folder under the username
in Finder.

Select an R version in the download box. Opening the version will open the installer.
With the installer open, click on Continue to go to the next page of the installer. Read the
message from CRAN; then click Continue. Again, read the message from CRAN; then
click Continue.

On the next page, you will find the license. After reading the license, click Agree
to download R. On the next page, select either of the choices; then click on Continue.
(The Continue button will not light up until a choice is made.)

On the next page, select Install. The installation program will ask for a password. After
you have entered a password, the installation will begin. When the installation is finished,
click on Close. R will now be in the applications folder and on the dock and the 30 base
packages will be loaded. Select R on the dock or in the applications folder to start R.

Linux
At the CRAN site, CRAN provides source code for R for the Linux distributions Debian,
Red Hat, Suse, and Ubuntu. The developers state that R is available through the package
management system for most distributions of Linux.

If the command line version of R is not available using the package management
system, installing R directly from the terminal is an option. At http://cran.r-project.org/
bin/linux/distribution, where distribution is Debian, Suse, or Ubuntu, you can find
instructions for installing R from the terminal command prompt under the ReadMe files.

For Red Hat, http://cran.r-project.org/bin/linux/redhat, there is no ReadMe
file. Follow instructions on the CRAN site to install R for Red Hat. Once you have installed
R, command line R will be available by typing R in the terminal window.

www.it-ebooks.info

http://cran.r-project.org/bin/linux/distribution
http://cran.r-project.org/bin/linux/distribution
http://cran.r-project.org/bin/linux/redhat
http://www.it-ebooks.info/

CHAPTER 1 ■ DownloADing R AnD SETTing UP A FilE SySTEm

5

Installing and Updating Packages
When initially installed, R comes with 30 packages. Often the user will want to use the
power of the many other packages available in R. Installing and updating a package is
straightforward.

For any of the operating systems, if the name of a package is known, typing

install.packages("package name")

at the R command prompt, where package name is the name of the package, will install
the package. To update packages, typing

update.packages()

at the R command prompt will find those packages with updates and update the
packages. To see which packages are already installed on the computer, enter

installed.packages()

at the R prompt.

If the name of the package is not known (also for known names), using the installer
for the operating systems Windows and OS X is easy. For Linux, instructions can be found
at the CRAN web site, http://cran.r-project.org. Here you can find instructions for
Windows and OS X.

Windows
To install a package in Windows not using the command line, start by opening R. On the
menu bar at the top of the screen, select Packages. A menu will drop down. Select Install
package (s). . . . Either the CRAN mirror window or the Packages window will come up.
If the CRAN mirror window comes up, select a close mirror and click OK, which will bring
up the Packages window.

The Packages window consists of a list of all of the available packages. Scroll down
the list to find the package(s) you wish to install and select the package(s). Click on OK to
begin the installation. As the installation proceeds, the steps of the installation will scroll
on the R console. When the R prompt returns to the screen, the installation is complete.

To update packages not using the command line, select Packages on the menu bar
and then select Update packages. . . . The Packages window to be updated will open,
and it will have a list of all of the installed packages with updates. If there are none, the
window will be empty. Choose the packages for updating and click on the OK button.
If a question about using a personal library pops up, choose Yes. The packages will
update. When the R prompt returns to the screen, the updates are complete.

www.it-ebooks.info

http://cran.r-project.org/
http://www.it-ebooks.info/

CHAPTER 1 ■ DownloADing R AnD SETTing UP A FilE SySTEm

6

OS X
To install packages in OS X, start by opening R. On the menu bar at the top of the
screen, select Packages & Data. From the drop-down menu, select Package Installer,
which brings up the R Package Installer. Click on Get List for a full list of packages or
use the Package Search option to search for a package. Under either option, select the
package(s) to be installed from the list.

Below the list of packages are choices for the location to put the packages. Hover
over the list of location options for more information. Usually, one of the first two options
will be correct. To the right of the location options are the Install Selected and Update
All buttons. Before clicking on Install Selected, check the Install Dependencies box to
make sure that any necessary packages are installed. Click on Install Selected to start the
installation process. The selected packages will install.

To update packages, select Packages & Data from the menu bar at the top of the
screen. From the drop-down menu, select Package Installer, which opens up the
R Package Installer. At the bottom right of the Installer, select Update All and follow
instructions.

Updating R
Since CRAN does not provide automatic updates for R, you must update it manually. The
processes for Windows and OS X are easy. For the Linux distributions Debian, Suse, and
Ubuntu, instructions can be found in the ReadMe files at http://cran.r-project/bin/
linux/distribution, where distribution is either Debian, Suse, or Ubuntu. For Red Hat
Linux, look elsewhere on the CRAN web site.

Windows
The first step in updating R in Windows is to open R and install the package installr if the
package has not already been installed. Next, use the function library to provide access to
installr. Type

library(installr)

at the command prompt and press enter. Then, to update R, type

updateR()

at the command prompt and press enter. R will either do an update or give a message
that the program is up-to-date and return False.

Once installr has been installed, installr does not need to be installed again. The
library must be accessed every time R is run.

www.it-ebooks.info

http://cran.r-project/bin/linux/distribution
http://cran.r-project/bin/linux/distribution
http://www.it-ebooks.info/

CHAPTER 1 ■ DownloADing R AnD SETTing UP A FilE SySTEm

7

OS X
The first step in updating R in OS X is to open R and select R from the menu bar at the
top of the page. To run the updater, select Check for R Updates in the drop-down menu
under R and follow instructions.

Using R in Separate Folders
Separate workspace images for R can be maintained in separate folders for Windows,
OS X, and Linux. This property of R is very handy for using R on separate projects. While
the process of opening R in a given folder varies by the operating system, once in a folder,
saving the workspace image is straightforward. When closing an R session, the program
asks if the user would like to save the workspace image. If Yes is selected, then .RData and
.Rhistory (.Rapp.history for OS X) files are saved in the current directory. (For OS X,
the files are hidden, but the files are there.)

The .RData file contains the objects that were in R at the beginning of the session
plus any objects that were added during the session minus any objects that were erased
during the session. The .Rhistory (.Rapp.history for OS X) file contains the history of
the lines input at the R console. By default, all lines up to the last 512 lines are saved in
Windows. For OS X and Linux, the default is 250 lines. Access to the lines carries over
from session to session if the history is saved.

Windows
To initially set up R in a folder, open R at the desktop. (Click on the R icon on the desktop
or click on R in the list of programs or, in Windows 8, the list of charms.) Select File on the
menu bar at the top of the screen. From the drop-down menu, select Change dir. . .. The
Browse to folder window will open. Navigate to the folder of choice.

When exiting R, save the workspace image and R will create .RData and .Rhistory
files in the folder. The .RData file will have a blue R icon associated with the file. In the
future, going to the folder and clicking on the R icon will open R and the history and
objects saved within the folder will be present.

As a note for the initial setup, any objects in the desktop R will still be in R when
the folder is changed. You can easily remove the objects. Type rm(list=ls()) at the
command prompt to remove all objects from the folder.

OS X
Working within different folders in OS X is also easy. There are two ways: dragging and
dropping or using the terminal. If R is on the dock and R is not open, dragging the folder
from either Finder or Documents to the R icon on the dock will open R in the folder
using the .RData and .Rapp.history for that folder.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 ■ DownloADing R AnD SETTing UP A FilE SySTEm

8

To open R using the terminal, open the terminal (located under Applications/
Utilities in Finder.) and type

open -a R folder

where folder is the location of the folder. R will open in the folder using the .RData and
.Rapp.history files for that folder.

Linux
To open R in a given folder in Linux, change the directory to the folder and type R at the
command prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

9

Chapter 2

The R Prompt

This chapter covers the R prompt. It starts with descriptions of the three parts of R:
objects, operators, and assignments. It continues with a discussion of working with the
R prompt, followed by an example of doing a calculation at the R prompt.

In Windows and OS X, R runs in GUIs: RGUI in Windows and R.app GUI in OS
X. Both RGUI and R.app GUI open an R Console and run from the R prompt in the
R Console. GUIs are available in Linux, but this book covers only running R from
the terminal window R prompt.

The Three Parts of R: Objects, Operators, and
Assignments
There are basically three parts of R: objects, operators, and assignments.

Objects contain information and can be data, functions, or the
results of functions. Objects always have a name. Users create
some objects, which are automatically saved on creation. Other
objects are functions and datasets contained in the packages of R.

Operators manipulate the objects, numbers, strings, and/or
logical variables. For example, entering a = 2*b at the R prompt
would multiply b by two and assign the result to a. The objects
a and b are numeric objects and * is the multiplication operator.
The equal sign makes an assignment of two times b to a.

Assignments assign an expression to an object. Expressions
consist of objects, numbers, logical variables, and/or strings,
which are operated on by operators.

Expressions can be evaluated from the R prompt without an assignment.
(The other places where assignments and operations occur are within functions and
within flow control.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ■ THE R PRomPT

10

The R Prompt
All of R flows from the R prompt. R is essentially the running of functions and the doing
of calculations. Functions and calculations can be run at the R prompt with or without an
assignment to an object. Functions and calculations can also be run as part of a function,
but everything starts at the R prompt.

Using R from the R prompt may seem daunting at first. R opens with some script, and
then a lonely little greater-than sign (>) is the R prompt. The opening script gives the R
version number and some other information about the program, including the fact that
the program runs with no warranty.

R remembers every line that is entered into the program, up to a set number of lines.
A very handy side of R is that the up and down arrows on the keyboard will step through
the lines. You only need to enter an expression once. Corrections to expressions are easy
to do without typing the entire expression again.

To close R, enter q() at the R prompt or, for Windows and OS X, close the window.
R will close with the option to save the workspace. In Linux, if the terminal window is
closed without using q(), the current workspace will be lost.

The workspace consists of any objects present in R at the time the program is closed
and the current history. Closing R without saving the workspace will result in reverting to
the workspace present at the time the R session started.

An Example of a Calculation
The simplest use of R is as a calculator. The following calculation was done from the
R prompt. There is no assignment in the calculation, so the result is returned on the screen.

> (1 + 3 + 7)/5
[1] 2.2
>

The first line gives the expression to be evaluated and the second line gives the
result. The [1] in the second line is a label that tells the user that the result is the first value
returned from the expression. Many expressions return more than one value. At the third
line, the R prompt comes back and R is ready for another task.

www.it-ebooks.info

http://www.it-ebooks.info/

11

Chapter 3

Assignments and Operators

R works with objects. Objects can include vectors, matrices, functions, the results from a
function, or a number of other kinds of objects. Objects make working with information
easier. This chapter covers assigning names to objects, listing and removing objects, and
object operations. Part II (Chapters 4 and 5) covers the possible forms of objects.

Some objects come with the packages in R. Other objects are user-created. User-created
objects have names that are assigned by the user. Knowing how to create, list, and remove
user-created objects is basic to R.

Types of Assignment
Names in R must begin with a letter or a period, cannot have breaks, and can contain
letters, numeric digits, periods, and underscores. The names that begin with a period are
hidden and are used by R for startup defaults, the random seed, and other such things.
The indexing symbols [],[[]],$, and @ have special meanings with regard to R names,
as explained the “Subscripting Operators” section of this chapter.

R originally used five types of assignment, four of which are still current. The four
types are

a <- b,

which assigns b to a,

a -> b,

which assigns a to b,

a <<- b,

which assigns b to a and can be used inside a function to bring the assignment up to the
workspace level, and

a ->> b,

which assigns a to b and brings an assignment in a function up to the workspace level.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

12

Recently, the developers at R have included the more standard

a = b,

which assigns b to a. While any of the types of assignment can be used, the use of the
equal sign is easiest to type.

When R makes an assignment, the name is automatically saved in the workspace.
Note that no warning is given if the assigned name already exists. The assignment will
overwrite the object in the workspace with the assigned object.

R is interesting in that a function of an object can be assigned to the original object.
For example,

a = 2*a,

where the object a is replaced by the original a times two.

For more information about assignment operators, enter ?“Assignment Operators”
at the R prompt.

Example of Three Types of Assignment
An example of some of the types of assignment follows. Three objects are created: abc,
bcd, and cde. You create the objects by assigning sequences to the objects. The sequences
are generated when you put a colon between two integers, which creates a sequence of
integers starting with the first integer and ending with the second integer.

To show that the objects actually contain the assigned sequence, the contents of
the three objects are displayed below. Note that entering the name of an object at the R
prompt will always display the contents of the object. The [1] refers to the first element of
the objects.

> abc = 1:10

> abc
 [1] 1 2 3 4 5 6 7 8 9 10

> bcd <- 11:20

> bcd
 [1] 11 12 13 14 15 16 17 18 19 20

> 21:30 -> cde

> cde
 [1] 21 22 23 24 25 26 27 28 29 30

As you can see, the assignment operators <- and = give the same result. The assignment
operator -> works in the opposite direction.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

13

The ls() and rm() Functions
To see the objects present in the workspace, use the function ls(). Entering ls() at the R
prompt for the above example gives

> ls()
[1] "abc" "bcd" "cde"
>,

which are the three objects created above.

Although functions are covered in detail in Part III, one interesting property of
functions to note here is they can have arguments that the user enters. Two of the possible
arguments for ls() are pattern and all.names.

The first argument is entered as pattern = “a string”, where “a string” is any part
of an object name. For example, in the above workspace, searching for those objects
containing bc in the name gives abc and bcd, that is

> ls(pattern="bc")
[1] "abc" "bcd"

The argument pattern can be reduced to pat, as in ls(pat=“bc”). The shortening
of arguments of functions is a property of R. All arguments in R can be reduced to the
shortest unique form, but they are usually given in the full form in manuals.

The second argument is all.names=, which can equal TRUE or FALSE. If set
to TRUE, the all.names argument instructs R to list all of the files in the workspace,
including those that begin with a period. FALSE is the default value and does not need to
be entered. For the example workspace above, setting all.names equal to TRUE gives

> ls(all.n=T)
[1] ".commander.done" ".First" ".Random.seed" ".Traceback"
[5] "abc" "bcd" "cde"
.

The [1] refers to “.commander.done” since “commander.done” is the first element of
the vector, and the [5] refers to “abc” since “abc” is the fifth element of the vector. In R, if the
elements of a vector have not been given a name, the convention for listing the elements is
to show the index of the first element in each line of the lines of listed elements.

The function rm() can be used to remove objects from the workspace. For rm(),
the names of the objects to be deleted are put within the parentheses and separated by
commas. For example,

rm(a,b,c)

will remove objects a, b, and c. To remove all objects,

rm(list=ls())

works.

For more information about ls() or rm(), enter ?ls or ?rm at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

14

Operators
Operators operate on objects. Operators can be logical, arithmetic, matrix, relational,
or subscripting, or they may have a special meaning. Each of the types of operators is
described here.

For operators, elementwise refers to performing the operation on each element
of an object or paired elements for two objects. If two objects do not have the same
dimensions, the operator will cycle the smaller object against the larger object. The
cycling proceeds through each dimension. For example, for matrices the first dimension
is the rows and the second dimension is the columns, so the cycling is down rows starting
with the first column.

The letters NA are used to indicate that an element is missing data. Most operators
have rules for dealing with missing data and may return an NA if data is missing.

CRAN gives a help page of information about operation precedence. Enter
??“Operator Syntax and Precedence” at the R prompt to see the page.

Logical Operators and Functions
Logical operators return the values TRUE, FALSE, or NA, where NA refers to a missing
value. The logical operators are the not operator, two or operators, two and operators, the
exclusive or function (which is a function that acts as an operator), and the any function
(which is a function that operates on a logical object). For logical operators, if the two
objects do not have the same dimensions, the number of elements in the larger object
must be a multiple of the number of elements in the smaller object for cycling to occur.
The logical operators and two logical functions are listed in Table 3-1.

Table 3-1. The Logical Operators and Functions

Operator Operation Description

! not negation operator—e.g., !a

| or elementwise or operator—e.g., a|b

|| or or operator, just evaluates the first elements in the
objects—e.g., a||b

& and elementwise and operator—e.g., a&b

&& and and operator, just evaluates the first elements in the
objects—e.g., a&&b

xor() exclusive or exclusive or function—e.g., xor(a,b)

any() logical test tests if TRUE is present in a logical object—e.g., any(a)

The logical operators operate on objects that are logical, numeric, or raw. When a
numeric object is coerced to logical, all of the nonzero values are set to TRUE and the
zero values are set to FALSE. For raw vectors, the operators are applied bitwise.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

15

The negation operator changes TRUE to FALSE and FALSE to TRUE in a logical
object. The operator | compares the two objects elementwise and, for each pair of
elements, returns TRUE if TRUE is present, and FALSE otherwise. The operator ||
compares the first element of the first object to the first element of the second object and
returns TRUE if TRUE is present, or FALSE otherwise.

The operator & compares two objects elementwise and, for each pair of elements,
returns TRUE if both elements are TRUE, and FALSE otherwise. The operator &&
compares the first element of the first object to the first element of the second object and
returns TRUE if the first elements are both TRUE, otherwise FALSE.

The xor() function compares objects elementwise and returns TRUE if the paired
elements are different and FALSE if the paired elements are the same.

For a logical vector or a vector that can be coerced to logical, the function any() will
return TRUE if any of the elements are TRUE, and FALSE otherwise.

For more information about the logical operators, the CRAN help pages for logical
operators can be found by entering ??“logical operators” at the R prompt. The help page
for any() can be accessed by entering ?any at the R prompt.

Arithmetic Operators
Arithmetic operators can have numeric operands or operands that can be coerced to
numeric. For example, for logical objects TRUE coerces to 1 and FALSE coerces to 0.
For some types of objects, specific operators have a different meaning, but those types of
objects will not be covered in this chapter.

Arithmetic expressions are evaluated elementwise. If the number of elements is not
the same between the objects in an expression, the smaller object cycles through the
larger one until the end of the larger one. The numbers of elements in the larger object do
not have to be a multiple of the smaller object for cycling. Expressions are evaluated from
left to right, under the rules of precedence.

The arithmetic operators are the standard * for multiplication, / for division, + for
addition, and - for subtraction. The exponentiation symbol is ^. The operator %% gives
the modulus of the first argument with respect to the second argument. The operator
%/% performs integer division. Expressions can be grouped using parentheses, for
example (a+b)/c. Table 3-2 lists the arithmetic operators.

Table 3-2. Arithmetic Operators

Operator Operation Example

* multiplication a*b

/ division a/b

+ addition a+b

- subtraction a-b

^ exponentiation a^b

%% modulus a%%b

%/% integer division a%/%b

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

16

For more information, the CRAN help pages for arithmetic operators can be found
by entering ??“arithmetic operators” at the R prompt.

Matrix Operators and Functions
R provides operators and functions to manipulate matrices. A list of some matrix
operators and functions can be found in Table 3-3.

Table 3-3. Matrix Operators and Functions

Operator / Function Operation Example

%*% matrix multiplication a%*%b

%o% or outer() outer product of two vectors,
matrices, or arrays

a%*%b, outer(a,b)

t() transpose of a matrix t(a)

crossprod() or
tcrossprod()

crossproduct of a matrix or
two matrices

crossprod(a) or crossprod(a,b) or
tcrossprod(a) or tcrossprod(a,b)

diag() diagonal of a matrix or a
diagonal matrix

diag(a), a is a matrix or diag(a), a
is a vector

solve() inverse of a matrix or
solution to Xa=b

solve(a), solve(X,b)

The matrix multiplication operator is %*%. R will return an error if the two matrices
do not conform.

For two arrays (arrays include vectors and matrices), %o%, or outer(), gives the outer
product of the arrays.

To transpose a matrix, use the function t(), for example, t(a).
To get the cross product of one matrix with another (or the original matrix), use

either the function crossprod() or the function tcrossprod(). If a and b are conforming
matrices, then

crossprod(a) = t(a)%*%a,

tcrossprod(a) = a%*%t(a),

crossprod(a,b) = t(a)%*%b,

tcrossprod(a,b) = a%*%t(b).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

17

To find the inverse of a nonsingular square matrix, use the function solve(), for
example, solve(a). The function solve() also can solve the linear equation

Xa=b,

for a, where X is a nonsingular square matrix and b has the same number of rows as X.
The syntax is solve(X,b).

To create a diagonal matrix or obtain the diagonal of a matrix, use the function diag().
If a is a vector, diag(a) will return a diagonal matrix with the diagonal equal to the a.
For example:

> a = 1:2
> a
[1] 1 2

> diag(a)
 [,1] [,2]
[1,] 1 0
[2,] 0 2

If a is a matrix, diag(a) will return the diagonal elements of the matrix, even if the
matrix is not square. For example:

> a = matrix(1:6,2,3)

> a
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> diag(a)
[1] 1 4

For more information, the CRAN help page for matrix multiplication can be found
by entering ??“matrix multiplication” at the R prompt. For the five functions, entering
?name, where name is the name of the function, brings up the help page for the function.

Relational Operators
Relational operators are used in logical tests. The six relational operators are == for equal
to, != for not equal to, < for less than, <= for less than or equal to, > for greater than, and
>= for greater than or equal to. The list of logical operators can be found in Table 3-4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

18

Table 3-4. Logical Operators

Operator Operation Example

== equals a==9

!= not equal a!=9

> greater than a>9

>= greater than or equal to a>=9

< less than a<9

<= less than or equal to a<=9

Note that the equal to relational operator is ==, not =. A common mistake is to enter
= for == in a logical expression. R will return an error for =.

As with arithmetic operators, logical expressions can be grouped using parentheses.
For example,

((a>0 & b>0) & (a<5 & b<5))

is a logical expression and can be assigned a name.

The CRAN help page for relational operators can be found by entering ??“relational
operators” at the R prompt.

Subscripting Operators
Many objects in R have more than one element. Subscripting is used to access specific
elements of an object. Vectors, matrices, arrays, lists, and slots can be subscripted. Single
square brackets ([]), double square brackets ([[]]), dollar signs ($) and at symbols (@) are
used for subscripting. None are used elsewhere.

Vectors
For vectors, using single square brackets is usually appropriate. Double square brackets
can also be used, but they can only access a single element of the vector at a time. Within
single square brackets, there may be a logical expression or a set of indices. For example:

a[3:7] or a[a>3]

The first expression results in the third through seventh elements of a. The second
expression results in those elements of a that are greater than three.

If indices are given a negative sign, those indices are not included For example,

a[-2:-6]

would return the object a with elements two through six removed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

19

An object can be subsetted in one set of square brackets and subsetted again in
another set of square brackets. For example:

a[1:10][b>3],

where the length of a is greater than or equal to ten, and b is of length ten. The expression
would return those elements of the first ten elements of a for which the corresponding
element of b is greater than three. The subsetting can be continued with more sets of
square brackets. Each set will operate on the result of all previous subsetting.

Matrices
For matrices, both kinds of square brackets are also used. For single square brackets, the
selection instructions for the rows are separated from the selection instructions for the
columns by a comma. Like the subsetting for vectors, for single square brackets, indices
or a logical expression may be used to subset a matrix. To reference all rows of a matrix,
put nothing to the left of the comma inside the brackets. To reference all columns of a
matrix, put nothing to the right of the comma inside the brackets.

Double square brackets return just one value. If subsetted with a row and a column
index separated by a comma, the value in the cell is returned. If just one index value
is entered within double square brackets, R treats the matrix as a vector—going down
rows—and returns the indexed element of the vector.

An example of matrix subscripting is

a[a[,1]>3 , 1:4],

where a is a matrix with at least four columns. The expression would return those rows
of the first four columns for which the elements of the first column are bigger than three.
Notice that the a[,1] consists of one column and contains all of the rows.

A matrix can also be subsetted using a matrix with two columns. The two-column
matrix would contain row and column indices and would pick out individual cells in the
matrix based on the indices in each row. For example, if b is a matrix with [1 2] in the first
row and [2 3] in the second row, then a[b] would return the two elements a[1,2] and a[2,3].

Arrays
Arrays are like matrices but can have more than two dimensions. Note that a matrix is
an array with two dimensions and a vector is an array with one dimension. Subscripting
arrays with more than two dimensions is just like subscripting matrices except that, for
single square brackets, there are more commas in the brackets. An example is

a[1:3,,2:7],

where a is a three-dimensional array with at least three levels in the first dimension and
at least seven levels in the third dimension. The result of the subsetting would be all of the
elements in the second dimension for which the index in the first dimension is one, two,
or three and the indices in the third dimension are between two and seven inclusive.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

20

Like matrices, arrays can be subsetted using a matrix that has the same number of
columns as the number of dimensions of the array, the rows of which would consist of
indices for individual cells of the array.

Lists
Lists are collections of R objects. The objects can be any type of object and do not have to
be of the same type within a list. The objects are indexed in the list. To look at objects in a
list, single square brackets are used. For example,

blist[1:5]

would return the first five objects in blist and would also be a list.

To access an object in a list, double square brackets or a dollar sign are required.
For example,

blist[[2]]

would return the second object in the list blist and

blist$b1

would return the object in blist with name b1. Objects in a list can only be accessed one
at a time.

If a list is created from objects that do not have names associated with the objects,
names will be given to the objects when the list is created. Names can be changed at
any time.

Data frames are a special kind of list. Data frames have the same number of elements
for every object in the list and are defined as data.frames. Data frames can be subsetted
like a matrix or like a list. If subsetted like a matrix, the resulting object will be a list.
If subsetted like a list, the resulting object will be raw, complex, numeric, logical, or
character depending on whether the list object is raw, complex, numeric, logical, or
character. Individual cells in a data.frame can be accessed using indices in the double
square brackets. For example,

adframe[[1,2]]

would return the element in the first row and second column of list adframe.

Many functions return output in lists. Dollar sign subscripting is usually used to
access the output, although square bracket indexing can be used. For example, for the
linear model function lm(), entering

lm(y~x)$resid

or

lm(y~x)[[2]]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

21

will return the residuals from a simple linear regression of y on x, as will the two sets of
statements

a=lm(y~x)
a$resid

or

a=lm(y~x)
a[[2]].

Other Types
Two other types of object can be subsetted—factors and slots. Objects that are factors
are vectors and can be subsetted like vectors. Slots are a newer type of object and are
subsetted using @. More information about subsetting both can be found by entering
??“Extract or Replace” at the R prompt.

Odds and Ends
Two object systems—S3 and S4—are used in R. Slots are part of S4. S3 and S4 are
discussed in Chapter 4 and in the pdf at www.r-project.org/conferences/useR-2004/
Keynotes/Leisch.pdf.

Assignments can be done to subsets of an object. For example, let a be a matrix and
let the user want to change those values in a that are greater than 100 to 100. Then the
statement

a[a>100] = 100

will do the replacement and leave the rest of the matrix intact.

The ? and ?? operators open the help pages. For known function names, ?name
(or help(name)) will return the help page for the function, where name is the name of the
function. To search for functions related to some techniques or methods, the operator, ??
is used. Entering ??“keywords” (or help.search(“keywords”)), where keywords consists
of keywords about the technique or method, may give a list of functions in packages
related to the topic. Sometimes the search comes up blank. Try again with different
keywords.

The colon is used in four ways in R. Of interest here is just the use of a single colon to
define a sequence and the double colon to refer to functions by package and name.

If a and b are two numbers, the expression a:b will give the sequence of integers
between a rounded down to an integer and b rounded down to an integer. Note that the
number a can be larger than the number b.

The functions that come with R are all part of some package. If a package is not
loaded, a search using just the function name will return nothing. The full name of
a function is package.name::function.name, where package.name is the name of the
package and function name is the name of the function.

www.it-ebooks.info

http://www.r-project.org/conferences/useR-2004/Keynotes/Leisch.pdf
http://www.r-project.org/conferences/useR-2004/Keynotes/Leisch.pdf
http://www.it-ebooks.info/

CHAPTER 3 ■ AssignmEnTs And OPERATORs

22

For more information on colons, enter ?“:” at the R prompt.
The operator ~ is used in model formulas to separate the left and right sides of a

model. For more information, type ?“~” at the R prompt.
The symbol # is used for comments. When writing functions, anything found to the

right of a # on a line of the code is ignored.
The CRAN help pages for subsetting are found by entering ??“Extract or Replace”.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 2

Kinds of Objects

Part II covers the different kinds of objects that are used in R in terms of their two
important qualities: mode and class.

Chapter 4 lists the modes and describes the common ones. In addition to
listing all of the modes current in R, the chapter describes the properties of the
atomic modes—NULL, raw, logical, numeric, complex, and character—and of
the nonatomic modes list, function, call, name, and expression.

Chapter 5 introduces the classes and gives the properties of several of them.
The chapter includes a special section on vectors, which are not a class but, a very
common kind of object. The classes associated with vectors are raw, logical,
integer, double, complex, character, some lists, and expressions. For most
atomic objects, the mode and the class are the same. After describing vectors, we
give properties of the classes for matrices, arrays, time series, factors, data frames,
dates, and times and dates.

Part II concludes with information about assigning names to the dimensions
of vectors, matrices, arrays, and lists.

www.it-ebooks.info

http://www.it-ebooks.info/

25

Chapter 4

Modes of Objects

R objects exist within an object system. R has two object systems: S3 and S4. S4 is the
newest version of R and contains a new way to approach R programming. S3 is the
preceding version. Both versions run concurrently. S4 offers powerful new methods, but
to use those methods a solid knowledge of S3 is necessary. This book focuses mainly on
S3 methods, including S4 syntax where appropriate.

Overview of the Modes
Modes describe the type of information an object contains and are an S3-level classification.
The mode of an object can be found by using the function mode(). The S4 level classification
is by type and can be found using the function typeof(). Currently, R objects fall into one
of the following modes: NULL, logical, numeric, complex, raw, character, list, expression,
name, function, pairlist, language, char, ..., environment, externalptr, weakref,
closure, bytecode, promise, and S4. Since R is constantly changing, the list of modes
may change. With a few exceptions, the types and the modes are the same and most of
the modes can be found under the list of types. The list of types can be found at the help
page for typeof() and at http://svn.r-project.org/R/trunk/src/main/util.c, under
the TypeTable. The instances for which mode() and typeof() give different results include
the following: the function typeof() returns either integer or double where mode() returns
numeric, typeof() returns either special or built-in where mode() returns function, and
typeof() returns symbol where mode() returns name. The help page for mode() gives the
cross reference between modes and types.

Commonly Used Modes
Most users will never use half of the modes. The commonly used modes are NULL, logical,
numeric, complex, raw, character, list, function, call, name, expression, and S4. The
mode NULL is the mode of an otherwise modeless empty object. Objects of mode logical
contain elements that can take on the values TRUE, FALSE, or NA, where NA represents
a missing value. Objects of mode numeric can take on integer or real numeric values or
NAs. Objects of mode complex can take on complex numeric values or NAs. Objects of
mode raw are made up of bytes. NAs are set to 00 for raw data.

www.it-ebooks.info

http://svn.r-project.org/R/trunk/src/main/util.c
http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

26

Objects of mode character are made up of character strings or NAs. The elements
of character objects are quoted, except for NAs. Objects of mode list are lists of other
objects, which can be of any mode. Objects of mode function are functions. Objects
of mode name are a simplified name of an object based on the first element of the
object, assuming the first element is not missing. Objects of mode call are functions
and arguments. Objects of mode expression are collections of objects such as calls
and names. Objects of mode S4 are those S4 objects that are complex (referring to the
structure of the object, not to complex numbers).

The sources for the preceding information are the help pages for mode() and typeof().

Atomic, Recursive, and Language Modes
Modes come in three kinds: atomic, recursive, and language. The atomic modes are NULL,
logical, numeric, complex, raw, and character. Atomic refers to the elements of the
objects being atomlike. For the atomic modes, all of the elements within the object are
of the same atomic mode. Recursive modes are collections of objects and can contain
objects of different modes. Two types of recursive modes are list and function. Most
objects that are not atomic are recursive. The language modes are name, call, and
expression. More information about the kinds of modes can be found under the help
pages for the functions that test for the kind of mode of an object: is.atomic(),
is.recursive(), and is.language().

Some Functions for Atomic Modes
Each of the atomic modes, except NULL, has three functions associated with the mode:
the function named for the mode, name(); an as.name() function; and an is.name()
function, where name is the name of the mode. The name() function creates a vector
of the length given by the argument or arguments, if the argument(s) are of the correct
mode and permissible value(s).

The as.name() function attempts to coerce the argument of the function to the
named mode. If the coercion is not possible, the as.name() function returns a vector
of NAs or gives an error. Note that if the argument is a matrix or array, a vector of the
elements of the matrix or array will be returned, where the conversion to a vector
proceeds down each dimension of the matrix or array in turn (in the case of a matrix,
going down the rows of the first column, then the second column, and so on).

The is.name() function tests whether the argument of the function is of the named
mode and returns TRUE or FALSE, depending on whether the argument is or is not.

The NULL Mode
NULL is a reserved object in R and is also a mode. While there is no function NULL() in R,
as.null() and is.null() are functions. With any object used as an argument or with no
argument, as.null() returns just one NULL. The function is.null() returns TRUE if the
argument is equal to NULL; FALSE otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

27

The Logical Mode
The function logical() with no argument or with zero for an argument returns
logical(0), which is the logical empty set and has length zero. The function logical()
with an integer greater than zero as an argument returns a vector of FALSEs of length
equal to the integer. If the argument is a single double precision element, the element
is rounded down and a vector of FALSEs of the length equal to the resulting integer
is created. If the argument is a numeric object other than a single number or if the
argument is a logical object, the function returns FALSE. If the argument is of mode NULL,
character, complex, raw, or a nonatomic mode, then logical() gives an error.

The function as.logical() coerces the argument of the function to logical, if
possible, and returns a vector containing TRUEs, FALSEs, and/or NAs. If there is no
argument or the argument is zero or NULL, as.logical() returns logical(0), a logical
empty set of length zero. If the argument is of mode numeric, zeroes will be returned as
FALSEs and all other numbers will be returned as TRUEs.

If the argument is a complex object, the function returns FALSE for 0+0i and TRUE
for any other complex number. If the mode is raw, 00s will return FALSE and any other
value will return TRUE. If the argument is of mode character, the function returns a
vector of NAs of length equal to the length of the argument. If the argument contains NAs,
for any of the modes except raw, NAs will be returned for the elements containing NAs. For
the raw mode, there are no NAs since NAs are interpreted as 00s in the raw mode.
For any other mode, as.logical() gives an error.

The function is.logical() returns TRUE if the argument is a logical object and
FALSE otherwise. The result of is.logical(logical(0)) is TRUE.

For more information about the logical mode, enter ?logical at the R prompt.

The Numeric Mode
For the mode numeric, things get a bit complicated. Originally in S, numeric objects
could be integer, real, or double (for double precision). The real option is deprecated
and should not be used. In S3, the integer and double options are both under mode
numeric. In S4, each has a separate type. The functions numeric(), is.numeric(), and
as.numeric() ae covered here. The functions integer(), as.integer(), is.integer(),
double(), as.double(), and is.double() behave similarly but are not covered here
because they are at the S4 level.

The function numeric() takes a numeric object or NULL as an argument. If the
argument equals zero or NULL or there is no argument, numeric() returns numeric(0), an
empty object of mode numeric and length zero. If a numeric object of length greater than
one or a logical object is the argument, only the first element is evaluated. For a logical
argument, TRUE is coerced to one and FALSE is coerced to zero, while for a numeric
argument, the first element is rounded down to an integer. The function then returns a
vector on zeroes of length equal to the value of the first element. For arguments of modes
other than numeric or logical, R returns an error.

The function as.numeric() attempts to coerce an object to double precision. The
argument can be any atomic mode object. If the argument is NULL or no argument is
given, numeric(0) is returned, where numeric(0) is an empty object of type numeric and
length zero. If the object is logical, TRUEs are set to one and FALSEs are set to zero in

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

28

the object. If the object is numeric, the values of the elements are returned as double
precision numbers. If the object is complex, only the real parts are returned—as double
precision numbers. If the object is of mode raw, as.numeric() converts the hexadecimal
values to double precision. If the object is of mode character, the function returns NAs
for the elements of the object. If the argument is not atomic, R gives an error. Elements
with a value of NA are returned as NA.

The function is.numeric() tests an object to see if the object is a numeric object and
works with objects of any mode. The value TRUE is returned if the object is numeric and
FALSE otherwise.

More information about mode numeric objects can be found by entering ?numeric
at the R prompt.

The Complex Mode
The complex mode is the mode of complex numbers. Complex numbers can be created
using complex() or by simply typing in the numbers at the R prompt. For example:

> a = complex(real=1:5, imaginary=6:10)
> a
[1] 1+ 6i 2+ 7i 3+ 8i 4+ 9i 5+10i

> a = 1:5 + 1i*6:10
> a
[1] 1+ 6i 2+ 7i 3+ 8i 4+ 9i 5+10i

Note that for complex numbers there is always a number with no operator in front of
the i, which lets R know that the i is the imaginary root of minus one.

For the function complex(), an argument of zero or no argument returns complex(0),
an empty set of mode complex and length zero. If the argument is a single positive
number, complex() returns a vector of complex zeroes of the length of the number
rounded down to an integer. If the argument consists of a numeric object with more
than one element or if the argument is logical either with one element or more than one
element, only the first element of the argument is used, where for logical objects FALSE is
coerced to zero and TRUE to one.

The function complex() also take the arguments real and imaginary or modulus
and argument. The arguments real and imaginary or modulus and argument can be
set equal to any numeric or logical objects. The objects do not have to be the same length
and will cycle. The arguments real and imaginary are the real and imaginary parts of the
numbers while the arguments modulus and argument are the polar coordinates of the
numbers, with modulus equal to the lengths of the numbers and argument equal to the
angles above the x axis of the numbers in radians.

Numbers of mode raw can be used for the real and imaginary arguments and will
be changed to double precision, but they cannot be used for the modulus and argument
arguments. For the real and imaginary pair, either one can be omitted, and the omitted

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

29

argument will be set to zero. For the modulus and argument pair, if modulus is omitted,
the value for modulus will be set to one, and if argument is omitted, the value for
argument will be set to zero. Some examples of complex() include the following:

> complex(real=c(T,F), imaginary=1:5+0.5)
[1] 1+1.5i 0+2.5i 1+3.5i 0+4.5i 1+5.5i

> complex(modulus=c(1,2), argument=pi/4)
[1] 0.7071068+0.7071068i 1.4142136+1.4142136i

> as.raw(27:30)
[1] 1b 1c 1d 1e

> complex(real=as.raw(27:30))
[1] 27+0i 28+0i 29+0i 30+0i

> complex(ima=as.raw(27:30))
[1] 0+27i 0+28i 0+29i 0+30i

> complex(mod=as.raw(27:30))
Error in rep_len(modulus, n) * exp((0+1i) * rep_len(argument, n)) :
 non-numeric argument to binary operator

> complex(mod=3:5)
[1] 3+0i 4+0i 5+0i

> complex(arg=3:5*pi/180)
[1] 0.9986295+0.0523360i 0.9975641+0.0697565i 0.9961947+0.0871557i

The function as.complex() will try to coerce an object to mode complex. If the
object can be coerced to numeric (the atomic modes) but is not complex, then the result
is a complex object with the coerced argument as the real part and with zeros for the
imaginary part, except for NAs, which are returned simply as NAs. For nonatomic modes,
as.complex() returns an error.

The function is.complex() tests whether the argument to the function is of mode
complex. The function returns TRUE if the argument is of the complex mode and
FALSE otherwise.

More information about the complex mode can be found by entering ?complex at
the R prompt.

The Raw Mode
The raw mode is for bytewise analysis. The numbers in a raw object are in hexadecimal
format, with each element consisting of two digits, either of which can take on any
of the values zero through nine or a through f. Raw elements cannot have a decimal
equivalent of greater than 255 (that is, be a hexadecimal number with more than two
digits) or be negative.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

30

The function raw() returns a vector of 00s of length specified by the argument.
If no argument or an argument of zero is given, raw() returns raw(0), an raw empty set
with length zero. If a single number is entered as the argument, raw() returns a vector
of length equal to the number rounded down to an integer. If any other kind of object is
entered as the argument, raw() gives an error.

The function as.raw() attempts to coerce the argument of the function to raw.
If no argument is given, as.raw() returns an error. If the argument is NULL, as.raw()
returns raw(0), the raw empty set. If the argument is zero, the function returns 00, the
hexadecimal zero.

Objects of any of the atomic modes can be used as arguments for as.raw(). For
logical mode objects, FALSEs are set to 00 and TRUEs are set to 01. For numeric mode
objects, for values greater than or equal to zero and less than 256, the numbers are
rounded down to an integer and converted to hexadecimal. Numbers outside the legal
range are converted to 00. For objects of mode complex, the real portion is treated in
the same way as numeric objects and the imaginary portion is discarded. For objects
of mode character, all of the elements are converted to 00. Any element equal to NA
will also be set to 00. Using objects of modes other than atomic modes for the argument
gives an error.

The function is.raw() tests if an object is of mode raw. The function returns TRUE if
the object is of mode raw and FALSE otherwise. Any object can be used as an argument
to is.raw().

More information about the mode raw can be found by entering ?raw at the
R prompt.

The Character Mode
Character mode objects are made up of quoted strings. If an object is text, the text will be
broken at each 500 characters to form a vector of strings. The three usual functions also
apply to the character mode.

The function character() creates a vector of empty strings and only takes mode
numeric, one-element arguments. If the argument is greater than or equal to one, the
argument is rounded down to an integer and the function returns a vector of “”s of length
equal to the integer. If the argument is less than one and greater than or equal to zero, the
character empty set of length zero, character(0), is returned. Other arguments return an error.

The function as.character() tries to convert the argument to strings. For the
atomic modes, the conversion is literal, but the elements are returned within quotes.
For double precision numbers up to 15 significant digits are used. Unlike the other
atomic modes—except NULL—the function as.character() also returns results for
some of the recursive modes.

Objects of mode list are described under the next section. In this section, lists are
collections of objects that can be of any mode. The function lm() used in the example
below fits a linear regression model, with the value to the left of the tilde being the
dependent variable and the value to the right the independent variable. The output from
lm() is a list.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

31

With an object of mode list as an argument, as.character() may return some
strange things depending on the list. The function may return something different from
what is returned if the argument is entered at the R prompt. Examples follow:

> a.list
[[1]]
 a1 a2 a3 a4
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

[[2]]
 [1] 1 2 3 4 5 6 7 8 9 10

[[3]]
[1] "glh" "abc"

> as.character(a.list)
[1] "1:20" "1:10" "c(\"glh\", \"abc\")"

> a.lm

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 1 1

> as.character(a.lm)
 [1] "c(0.999999999999999, 1)"
 [2] "c(0, 0, 0)"
 [3] "c(-5.19615242270663, -1.41421356237309, 0)"
 [4] "2"
 [5] "c(2, 3, 4)"
 [6] "0:1"
 [7] "list(qr = c(-1.73205080756888, 0.577350269189626, 0.577350269189626,
-3.46410161513776, -1.41421356237309, 0.965925826289068), qraux =
c(1.57735026918963, 1.25881904510252), pivot = 1:2, tol = 1e-07, rank = 2)"
 [8] "1"
 [9] "list()"
[10] "lm(formula = y ~ x)"
[11] "y ~ x"
[12] "list(y = 2:4, x = 1:3)"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

32

Play around with different kinds of lists to see how as.character() performs.
Objects of modes name, call, and expression can also be coerced to character.

Objects of modes function and S4 cannot.
The function is.character() tests to see if the argument to the function is of

mode character and returns TRUE if so and FALSE otherwise. Any object can be
used as an argument.

For more information about the character mode, enter ?character at the R prompt.

The Common Recursive and Language Modes
The recursive and language modes covered in this book are list, function, call,
expression, and name. The modes list, function, call, and expression are all recursive
modes. The modes call and expression are also language modes. The mode name is a
language mode but not a recursive mode.

The List Mode
Lists are collections of objects, which may be of any mode and which do not have to be of
the same mode within the list. The list mode has the same three functions as the atomic
modes; however, there are a few more. Creating an empty list differs from the atomic
modes. To create a list of a given number of objects where the objects are NULLs, use

vector("list", n),

where n is the number of objects to be in the list. The variable, n, must be numeric,
is rounded down to an integer, and can only contain one element.

The function unlist() removes the list property for some lists and, for those lists,
returns a vector of the elements of the objects in the list.

The function alist() creates a list where the values of variables in the list do not
have to be specified. The function alist() is most often used in evaluating functions,
where some variables can be prespecified and others are assigned at each running of the
function.

The function list() creates a list out of the arguments to the function. Within the
parentheses, the arguments are separated by commas. The arguments can be any kind
of object.

The function as.list() attempts to coerce the argument to mode list. If more
than one argument is supplied, only the first argument is coerced. The other arguments
are ignored.

The function is.list() tests if the argument is a list (or a pairwise list, which is
not covered here). If the object is of mode list, TRUE is returned. Otherwise, FALSE
is returned.

More information can be found by entering ?list at the R prompt, which brings up
the help page for list().

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

33

The Function Mode
Functions in R are of mode function. Of the functions listed for atomic modes, only
is.function() and function() exist for the mode function. The function is.function()
returns TRUE if the argument is a function and FALSE otherwise. The function
function() creates functions, but the structure of functions is different from the atomic
modes and the list mode, and the help page for function() is different from the help
page for is.function(). We will cover the creation of functions in Chapter 7.

Another mode for functions is closure. The mode closure is for functions that are
not primitive—that is, are written in R code. Note that functions of mode closure are also
of mode function. The function is.primitive() exists to test if a function is primitive,
but a function is.closure() does not exist.

More information about the function mode can be found by entering ?is.function
at the R prompt, which will bring up the help page for is.function().

The Call Mode
Objects of the call mode are unevaluated functions with arguments, if the function takes
arguments. The same three functions that exist for the atomic modes exist for the call
mode: call(), as.call(), and is.call().

The function call() creates an object of mode call. The first argument of call() is
the name of the function in quotes. The rest of the arguments to call are the arguments
to the function. Some examples include the following:

> a.call = call("lm", y~x)
> a.call
lm(y ~ x)

> b.call = call("ls")
> b.call
ls()

> c.call = call("ls", pattern="abc")
> c.call
ls(pattern = "abc")

Note that an object of mode call can be evaluated using the function eval(). If
all of the variables in the call exist in the workspace, eval() will evaluate the function;
otherwise eval() will give an error. For example:

> x
[1] 1 2 3
> y
[1] 2 3 4
> eval(a.call)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

34

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 1 1

> a.call = call("lm", z~x)
>
> z
Error: object 'z' not found
>
> eval(a.call)
Error in eval(expr, envir, enclos) : object 'z' not found

The function as.call() tries to coerce the argument to an object of mode call.
If the argument is a list, then the conversion takes place; otherwise an error is returned.
However, if the list does not consist of the name of a function followed by the arguments
of that function, the object cannot be evaluated.

The function is.call() tests the argument and returns TRUE if the argument is of
mode call and FALSE otherwise.

Further information about the mode call can be found by entering ?call at the
R prompt.

The Name Mode
The mode name refers to objects that are names created for and from other objects. Only
the functions as.name() and is.name() exist for the name mode. Names can be up to
10,000 bytes long.

The function as.name() takes arguments that can be logical, numeric, complex,
raw, character, or name. Arguments of other modes give an error. The function uses the
first element of the object to assign the name. For example:

> mat
 one two
row1 1 6
row2 2 7

> as.name(mat)
`1`.

The function is.name() tests if the argument is of mode name and returns TRUE if
so and FALSE otherwise.

Note that the mode name and the type symbol are the same so as.name() is the same
as as.symbol() and is.name() is the same as is.symbol(). The mode name is the S3
convention and the type symbol is the S4 convention. More information can be found by
entering ?name at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

35

The Expression Mode
The expression mode is like the list mode, but mainly for objects of modes like class
or name. Objects of mode expression can be subsetted like lists and are not evaluated
when created. The expression mode uses the three functions that the atomic modes use:
expression(), as.expression(), and is.expression().

The function expression() creates a listing of the objects entered into the function.
The objects are separated by commas and can be of any mode. The function eval() can
be used to evaluate the expression. Only the last object in an expression is evaluated
under eval(). If the last argument is made up of primitive functions, eval() will return
the result, while if the function or expression is not primitive, eval() will return the
expression. A second eval() is then necessary to evaluate the function or expression.
Examples follow:

> a.exp = expression(sin(1:5/180*pi))
> a.exp
expression(sin(1:5/180 * pi))
> eval(a.exp)
[1] 0.01745241 0.03489950 0.05233596 0.06975647 0.08715574

> a.exp = expression(sin(1:5/180*pi),a.call)
> a.exp
expression(sin(1:5/180 * pi), a.call)
> eval(a.exp)
lm(y ~ x)
> eval(eval(a.exp))

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 1 1

> a.exp = expression(a.call,sin(1:5/180*pi))
> eval(a.exp)
[1] 0.01745241 0.03489950 0.05233596 0.06975647 0.08715574

An object of name mode will give an error if placed as the last argument in an
expression that is being evaluated.

The function as.expression() attempts to coerce the argument to mode
expression. The modes NULL, call, name, and pairlist are coerced to a single element
expression. Atomic modes other than NULL are coerced elementwise. Lists are coerced
with no changes except the mode. Other modes of objects will give an error if coercion
is attempted.

The function is.expression() tests the argument and will return TRUE if the
argument is of mode expression and FALSE otherwise.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ ModEs of objECTs

36

More information about the expression mode can be found by entering
?expression at the R prompt.

The S4 Mode
The mode S4 identifies objects that are used in the new S4 version of R, which uses a
quite different syntax and is not covered in this book. The isS4() function returns TRUE
if an object is of mode S4 and FALSE otherwise. The function mode() returns S4 if the
argument is of mode S4.

You can find more information by entering ?S4 at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

37

Chapter 5

Classes of Objects

In R, objects belong to classes as well as modes and types. Classes tell something about
how an object is structured. S3 and S4 differ with regard to classes. In S3, there are
specific classes into which an R objects falls. In S4, the user defines a class for an S4
object. Classes in S3 are called informal classes, whereas classes in S4 are called formal
classes. This chapter covers only S3 classes.

Some Basics on Classes
S3 classes are attributes of S3 objects and are not usually assigned by the user. Given an
object, the class of the object can be found by using the function class(). If an object has
not been given a class in the package to which the object belongs, then the class of the
object is just the mode of the object. For example, an object of mode function is also of
class function.

The output from many functions will have a class attribute specific to the function.
For example, the class of the output from a linear model fit with the function lm() is lm.
Also, objects can belong to more than one class. An example is a model fit using the
generalized linear model function glm(). The classes of the output are glm and lm.

On a more technical side, according to the help page for class(), the classes of an
object are the classes from which an object inherits. So, the output of lm() inherits from
lm and the output from glm() inherits from both lm and glm.

One useful function for classes is the function methods(). Entering
methods(class=name), where name is the name of a class, will show functions
specifically written to be applied to objects of the class. For example:

> methods(class=matrix)
 [1] anyDuplicated.matrix as.data.frame.matrix as.raster.matrix*
 [4] boxplot.matrix determinant.matrix duplicated.matrix
 [7] edit.matrix* head.matrix isSymmetric.matrix
[10] relist.matrix* subset.matrix summary.matrix
[13] tail.matrix unique.matrix

 Non-visible functions are asterisked

Entering ?class at the R prompt gives more information about classes and
inheritance.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

38

Vectors
Although there is no class vector, the vector merits discussion as one of the most basic
kinds of objects. For vectors, the class is just the mode of the vector, except for integer
vectors, which take on the class integer. Another reason vectors are important is that
for the as.name() functions, where name is the name of an atomic mode, except for the
mode NULL, as.name() returns a vector.

The functions vector(), as.vector(), and is.vector() exist and operate somewhat
like the similar functions for the modes. The function vector() takes the arguments
mode and length and creates a vector of the given mode and length. The acceptable
modes are the atomic modes—except NULL, the list mode, and the expression mode.
Other modes give an error.

For the atomic modes,

vector(mode="name", length=n)

behaves the same way as

name(length=n),

where name is the name of the mode and n is the length argument. Note that name
must be in quotes in the call to vector(). For the list mode, vector() returns a list of
NULLs of length given by the length argument. With the mode set equal to expression,
vector() gives an expression with NULLs for arguments, where the number of NULLs
is given by the length argument.

The function as.vector() tries to coerce an object to a vector. For some objects,
as.vector() just passes the object through and does not create a vector. For some other
objects, an error is returned if the function as.vector() is run.

For matrices and arrays, dimensional information is removed by as.vector() (for
example, names of columns in a matrix and the number of rows and columns), and a
vector of the elements of the matrix or array is returned. The elements of the vector are
ordered starting with the first dimension of the matrix or array and continuing through
the dimensions. For example:

> a = array(1:8,c(2,2,2))

> dimnames(a) = list(c("d11","d12"),c("d21","d22"),
+ c("d31","d32"))

> a
, , d31

 d21 d22
d11 1 3
d12 2 4

, , d32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

39

 d21 d22
d11 5 7
d12 6 8

> as.vector(a)
[1] 1 2 3 4 5 6 7 8

Here the c() function is used to create the vector of the dimensions for the 2x2x2
array() and to create names for the three dimensions of the array.

For objects of mode list, as.vector() passes the list through. Depending on the
structure of the list, is.vector() operating on the result can give either TRUE or FALSE.
The mode does not change.

For objects of mode function, as.vector() returns an error.
For objects of mode call, as.vector() passes the object through but does not create

a vector. The mode does not change.
For objects of mode name, as.vector() returns an error.
For objects of mode expression, as.vector() passes the expression through and the

result gives TRUE for is.vector(). The mode does not change.
For the S4 mode, as.vector() returns an error.
The function is.vector() returns TRUE if the object is a vector and FALSE

otherwise, although some objects that do not look like vectors return TRUE.
More information about vector(), as.vector(), and is.vector() can be found by

entering ?vector at the R prompt.

Some Common Classes
Some common S3 classes are integer, numeric, matrix, and array. Objects of class
integer and numeric are vectors. Matrices are just that—objects made up of elements in
rows and columns, all of the same mode. Arrays are like matrices, but they can have more
than two dimensions.

Some other common S3 classes are ts and mts, for time series; factor, for factors;
Date, for dates; and POSIXct, for dates with times, all of which are numeric.

Some common classes of mode list are data.frame, for data frames; POSTXlt, for
dates and times; and most output from higher-level functions in the packages such as
lm and glm.

The Matrix Class: matrix
Objects of class matrix are matrices made up of elements of one of the atomic modes,
except NULL, or of the modes list or expression. The three functions matrix(),
as.matrix(), and is.matrix() exist and behave similarly to the functions for atomic modes.

The function matrix() creates a matrix. The function takes five possible arguments.
The first argument is an object of atomic, list, or expression mode. The second
argument is nrow, the number of rows. The third argument is ncol, the number of
columns. The fourth argument is byrow, which tells R to create the matrix going across
rows rather than down columns. The default value is FALSE. The byrow argument is

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

40

useful for scanning tabular atomic data into a matrix. The fifth argument is dimnames,
which assigns names to the rows and columns within the call to matrix(). The default
value for dimnames is NULL.

Using the array a from the section on vectors, two examples of creating a matrix follow:

> matrix(a,3,3)
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 1
Warning message:
In matrix(a, 3, 3) :
 data length [8] is not a sub-multiple or multiple of the number of rows [3]

and

> matrix(a,3,3,byrow=T,dimnames=list(NULL,c("c1","c2","c3")))
 c1 c2 c3
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 1
Warning message:
In matrix(a, 3, 3, byrow = T, dimnames = list(NULL, c("c1", "c2", :
 data length [8] is not a sub-multiple or multiple of the number of rows [3]

Note that R gives a warning if the product of the number of rows and columns is not
a multiple of the number of elements in the first argument. The warning message does
not affect the result.

For the atomic modes, if just the first argument is given, R creates a matrix with
the number of rows equal to the number of elements in the object and the number of
columns equal to one. If just nrow or ncol is given, R creates a matrix out of the object in
the first argument with the given number of rows or columns, filling out as many of the
columns or rows that it takes to use up all of the elements in the first argument—cycling
if necessary. If both nrow and ncol are present, R will go through the elements of the first
argument until the matrix is full, cycling as necessary. The byrow argument can be used
to cycle the first argument across rows rather than down columns.

For objects of the list mode, matrix() creates a matrix that describes the contents
of each top level element of the list. The description gives the mode of the element and
the size of the element. If the element of the list is not of a legal mode, then a ? is placed
in the cell of the matrix. Referencing cells on the matrix returns the contents of the list for
the cell. The following code gives an example:

> a.list = list(matrix(1:4,2,2), c("abc","cde"), 1:3, c.fun)

> a.list
[[1]]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

41

 [,1] [,2]
[1,] 1 3
[2,] 2 4

[[2]]
[1] "abc" "cde"

[[3]]
[1] 1 2 3

[[4]]
function ()
print(1:5)

> matrix(a.list,2,2)
 [,1] [,2]
[1,] Integer,4 Integer,3
[2,] Character,2 ?

> matrix(a.list,2,2)[2,2]
[[1]]
function ()
print(1:5)

Objects of mode expression are legal for matrix(), but the result does look like a
matrix. Depending on the number of columns and/or rows given, the arguments in the
expression will be duplicated.

The function as.matrix() attempts to coerce an object to class matrix and is mainly
used with data.frames. If the argument to as.matrix() can be coerced to a vector and
is not a matrix or data.frame, then as.matrix() creates a single column matrix of the
coerced elements. The mode is matrix. If the object is a matrix, as.matrix() just returns
the matrix and maintains row and column names.

If the object is a data.frame, then as.matrix() coerces the data.frame to a matrix.
(A data.frame is a special kind of list for which the elements all have the same length and
are of the atomic modes.) If there is a column in the data.frame that contains character
data or raw data, then the entire data.frame is coerced to character. Otherwise, the
data.frame is coerced to a logical matrix if all of the columns are logical, to an integer
matrix if an integer column is present but no numeric or complex columns are present,
to a numeric matrix if a numeric column is present and no complex columns are present,
and to a complex matrix if a complex column is present.

Data frames can also be converted to a matrix using the data.matrix() function.
The function data.matrix() converts a data frame to a matrix by coercing all of the
elements in the data frame to numeric. For complex elements, the imaginary part
is discarded. The function coerces character columns to NAs and factor columns to
integers, starting with 1. (When a data frame is created, columns of mode character are
changed to factors by default. See the section on data.frame() for how data.frame() can
handle columns of mode character.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

42

The following example shows the results for as.matrix() and data.matrix(), using
a data.frame called a.df:

> a.df = data.frame(c("a","a"),1:2,c(F,T),1:2+.5,1:2+7i)

> dimnames(a.df) = list(c("1","2"),c("char", "int", "log", "doub", "comp"))

> a.df
 char int log doub comp
1 a 1 FALSE 1.5 1+7i
2 a 2 TRUE 2.5 2+7i

> mode(a.df)
[1] "list"

> class(a.df)
[1] "data.frame"

> as.matrix(a.df)
 char int log doub comp
[1,] "a" "1" "FALSE" "1.5" "1+7i"
[2,] "a" "2" " TRUE" "2.5" "2+7i"
>
> as.matrix(a.df[,2:5])
 int log doub comp
[1,] 1+0i 0+0i 1.5+0i 1+7i
[2,] 2+0i 1+0i 2.5+0i 2+7i

> class(a.df[,1])
[1] "factor"

> data.matrix(a.df)
 char int log doub comp
[1,] 1 1 0 1.5 1
[2,] 1 2 1 2.5 2
Warning message:
In data.matrix(a.df) : imaginary parts discarded in coercion

The function is.matrix() tests whether an object is of class matrix. The function
returns TRUE if the class of the argument is matrix and FALSE otherwise. If an object of
mode and class expression is used to create a matrix or is coerced to a matrix, the result
will have class matrix, even though the structure of the result is not matrixlike.

More information on matrix(), as.matrix(), and is.matrix() can be found by
entering ?matrix at the R prompt. More information about data.matrix() can be found
by entering ?data.matrix at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

43

The Array Class: array
The array class is a class of data that is organized using dimensions, such as a
multidimensional contingency table. Matrices can be set up as two-dimensional arrays
and vectors can be set up as one-dimensional arrays. Both, however, will have class
matrix, even though array() creates the objects.

The function array() creates an array out of an object. The function takes three
arguments. The first argument is any object that can be coerced to a vector. The second
argument is a vector that contains the size of each dimension and is of length equal to the
number of dimensions. The third argument is a list of names for each of the dimensions
and can be omitted. The default value is NULL.

The following is an example of setting up an array:

> b.array = array(1:12, c(2,3,2),
+ dimnames=list(c("",""),c("d21", "d22", "d23"),NULL))

> b.array
, , 1

 d21 d22 d23
 1 3 5
 2 4 6

, , 2

 d21 d22 d23
 7 9 11
 8 10 12
.

Other than there being more than two dimensions, array() behaves the same as
matrix().

The function as.array() attempts to coerce an object to class array. The object
must be of the atomic modes—except for the NULL mode—or of the list or expression
modes. Otherwise, as.array() returns an error. For the atomic modes, as.array()
behaves like as.matrix(). For the list and expression modes, as.array() just passes
the object through, but changes the class of the object to array. The mode is not changed.

The function is.array() tests an object to see if the class of the object is array. The
function returns TRUE if the class is array and FALSE otherwise.

More information about array(), as.array(), and is.array() can be found by
entering ?array at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

44

The Time Series Classes: ts and mts
Classes ts and mts refer to objects that have a starting point, an end point, and a
frequency or period defined, and for which observations are assumed to be at equal
intervals. The default time series class for a vector of time series observations is ts.
For a matrix of concurrent time series observations, the default classes are mts, ts, and
matrix. The class of the time series can be changed when the time series object is created.

Time series objects can be created out of vector, matrix, some list, and
expression objects—as well as some other classes of objects such as factor and
Date—using the function ts(). Objects of mode array give an error. All of the atomic
modes are legal as arguments for the function ts(), except the NULL mode. For list
objects, depending on the contents and structure of the list, the ts() function will create
a, sometimes strange, time series object.

If the argument to ts() is a data frame, then the data frame is coerced to a matrix by
the function data.matrix(). For any object to be used as an argument to ts(), the first
element of the object must be atomic. For matrix arguments, the different time series go
across the columns and time goes down the rows.

The function ts() takes eight arguments. The first argument is the object to be
changed into a time series. The second argument is start and gives a value for the start
of the series. The third argument is end and gives a value for the end of the series. The
fourth argument is frequency, which give the periodic frequency for the series. The fifth
argument is deltat, which is the inverse of the frequency. Either frequency or deltat is
supplied, not both.

The sixth argument is ts.eps, which gives the acceptable tolerance for comparing
frequencies between different time series. The seventh argument is class, which tells R
what class to assign to the time series object. The eighth argument is names and gives
names to the time series for time series matrices. If no names are given, R assigns the
names Series 1, Series 2, and so forth.

The second, third, fourth, and fifth arguments can be confusing. R treats monthly
or quarterly data as a special case when regarding printing and plotting. Other types of
periodic data have to be treated specially. For monthly data, setting start equal to

start = c('year', 'month number')

and frequency equal to

frequency = 12

or deltat equal to

deltat = 1/12,

where year is the starting year and month number is the number of the starting month
(1 for January, 2 for February, and so on), assigns months and years to the points in the
object being converted to a time series.

To generate a monthly time series, include end with

end = c('year', 'month number'),

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

45

where year is the ending year and month number is the number of the ending month.
The function ts() will cycle the first argument until the time series is filled out.

For quarterly data, follow the same steps but use a frequency of four. For example:

> d.qua
 [,1] [,2]
[1,] 1.53 5.48
[2,] 7.07 3.51
[3,] 5.91 4.10
[4,] 6.89 8.49
[5,] 1.51 5.33
>
> d.qua.ts = ts(d.qua, start=c(2000, 3), frequency=4)
>
> d.qua.ts
 Series 1 Series 2
2000 Q3 1.53 5.48
2000 Q4 7.07 3.51
2001 Q1 5.91 4.10
2001 Q2 6.89 8.49
2001 Q3 1.51 5.33

On a more general level, say there is daily data for one week and three days and the
starting week is number 32. Let d.data be the data. Then the time series can be created
as follows:

> d.data
 [1] 0.908 -3.311 -0.702 -0.273 0.574 -0.428 -0.834 -0.531 -3.020 -0.060
>
> d.ts = ts(d.data, start=c(32,1), end=c(33, 3), frequency=7)
>
> d.ts
Time Series:
Start = c(32, 1)
End = c(33, 3)
Frequency = 7
 [1] 0.908 -3.311 -0.702 -0.273 0.574 -0.428 -0.834 -0.531 -3.020 -0.060
>
> print(d.ts, calendar=T)
 p1 p2 p3 p4 p5 p6 p7
32 0.908 -3.311 -0.702 -0.273 0.574 -0.428 -0.834
33 -0.531 -3.020 -0.060

Note that the default for printing the time series is not in periods—except for
frequencies of 4 and 12, for which R assumes that the data is monthly or quarterly. The
printing of periods can be turned on and off with the calendar argument to print().

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

46

If one number, instead of two, is used for each of start and end, then only the
quantities (n+i/f) can be used as the starting and end points, where n is the integer of
the first period, f is the frequency, and i can take integer values between zero and (f-1).
The quantity (n+i/f) must be taken out to at least five decimal places if entered manually
unless the argument ts.eps is changed from the default value of 1.0E-5. The value of ts.
eps is set in options(). R is very picky here.

The function as.ts() attempts to coerce an object to class ts. Objects that are
vector—or matrixlike—will coerce. Arrays will not, functions will not, names will not,
and calls will not; expressions and lists will.

The function is.ts() tests if an object is of class ts and returns TRUE if so and
FALSE otherwise.

More information about ts(), as.ts(), and is.ts() can be found by entering ?ts at
the R prompt.

The Factor Classes: factor and ordered
The class factor is the class of objects that are factor levels. Ordered factors belong to
two classes, ordered and factor. Ordered factors have ordered factor levels. Factors and
ordered factors are used in modeling for which at least some categorical data is present. The
mode of factors and ordered factors is numeric and the levels are associated with integers
that increase in value from one. However, when printed, the nominal levels are given.

The factor levels are usually ordered alphabetically or numerically by default,
depending on the mode of the argument, but the R help page for factor warns that the
levels may be sorted by another method.

The three functions factor(), as.factor(), and is.factor() exist, as well as
ordered(), as.ordered(), and is.ordered(). The second set of functions behaves the
same as the first set with regard to creating and testing factor objects, so we only discuss
the first set of functions here.

The function factor() creates a vector of factor levels and an associated list of levels.
The function has six arguments. The first argument is the object from which the factors
will be generated. The argument must be of an atomic mode other than raw. The second
argument is levels and sets the order of the factor levels. The levels argument is optional.

The third argument is labels and assigns labels to the levels. The third argument is
optional and defaults to the values of the elements of the object. The fourth argument is
exclude and gives any levels to be excluded in the result. Excluded levels are set to <NA>.
The argument is optional and defaults to NA.

The fifth argument is ordered, which is in factor(), but not in ordered(). The
argument ordered tells factor() to create a factor with ordered levels. The function
factor() with ordered set to TRUE gives the same result as the function ordered(). The
sixth argument is nmax and is described as the maximum number of levels to use. Avoid
using nmax. The argument does not appear to work and can crash R.

Converting between factors and the original data is sometimes of interest. If labels
have not been assigned in factor(),

as.mode(levels(fac.obj))[fac.obj],

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

47

returns the original values of the object, where mode is the mode of the original object
and fac.obj is the factor object. Note that the function,

as.numeric(fac.obj),

returns the integers associated with the levels, even if the original object was not of mode
numeric. If labels have been assigned, then usually the original data cannot be extracted.

An example follows:

> a.log = c(T,T,F,T)

> a.log
[1] TRUE TRUE FALSE TRUE

> afl = factor(a.log)

> afl
[1] TRUE TRUE FALSE TRUE
Levels: FALSE TRUE

> as.logical(levels(afl))[afl]
[1] TRUE TRUE FALSE TRUE

> as.numeric(afl)
[1] 2 2 1 2

> af2 = factor(a.log, levels=c(T,F))

> af2
[1] TRUE TRUE FALSE TRUE
Levels: TRUE FALSE

> as.logical(levels(af2))[af2]
[1] TRUE TRUE FALSE TRUE

> as.numeric(af2)
[1] 1 1 2 1

> af3 =factor(a.log, labels=c("flab","tlab"))

> af3
[1] tlab tlab flab tlab
Levels: flab tlab

> as.logical(levels(af3))[af3]
[1] NA NA NA NA

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

48

> as.numeric(af3)
[1] 2 2 1 2

> as.character(levels(af3))[af3]
[1] "tlab" "tlab" "flab" "tlab"

The as.factor() function operates the same way as factor(), but only takes one
argument, an object to be made into a factor.

The is.factor() function tests if an object is a factor and returns TRUE if so and
FALSE otherwise.

There is also a related function, addNA(). The function creates a factor object
with a level for missing data (NAs). The function takes on two arguments. The first
argument is an object from which an object of class factor can be created. The second
argument is ifany. The ifany argument is logical and takes on the value TRUE if the
extra level is only added when NAs are present and the value FALSE if the extra level is
to always be included.

More information about the seven functions can be found by entering ?factor at the
R prompt.

The Data Frame Class: data.frame
The class data.frame is a matrixlike class of mode list. Data frames and how to use
them are important. Many of the data sets that are available for R are data frames. When
data is read from external sources, many of the functions that do the reading create data
frames. Learning how to work with and create data frames pays high dividends.

Data frames contain atomic data in rows and columns. Within a column, all of the
data must be of the same mode. Across columns, the mode can change. Because data
frames do not have to be of just one mode, data frames are a special kind of list.

Accessing elements of the data frame can be done like matrices or like lists, which
makes data frames more versatile than the usual list. By default, the columns take names
that reflect what is or is not in the original objects making up the data frame.

The functions data.frame(), as.data.frame(), and is.data.frame() all exist in
R. In data.frame() the objects to be included in the data frame are listed first, separated
by commas. The objects can be any object of atomic mode or lists made up of atomic
columns, or just raw data. If an object is made up of more than one column, like some
matrices and lists, then each column in the original object becomes a column in the
data frame. Otherwise, each object becomes a column. If the columns had names in the
original objects, the names are brought into the data frame by default.

The objects used to make up the data frame do not have to be of the same length
(or number of rows for matrices), but must be multiples of each other in length. The number
of rows in the data frame will equal the length of the longest column. The data in the
other columns will cycle until the column has the right number of rows. For example:

> a.list
[[1]]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

49

 a1 a2
[1,] 1 7
[2,] 2 8
[3,] 3 9
[4,] 4 10
[5,] 5 11
[6,] 6 12

[[2]]
[1] "abc" "cde"

>
> data.frame(a.list, 1:3)
 a1 a2 c..abc....cde.. X1.3
1 1 7 abc 1
2 2 8 cde 2
3 3 9 abc 3
4 4 10 cde 1
5 5 11 abc 2
6 6 12 cde 3

Note that R has created names for the third and fourth columns and that the third
and fourth columns both cycle.

The function data.frame() has four arguments in addition to the objects that will
make up the data frame. The first argument is row.names, which assigns names to the
rows and by default is NULL, that is, no names are assigned. The second argument is
check.rows, which is a logical argument and will check for consistency of row lengths
and row names if set to TRUE. The default is FALSE. The third argument is check.names,
which is also logical and which checks that column names are syntactically correct and
corrects names that are not. The default for check.names is TRUE.

The last argument is stringsAsFactors. By default, data.frame() converts any
column containing character data into a factor. The argument stringsAsFactors
is a logical variable. If set to TRUE, factors are created. If set to FALSE, character
columns remain columns of mode character. The actual default value is
default.stingsAsFactors(). The value of default.stringsAsFactors() is set in options()
(Chapter 15) and by default is TRUE but can be changed in options().

The function I() can be used in the setting up of data frames. The function is
another way to stop data.frame() from converting a character vector to factors. Also, I()
ensures that for a matrix the column structure is maintained in the data frame. An object
in the data.frame() call enclosed in I() will be treated as one element of the data frame,
even if the object contains more than one column. Objects enclosed in I() do not cycle.
For example:

> mat
 one two
row1 1 6
row2 2 7
row3 3 8
row4 4 9
row5 5 10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

50

> a.char
 [1] "a1" "a2" "a3" "a4" "a5" "a6" "a7" "a8" "a9" "a10"

> data.frame(mat,a.char)
 one two a.char
1 1 6 a1
2 2 7 a2
3 3 8 a3
4 4 9 a4
5 5 10 a5
6 1 6 a6
7 2 7 a7
8 3 8 a8
9 4 9 a9
10 5 10 a10
Warning message:
In data.frame(mat, a.char) :
 row names were found from a short variable and have been discarded

> data.frame(mat,a.char)[[3]]
 [1] a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Levels: a1 a10 a2 a3 a4 a5 a6 a7 a8 a9
Warning message:
In data.frame(mat, a.char) :
 row names were found from a short variable and have been discarded

> data.frame(I(mat),a.char)
Error in data.frame(I(mat), a.char) :
 arguments imply differing number of rows: 5, 10

> data.frame(I(mat),I(a.char[1:5]))
 mat.one mat.two a.char.1.5.
row1 1 6 a1
row2 2 7 a2
row3 3 8 a3
row4 4 9 a4
row5 5 10 a5

> data.frame(I(mat),I(a.char[1:5]))[[1]]
 one two
row1 1 6
row2 2 7
row3 3 8
row4 4 9
row5 5 10

> data.frame(I(mat),I(a.char[1:5]))[[2]]
[1] "a1" "a2" "a3" "a4" "a5"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

51

If row names are not entered in the call to data.frame(), row names are taken from
the first column if the first column has row labels and does not cycle. Otherwise, row
names are set to 1, 2, 3, and so forth. For example:

> z.vec
 istrue isfalse
 TRUE FALSE
>
> mat[1:4,]
 one two
row1 1 6
row2 2 7
row3 3 8
row4 4 9
>
> y.vec
fac1 fac2 fac3 fac4
"y1" "y2" "y3" "y4"
>
> data.frame(z.vec, mat[1:4,], y.vec)
 z.vec one two y.vec
1 TRUE 1 6 y1
2 FALSE 2 7 y2
3 TRUE 3 8 y3
4 FALSE 4 9 y4
Warning message:
In data.frame(z.vec, mat[1:4,], y.vec) :
 row names were found from a short variable and have been discarded
>
> data.frame(mat[1:4,], y.vec, z.vec)
 one two y.vec z.vec
row1 1 6 y1 TRUE
row2 2 7 y2 FALSE
row3 3 8 y3 TRUE
row4 4 9 y4 FALSE

The function as.data.frame() attempts to coerce an object to a data frame. If the
object is a list made up of atomic elements or is an object of an atomic mode, then
as.data.frame() creates a data frame out of the object. Otherwise data.frame() gives
an error.

The function takes three arguments, row.names, optional, and stringsAsFactors.
The arguments row.names and stringsAsFactors behave the same way as in
data.frame(). The argument optional is a logical variable that, if set to TRUE, tells
as.data.frame() that setting row names and converting column names are optional.
If set to TRUE and if row.names is set to NULL, the row names are set to “”. The default
value for optional is FALSE.

The function is.data.frame() tests if an object is of class data.frame and, if so,
returns TRUE. Otherwise is.data.frame() returns FALSE.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

52

The functions as.matrix() and data.matrix() can be used to convert a data frame
to a matrix. See the section on the matrix class for more information about the two kinds
of conversions.

For more information about data.frame(), enter ?data.frame at the R prompt. For
more information about as.data.frame() and is.data.frame(), enter ?as.data.frame
at the R prompt. For more information about I(), enter ?I at the R prompt.

The Date and Time Classes: Date, POSIXct, POSIXlt,
and difftime
Sometimes working with dates and times is useful, as when printing and plotting against
time. R provides classes for dates and for dates and times. The classes are Date, POSIXct,
and POSIXlt. Objects of class Date or POSIXct are of mode numeric and objects of class
POSIXlt are of mode list. Of the three types of functions usual for the classes given
above, only the functions as.Date(), as.POSIXct(), and as.POSIXlt() exist for date and
date and time objects.

To just get a date and time stamp in R, enter date() at the R prompt, which returns
the day of the week, date, and time. The result is of mode and class character. The
system date function Sys.Date() returns the system date and is of numeric mode and
class Date. The system date and time function is Sys.time() and returns the system date,
time, and time zone and is of mode numeric and classes POSIXct and POSIXlt.

Dates are returned in the format “Year-Month-Day” and times are returned in the
format “hour:minute:second.” There are a number of functions that operate on the date
and time classes, including weekdays(), which returns the day of the week of objects
of class Date, POSIXlt, or POSIXlt. More functions can be found at the help page for
DateTimeClasses by entering ?DateTimeClasses at the R prompt.

The function as.Date() creates a date object. The arguments to as.Date() are the
object to be converted to a date; format, which gives the format of the object in terms
of year, month, and day; origin, which is an origin for the first argument and must be of
class Date or POSIXct; and tz for the time zone.

If origin is used, the object to be converted can be any numeric object. If origin is
given, the function adds or subtracts the values of the object to or from the date given by
the origin argument and converts the result to a date. An example of weekly spacing is

> as.Date(0:3*7, "2000-1-1")
[1] "2000-01-01" "2000-01-08" "2000-01-15" "2000-01-22"
.

If dates are used as the object and the dates are not in a “year-month-day” format,
then the format of the dates must be given. The format is a character variable where the
placement of the year is by %Y, the day by %d, and the month by %m, such as

> as.Date("1/20/2000", format="%m/%d/%Y")
[1] "2000-01-20"

Note that the format is the format of the object to be converted, not the format of
the result.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

53

The argument tz is for the time zone. Some time zones are recognized, some are not.
See the help page for as.Date() for more information.

The function is.Date() tests if an object is a date and returns TRUE if so and
FALSE otherwise.

The functions as.POSIXct() and as.POSIXlt() take the same arguments as Date()
except that the dates can contain time, too. The default format for time is %H:%M:%S for
hours, minutes, and seconds. For example:

> as.POSIXct("1/13/2000 00:30:00", format="%m/%d/%Y %H:%M:%S")
[1] "2000-01-13 00:30:00 CST"

Dates and dates and times can be operated on by addition and subtraction. Decimals
for times are converted correctly. Dates in function Date() are incremented by days;
times in the date time functions are incremented by seconds. Examples follow:

> as.POSIXct(Sys.time())+1:4*1000
[1] "2014-01-12 15:08:03 CST" "2014-01-12 15:24:43 CST"
[3] "2014-01-12 15:41:23 CST" "2014-01-12 15:58:03 CST"

> mode(as.POSIXct(Sys.time())+1:4*1000)
[1] "numeric"

> as.POSIXlt(Sys.time())+1:4*1000
[1] "2014-01-12 15:08:34 CST" "2014-01-12 15:25:14 CST"
[3] "2014-01-12 15:41:54 CST" "2014-01-12 15:58:34 CST"

> mode(as.POSIXlt(Sys.time())+1:4*1000)
[1] "numeric"

> as.POSIXlt(Sys.time()+1:4*1000)
[1] "2014-01-12 15:09:14 CST" "2014-01-12 15:25:54 CST"
[3] "2014-01-12 15:42:34 CST" "2014-01-12 15:59:14 CST"

> mode(as.POSIXlt(Sys.time()+1:4*1000))
[1] "list"

Dates can also be differenced. The class for the difference between dates or dates
and times is difftime. The functions difftime() and as.difftime() exist but are not
covered here. An example of a date difference is

> (Sys.Date()- as.Date("2000-1-1"))
Time difference of 5125 days

> mode(Sys.Date()- as.Date("2000-1-1"))
[1] "numeric"

> class(Sys.Date()- as.Date("2000-1-1"))
[1] "difftime"
.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

54

More information about date and time functions can be found by entering ?Date,
?as.Date, ?as.POSIXct, ?as.POSIXlt, or ?DateTimeClasses at the R prompt.

Names for Vectors, Matrices, Arrays, and Lists
A chapter on objects would not be complete without information on how to set names
for vectors, matrices, arrays, and lists. Dimension names are always of character mode.
For objects of more than one dimension, the name objects are of mode list.

To see what names a vector has or to assign names to a vector, the names() function
is used. The function just has one argument, the object. For example:

> cde
 [1] 21 22 23 24 25 26 27 28 29 30

> names(cde)
NULL

> names(cde) = paste("v",1:10,sep="")

> cde
 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
 21 22 23 24 25 26 27 28 29 30

> names(cde)
 [1] "v1" "v2" "v3" "v4" "v5" "v6" "v7" "v8" "v9" "v10"

> mode(names(cde))
[1] "character"

> class(names(cde))
[1] "character"

You can also assign names to vectors at the time the vector is created directly.
For example:

> a.vec = c(a=1,b=2,c=3)
> a.vec
a b c
1 2 3

Some objects of mode list are vectors. For such lists, assigning names to the top
levels of the list is done with names() or by direct assignment.

For matrices there are three possible functions used to see the names or to assign
names: rownames(), colnames(), and dimnames(). The functions rownames() and
colnames() have three arguments, the R object, do.NULL, and prefix. The argument

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

55

do.NULL is logical with default value TRUE, which tells the function to do nothing if the
row or column names are NULL. If do.NULL is FALSE, the row or column names are
indexed with the prefix equal to the value of the argument prefix. For example:

> mat
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> colnames(mat)
NULL

> colnames(mat) = colnames(mat, do.NULL=F, prefix="cl")

> mat
 cl1 cl2
[1,] 1 3
[2,] 2 4

Note that the right-hand side of the third expression only returns the names of the
columns and does not do the assignment.

The function dimnames() can be used to assign names to matrices and arrays. If
dimnames() operates on an object, then the names of all of the dimensions in the object
are returned as a list. If names are assigned using dimnames(), the object on the right side
of the assignment must be a list the same number of elements as there are dimensions
in the object and with each element either being NULL or of the same length as there are
elements in each dimension of the matrix or array. For example:

> a
, , d31

 d21 d22
d11 1 3
d12 2 4

, , d32

 d21 d22
d11 5 7
d12 6 8

>
> dimnames(a)
[[1]]
[1] "d11" "d12"

[[2]]
[1] "d21" "d22"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ ClAssEs of objECTs

56

[[3]]
[1] "d31" "d32"

>
> dimnames(a) = list(c("11","12"),c("21","22"),c("31","32"))
>
> a
, , 31

 21 22
11 1 3
12 2 4

, , 32

 21 22
11 5 7
12 6 8
.

More information about names can be found by entering ?names, ?rownames, or
?dimnames at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 3

Functions

Part III covers the basics of functions. Functions are a class of objects that are
essentially computer programs. There are tens of thousands of prepackaged
functions in R. The user can also develop functions. Chapter 6 describes
packaged functions; Chapter 7 shows you how to create new functions; and
Chapter 8 explains how to use functions.

When you install R, thirty packages are installed at the same time by default.
You can install other packages later. On your computer, packaged functions are
stored in packages, which are stored in libraries.

Chapter 6 describes the libraries, lists the packages that are loaded by default
when R opens, discusses the primitive functions, gives advice on using help
pages, and provides some useful functions related to packages.

Chapter 7 describes the structure of functions. It presents several methods
that can be used to create a function and import the function into the R
workspace, including the following: using an editor internal to R, inputting the
function directly at the console, using an editor external to R with dget(), and
cutting and pasting into R.

Chapter 8 discusses how to call a function, how to use arguments, and what
to expect for output.

www.it-ebooks.info

http://www.it-ebooks.info/

59

Chapter 6

Packaged Functions

R has over 4,800 packages, most of which contain functions. Functions are at the heart
of R and provide R with R’s great versatility. Functions are R objects, and they are of both
mode and class function. Packaged functions are functions that have been created as a
part of an R package. On the computer, packages are stored in libraries and are installed
to be in a library.

The Libraries
When R is initially installed, currently the packages base, boot, class, cluster,
codetools, compiler, datasets, foreign, graphics, grDevices, grid, KernSmooth,
lattice, MASS, Matrix, methods, mgcv, nlme, nnet, parallel, rpart, spatial, splines,
stats, stats4, survival, tcltk, tools, translations, and utils are also installed in a
folder on the hard drive.

To see a listing of the default packages with descriptions of each package and the
name of the package folder, enter library=(lib.loc = .Library) at the R prompt.

Any packages installed after the initial installation are installed in a different library
and are in another folder, which was created when R was installed. Running the function
library()with no arguments lists the packages, with descriptions, in the two libraries,
separately.

To view all installed packages with much more information about the packages,
enter installed.packages()at the R prompt.

Some R functions require other R functions to run. When R is running, only those
packages that have been loaded into R from the libraries are accessible to the program.
R gives an error if an attempt is made to run a function where a necessary package(s)
has not been loaded. Included in the error message are the name(s) of the missing
package(s). If a package exists in one of the libraries on the computer, the package can be
loaded (made accessible) by entering library(‘package name’) at the R prompt, where
‘package name’ is the name of the package. If the package is not in one of the libraries,
installing new packages is straightforward (see Chapter 1). Once installed, the package
can be loaded using the library() function. At any given time, entering search()at the
R prompt gives a list of the packages that are loaded in the workspace.

To see the functions (and datasets) in a package, enter library(help=‘package name’)
at the R prompt, where ‘package name’ is the name of the package. Note that the package
must be installed for library(help=‘package name’) to return the contents of the
package. Some of the files in a package may be datasets, but for most packages the files
are generally functions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PACkAgEd FunCTions

60

Default Packages and Primitive Functions
When a user starts an R session, the packages base, datasets, utils, grDevices,
graphics, stats, and methods are the default packages to be loaded into the workspace.
(Which default packages are loaded can be changed by changing defaultPackages in the
function options(). See Chapter 15.) Often, depending on the computing needs of the
user, no more packages are needed.

Functions that are written in C and compiled at the time R is compiled are called
primitive functions. According to the help page found by entering ?primitive at the
R prompt, all primitive functions are in the package base, which is always loaded. The
advantage of using primitive functions is that the functions are already compiled, so
the functions run faster. The primitive functions include the operators and most of the
mathematical functions as well as functions basic to the running and structure of R. A list
of the primitive functions can be found at http://cran.r-project.org/doc/manuals/
R-ints.html#g_t_002eInternal-vs-_002ePrimitive. Functions that are not primitive
are called nonprimitive and are written in R.

Using the Help Pages
Each function in R has a help page, and each help page has essentially the same structure.
Like much else in R, the help pages can be daunting at first. However, the help pages often
contain a wealth of information.

Given the name of a function, if the package containing the function has been
installed, entering ?function or help(function) at the R prompt, where function is the
name of the function, brings up the help page for the function. Some functions share the
same help page. The help page can be brought up using any of the function names.

Title
At the top of a help page is a title that says something about the function(s). For example,
for the function lm(), the title is “Fitting Linear Models.”

Description
Below the title is a description of how the function(s) is used, headed by the word
“Description.” The description can be long or short, depending on the complexity of
the function(s). For the function lm(), you will find the following description:

lm is used to fit linear models. It can be used to carry out regression,
single stratum analysis of variance and analysis of covariance (although aov
may provide a more convenient interface for these).

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/R-ints.html#g_t_002eInternal-vs-_002ePrimitive
http://cran.r-project.org/doc/manuals/R-ints.html#g_t_002eInternal-vs-_002ePrimitive
http://www.it-ebooks.info/

CHAPTER 6 ■ PACkAgEd FunCTions

61

Usage
The section “Usage” is found below the description. In the “Usage” section, the
function(s) is listed with all of the possible arguments to the function(s). For arguments
with default values, the default values are given.

For the function lm(), the “Usage” section contains the following:

lm(formula, data, subset, weights, na.action, method = "qr",
model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

The arguments with default values are the arguments for which the arguments have
been set equal to a value.

Arguments
Below the “Usage” section is a section entitled “Arguments.” In the “Arguments”
section, the arguments found in the “Usage” section are listed with a description of each
argument. The description includes the legal values for the argument.

For example, from the lm() help page, the first two arguments listed are as follows:

formula an object of class “formula” (or one that can be coerced to that class):
a symbolic description of the model to be fitted. The details of model
specification are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by as.data.
frame to a data frame) containing the variables in the model. If not found
in data, the variables are taken from environment(formula), typically the
environment from which lm is called.

So, for the function lm(), the first argument is a formula and the second argument
can be a data.frame, but the second argument is optional.

Details
Sometimes there is a section entitled “Details,” which gives details related to the
arguments. In the lm() function example, the section on details gives the rules for setting
up a formula and how the function behaves for differing inputs to the formula.

Value
The next section is entitled “Value.” The “Value” section gives a description of what is
returned from the function(s). For some functions, what functions can operate on the
output and what components can be subsetted from the output are relevant and listed in
this section.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PACkAgEd FunCTions

62

The first few lines of the “Value” section for the function lm() are as follows:

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functions coefficients, effects, fitted.
values, and residuals extract various useful features of the value returned by lm.

An object of class “lm” is a list containing at least the following components:

coefficients a named vector of coefficients
residuals the residuals, that is response minus fitted values. …

Some Other Optional Sections
Following the “Value” section, there may be other sections giving more information. For the
function lm(), there are three other sections: “Using time series,” “Note,” and “Author(s).”
Some sections for other functions might be “Warning,” “Source,” or other headings.

References
The next section is called “References.” The “References” section gives references
to books and articles related to the method, both for more information and for how
the method was derived.

For the function lm(), the “References” section contains

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial
models for analysis of variance. Applied Statistics, 22, 392–9.

See Also
The section “See Also” follows the “References” section. The “See Also” section gives
information about other functions related to the help page function(s). For the function
lm(), the first three lines of the “See Also” section are the following:

summary.lm for summaries and anova.lm for the ANOVA table; aov for a
different interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction
intervals; confint for confidence intervals of parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PACkAgEd FunCTions

63

The “See Also” section is a good source for clues to functions related to the method
the user is applying.

Examples
The final section, which most pages have, is “Examples.” The “Examples” section gives
examples of the use of the function(s). Seeing actual examples of usage can be very helpful.
From the help page of the function lm(), part of the example includes the following:

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl","Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D90 <- lm(weight ~ group - 1) # omitting intercept

anova(lm.D9)
summary(lm.D90)

In this example, the structure of a formula is shown rather than explained. Some of the
functions that operate on an object of class lm are also shown. Since the package graphics
is loaded by default, the call to require(graphics) would not normally be necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

65

Chapter 7

User-Created Functions

User-created functions often make the life of an R user easier. If a repetitive task involves
several different lines of code, creating a function to do the task saves time.

Designing plots is one example of when a user-created function makes sense. Plots
often take several lines of code, and the design of a plot is usually an interactive process.
Creating a function to design the plot is often much easier than using the up arrow and
changing lines.

Another example of when a user-created function is useful is when a user wants to
try out a statistical technique that is not available in the R packages. Often the user can
create a function for the technique using functions that are available.

The Structure of a Function
Nonprimitive functions all have the same structure. On the first line of the function is the
word function, followed by open and close parentheses, which may or may not contain
arguments. In most cases, an open bracket follows the parentheses. Usually, the body of
the function is placed below the first line, and the last line is the close bracket. Normally,
functions are assigned a name. For example:

> d.fun = function(){
+ print(1:5)
+ }

> d.fun
function(){
print(1:5)
}

> d.fun()
[1] 1 2 3 4 5

In this example, first, the function is assigned to d.fun; next, the content of d.fun()
is listed; and, last, the function d.fun() is run.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ UsER-CREATEd FUnCTions

66

The brackets are not necessary if the function consists of just one statement—which
can be entered on the same line as the function statement or on the following line(s). For
example:

> c.fun = function() print(1:5)

> c.fun
function() print(1:5)

> c.fun()
[1] 1 2 3 4 5

Again, the function is assigned a name, the function is listed, and the function is run.
Arguments are objects that are used by the function and that must be input to the

function at the time the function is run, unless a default value exists for the argument.
Arguments are placed within the parentheses when the function is created, separated
by commas. A default value is supplied by setting the argument equal to the value.
Arguments with default values do not have to be specified when the function is run. If the
value is not specified, the function uses the default value.

An example follows of a function with two arguments, where a does not have a
default value and must be specified, and b has the default value of 3:

> e.fun = function(a, b=3){
+ print(a:b)
+ }

> e.fun
function(a, b=3){
print(a:b)
}

> e.fun(10)
[1] 10 9 8 7 6 5 4 3

> e.fun()
Error in a:b : 'a' is missing

Again, the function is assigned a name, listed, and run. Note that since a is the first
argument and b has a default value, a can be supplied without a name. In the second
attempt to run e.fun(), no argument is supplied for a, so e.fun() returns an error.

Often, the user uses brackets within a function to enclose groups of statements,
such as for if, else, for, while, and repeat groups. There must be the same number of
opening brackets as closing brackets in a function; otherwise, the function will not save.
Mismatched brackets are a common source of errors in R code.

Lines of code in R (both in a function and at the R prompt) can be broken and
continued on the next line. R looks for things such as a closing parenthesis, bracket, or
quotation mark to designate the end of a statement or a part of a statement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ UsER-CREATEd FUnCTions

67

Empty lines are legal in R functions. Also, any text can be commented out by placing
a pound sign (#) in front of the text. On a line, anything entered after a pound sign is
ignored. A piece of advice for writing functions is to write a little chunk at a time, debug at
each step, and use plenty of comments.

How to Enter a Function into R
This section describes four ways to get a function into R. The first involves using an editor.
The second involves inline entry, as shown in the preceding section. The third involves
creating a function outside of R and using dget() to get the function into R. The fourth is
a variation on the second and third and involves copying and pasting from a source that
can be outside of R.

Using an Editor
For the Windows and OS X operating systems, there is a function, edit(), in the package
utils that works well for creating new functions. The purpose of the function edit() is to
call an editing function.

In Windows, the default editing function is the internal editor. The possible other
choices for editor are xedit(), emacs(), xemacs(), vi(), and pica(), where the choice
is available only if the editor is present on the system. The default editor is listed in
options() and can be changed at any time (Chapter 15).

For OS X systems, the only editor available is the vi editor, which works well.
For Linux operating systems, calling edit() from the terminal window does not give

a good result. A better editor is emacs(), which is available for Linux systems.
Most of the preceding information is from the help page for edit(). Enter ?edit at

the R prompt for more information about the editing functions.
To create an object that is a function by using an editor, the function is first assigned

to a name. For example, let the name be f.fun. To create the function f.fun(), start by
entering f.fun = function(){} at the R prompt. The object f.fun then contains a function
with no arguments and no statements.

The next step is to edit the function. For simplicity, only the function edit() is
shown in the example here. The other editors behave similarly. Enter f.fun = edit(f.fun)
at the R prompt. An editing window opens up for editing (Figure 7-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ UsER-CREATEd FUnCTions

68

For the third step, the arguments are entered within the parentheses and the
statements of the function are entered within the brackets (Figure 7-2).

Figure 7-1. Creating a function: the first and second steps

Figure 7-2. Creating a function: the third step

The fourth step is to exit the editor. To exit the editor, click the x at the top right-hand
corner of the editing window. A window will appear with options to save the file, exit
without saving, or to cancel the request and go back to editing. (If no changes were made
to the file, the options screen does not appear.) Click Yes to save the changes, No to revert
to the earlier version, or Cancel to go back to editing.

If the function is syntactically correct, the function will save. Otherwise, edit()
returns an error, such as the following:

Error in .External2(C_edit, name, file, title, editor) :
 unexpected '}' occurred on line 4
 use a command like
 x <- edit()
 to recover

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ UsER-CREATEd FUnCTions

69

To recover the work already done, enter f.fun = edit(). Using parentheses with no
content is very important. If the name of the function is entered within the parentheses,
the editing changes are lost and the function reverts to the version before the edit. Note
that the error message gives information about the problem with the R code.

The following shows the input and output at the R console when creating the
function f.fun() with the editor, followed by the listing of the function, and the running
of the function with the first argument set to zero.

> f.fun = function(){}

> f.fun = edit(f.fun)

> f.fun
function(mu, se=1, alpha=.05){
 z_value = qnorm(1-alpha/2, mu, se)
 print(z_value)
}

> f.fun(0)
[1] 1.959964.

Inline Entry
As shown in the first section of this chapter, a function can be entered inline. Let b.fun be
the name of a new function created to list the digits three through six. Then the steps to
create the function, to list the code, and to run the function are as follows:

> b.fun = function(){
+ print(3:6)
+ }

> b.fun
function(){
print(3:6)
}

> b.fun()
[1] 3 4 5 6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ UsER-CREATEd FUnCTions

70

If a syntactical error is made in the process of entering a function inline, R will give
an error and return to the R prompt. For example:

> b.fun = function(){
+ print(3:6
+ }
Error: unexpected '}' in:
"print(3:6
}"

For longer functions, using the R editor or an external editor tends to be less
frustrating.

An Outside Editor: dget() and Copying and Pasting
An outside editor can be used to create a function. Any editor that produces text files,
such as Notepad, TextEdit, or gedit, can be used to create an R function. The rules for
creating a function are the same as those described in the first section. Once the function
is created, the function can be imported into the workspace by using the function dget()
or by copying and pasting. (The function dget() and the corresponding function dput()
are one way to import and export functions in R.)

Say that a function is in a file called function.txt in the same folder as the R
workspace and that the function is syntactically correct. Then the following line imports
the function into the object g.fun:

g.fun = dget("function.txt")

(Note that R accepts more complex file paths for files, including absolute addresses
on the hard drive and URLs.)

If the text file is not syntactically correct, R returns an error with information about
the syntactical problem in the file.

The file can also be copied and pasted from an outside source—or from elsewhere in
the R session—into an object in R. Start by copying the function onto the clipboard of the
computer. Next, enter the name that the object is to be called, followed by an equal sign,
at the R prompt. The cursor should then be to the right of the equal sign. Next, paste.

If the function is syntactically correct, the cursor stops to the right of the close
bracket. Press the Return key to complete the process. If the function is not syntactically
correct, copying and pasting will give an error containing information about the problem
with the syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

71

Chapter 8

How to Use a Function

Most functions require specific kinds of arguments, which must be input into the function
correctly. For example, if a function calls for a matrix and a data.frame is input, the
function will return an error. Since external tables are often read into the R workspace as
data.frames, using a data.frame for a matrix is quite a common error. This chapter covers
calling a function, using arguments, and accessing output.

Calling a Function
Calling a function is straightforward. The name of the function is entered at the R prompt
followed by a set of parentheses which may or may not contain arguments, depending
on the function. If the function does require arguments, the arguments are separated by
commas within the parentheses.

Sometimes the argument name must be used, but not always. For values that are
entered without names, R assigns the values to the arguments which are unnamed in the
call, starting with the first unnamed variable and continuing in order until the unnamed
arguments are exhausted. The order of the arguments is the order of the arguments
within the parentheses of the function definition.

To illustrate the use of arguments, an example follows using a function named
f.fun(). The function f.fun() calculates a quantile of the normal distribution given the
mean, the standard deviation, and alpha. The function returns the (1-alpha/2) x 100th
percentile of the distribution. The arguments ‘se’ and ‘alpha’ are given default values and
‘mu’ is not.

The example starts with a definition of the function, which is followed by five
different calls to the function:

> f.fun = function(mu, se=1, alpha=.05){
 q_value = qnorm(1-alpha/2, mu, se)
 print(q_value)
}

> f.fun(mu=0, se=1, alpha=0.05)
[1] 1.959964

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ How To UsE A FUnCTion

72

In the first call, each of the arguments are specified by name. In R, arguments can be
in any order if specified by name.

> f.fun(0,1,0.10)
[1] 1.644854

In the second call, the values for the arguments are entered without names. Since the
arguments are entered in order, the function knows which argument to assign to which
value. The argument ‘mu’ takes on the value of ‘0’, ‘se’ the value of ‘1’, and ‘alpha’ the value
of ‘0.10’, which is the order of the arguments within the parentheses in the function.

> f.fun(0, alpha=0.20)
[1] 1.281552

In the third call, the first argument is entered without a name and the third argument
is entered with a name. The second argument takes on the default value. The argument
‘mu’ takes on the value of ‘0’, ‘se’ the value of ‘1’, and ‘alpha’ the value of ‘0.20’.

> f.fun(4, 4)
[1] 11.83986

In the fourth call, values for the first two arguments are entered without names and
the third argument takes on the default value. The argument ‘mu’ takes on the value of ‘4’,
as does ‘se’. The argument ‘alpha’ takes on the default value of ‘0.05’.

> f.fun(se=1, 0, 0.2)
[1] 1.281552

In the fifth call, the second argument is named and the first and third are not, so ‘mu’
takes on the value ‘0’ and ‘alpha’ takes on the value ‘0.2’, while ‘se’ takes on the value ‘1’.
Note that the named argument can be placed anywhere in the list.

Arguments
Given a function, a listing of the arguments to the function can be found at the help page
for the function. For some functions, the user must know something about the theory
behind the function to understand the arguments, but for many functions the arguments
are straightforward. As noted in the last section, arguments with default values do not
have to be given a value when the function is called.

Arguments to a function must be of the correct mode and class. On the help page of
a function, descriptions of the arguments are listed in the ‘Arguments’ section, sometimes
giving the mode and(or) class, but not always. Sometimes the mode and(or) class is
obvious. Sometimes more information can be found in the ‘Details’ section. Sometimes
looking in the ‘Examples’ section is enough to clear up the form of an argument.

One argument which needs a little explaining is the “. . .” argument. The “. . .” argument
tells the user that there are more arguments that may be entered. The arguments would be
to a lower-level function called by the higher-level function. An example follows.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ How To UsE A FUnCTion

73

The example starts by listing two vectors, ‘x’ and ‘y’, and then continues with two calls
to the function lm() with two different values for the argument ‘tol’. (The function lm() fits
a linear model.) On the help page for lm() there is no argument ‘tol’. However there is the
argument “. . .” , indicating that lm() calls another function for which an argument can be
entered.

The function lm.fit() is a lower level function which lm() calls and lm.fit() has the
argument ‘tol’. (The argument ‘tol’ gives the tolerance for the QR decomposition as to
whether a matrix is singular.) In the first call to lm() the default value for ‘tol’ is used,
since ‘tol’ is not specified. In the second call, lm() passes the value for ‘tol’ to lm.fit().

> x
[1] 2.001 2.000 2.000

> y
[1] 4.03 4.00 4.01

> lm(y~x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x
 -45.99 25.00

> lm(y~x, tol=.001)

Call:
lm(formula = y ~ x, tol = 0.001)

Coefficients:
(Intercept) x
 4.013 NA

In the first call, the default value for ‘tol’ is 1.0e-7, so lm.fit() does not find a
linear dependency in the matrix consisting of a column of ones and ‘x’. As a result two
coefficients are fit.

In the second call, ‘tol’ is set to 1.0e-3 and lm() determines that there is a linear
dependency in the matrix consisting of a column of ones and ‘x’, so only one coefficient is fit.

The Output from a Function
The output from a function will vary with the function. Plotting functions mainly give
plots. Summary functions give summarized results. Functions that test a hypothesis give
the results from the test.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ How To UsE A FUnCTion

74

Most packaged functions print some results directly to the screen, but most
packaged functions also have output which can be accessed through subscripting.
For example, looking at the help page of the function lm(), under the ‘Value’ Section,
coefficients, residuals, fitted.values, rank, weights, df.residual, call, terms, contrasts,
xlevels, offset, y, x, model, and na.action are all values which can be accessed from a call
to the function.

The most common method used to access values is with the ‘$’ operator, although
index subscripting can be used too. For most functions the output is of mode list. The
elements of the list can be of any mode.

For the first simple regression model fit in the last section, the accessible fifteen
values are as follows:

> a.lm = lm(y~x)

> a.lm$coef
(Intercept) x
 -45.995 25.000

> a.lm$res
 1 2 3
-4.336809e-19 -5.000000e-03 5.000000e-03

> a.lm$fit
 1 2 3
4.030 4.005 4.005

> a.lm$rank
[1] 2

> a.lm$weights
NULL

> a.lm$df
[1] 1

> a.lm$call
lm(formula = y ~ x)

> a.lm$terms
y ~ x
attr(,"variables")
list(y, x)
attr(,"factors")
 x
y 0
x 1
attr(,"term.labels")
[1] "x"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ How To UsE A FUnCTion

75

attr(,"order")
[1] 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>
attr(,"predvars")
list(y, x)
attr(,"dataClasses")
 y x
"numeric" "numeric"

> a.lm$contrasts
NULL

> a.lm$xlevels
named list()

> a.lm$offset
NULL

> a.lm$y
NULL

> a.lm$x
named list()

> a.lm$model
 y x
1 4.03 2.001
2 4.00 2.000
3 4.01 2.000

> a.lm$na.action
NULL

In the example, the call to lm() was assigned a name, but lm() could have been
subscripted directly. An example is lm(y~x)$coef. Values accessed from a call to a
function are often used in another function.

Running an R function takes a little care, but with some experimentation and
determination, the results can be very useful.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 4

Inputting and Creating
Data, Outputting Data and
Output, and Manipulating
Objects

Part IV covers importing data from external sources, creating new data, exporting
data and the output from functions, and manipulating some common kinds of
objects.

Chapter 9 introduces some functions used to import data, some functions
used to create data, and some probability distributions, from which random
numbers can be generated.

Chapter 10 gives some ways to export from R. Each method is specific to the
kind of object to be exported.

Chapter 11 concerns manipulating objects.

www.it-ebooks.info

http://www.it-ebooks.info/

79

Chapter 9

Importing and Creating Data

When you are loading data into R, you have a number of options. For external files,
there are several functions that read specific kinds of files or data. R also comes with a
number of data sets that can be loaded. Sometimes the user wants to create data. R has a
multitude of random number generators for data creation. Data can be entered manually
using c() or by using various other functions to create data with certain patterns.

The first section of this chapter covers reading data into R and loading R data sets. The
second section covers probability distributions, including random number generators and the
function sample(). The third section covers manual data entry and creating data with patterns.

Reading Data into R, Including R Data Sets
There are a number of R functions that read data into R. The most common ones are scan()
to read data of a given mode, and read.table() and read.csv() to read data from a matrix
structured table. Some of the more exotic ones are read.fortran() to read data coded in
FORTRAN format, read.fwf() for reading tables in fixed width format, read.xls() for
Excel spreadsheets (the creators of R recommend against reading a Excel file directly but
provide some functions to do so), and read.delim() for tab delineated columns. For a
complete listing, see http://cran.r-project.org/doc/manuals/r-release/R-data.html.

The Function scan()
The function scan() imports data from a file row-by-row, either from the values to the
argument text or directly from the console. For importing a file, the rows do not have to
be of the same length. The function reads data of the modes logical, numeric, complex,
character, raw, and list. For all of the modes except list, all of the data must be
readable as the mode.

The function scan() is most often used to read an external file. The reference to the file
comes first in the call and must be contained within quotes. The reference may be relative
to the location of the workspace or an absolute location—including URLs. An example is

> scan("test.txt")
Read 7 items
[1] 1 3 5 7 1 4 6

where test.txt is a file containing the seven digits in two rows. To browse for a file, enter
file.choose() for the quoted file reference, that is scan(file.choose()).

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

80

The function can also be used to read in data at the console, which is done by setting the
data equal to an argument called text, where the data is in quotation marks. For example:

> scan(text = "1 2 3 4")
Read 4 items
[1] 1 2 3 4

Data can also be read in directly from the console by setting the file equal to “ ”.
For example:

> scan("")
1: 1
2: 4
3: 9
4: 3
5:
Read 4 items
[1] 1 4 9 3

Here R cues for a data point with the point number followed by a colon. To stop
entering data, use control-z in Windows and control-d in Linux, or enter a blank line by
pressing the return(enter) key.

If the mode of the data being entered is not numeric, the argument what must be
included in the call to scan(). The argument what is set equal to mode(), where mode is
the mode of the data. For example:

> scan("test.txt", what=complex())
Read 7 items
[1] 1+0i 3+0i 5+0i 7+0i 1+0i 4+0i 6+0i

which reads complex data from the external file test.txt. If the data in the file is not
readable as the mode, scan() returns an error.

The function scan() also has the argument sep, which tells scan() the separator
between values in either an external file or in the value of text. By default, the separator
is white space. The argument sep can be set to any one-byte value that R can read. In the
call to scan(), the value for sep is placed within quotation marks. For example:

> scan(text = "1, 2, 3, 4", sep=",")
Read 4 items
[1] 1 2 3 4

Here a comma is used as the separator between data values.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

81

If two separating symbols in the call to scan() do not have a value between the two,
then by default the value is set to NA. For example:

> scan(text = "1, 2, 3,, 4", sep=",")
Read 5 items
[1] 1 2 3 NA 4

For data with header lines, the argument skip tells scan() to skip lines before reading
data. The value of skip tells scan() how many lines to skip and can be of any atomic mode.
The value is coerced to an integer if possible or else interpreted as zero. If skip equals zero,
no lines are skipped.

To read a header line, the argument nlines tells scan() to read lines up to and
including the value of nlines. Like skip, nlines can be of any atomic mode and scan()
coerces the value to integer. If nlines is set to zero, all lines are read.

The function scan() returns a vector. To create a matrix or array, the call to scan()
can be part of a call to matrix() or array(). For example:

> matrix(scan(text="1 2 3 4 5 6 7 8 9 10"), 2, 5, byrow=T)
Read 10 items
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 6 7 8 9 10

There are several other arguments for scan() that do things such as limit the number of
data points to be read, fill out lines of incomplete data, or tell scan() the style of the decimal
point in the data. More information can be found by entering ?scan at the R prompt.

The Functions read.table(), read.csv(), and read.delim()
The three functions read.table(), read.csv(), and read.delim() are essentially the
same function, differing only in the default values of the argument sep and the argument
header. As with the function scan(), the argument sep gives the symbol used to separate
values of the data in the file and can be any one byte value. The argument header takes
on logical values and tells the function whether to read a header from the first line or not.

The three functions import data from a file, where the file is in the form of a matrix,
or from values of the argument text. If the data is from a file, the location of the file is
entered first in the call within quotation marks. The location of the file can be relative to
the workspace or absolute, including URLs. To browse for a file, enter file.choose() for
the quoted name, for example, read.table(file.choose()). An example with a quoted
name follows:

> read.table("test2.txt")
 V1 V2 V3 V4
1 one 3 5 7
2 two 4 6 8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

82

Note that the columns do not have to be of the same mode. Here the file test2.txt
contains both character and numeric data and is in the same folder as the R workspace.

If the rows in the file are not all of the same length, by default the function will return
an error. The argument fill is a logical argument and tells R to fill out rows that have fewer
elements than other rows. For example:

> read.table("test4.txt", fill=T)
 V1 V2 V3 V4
1 one 3 5 7
2 two 4 6 NA

Here test4.txt is missing the last element of the second row. R fills in the element
with NA.

If the argument text is used to enter a table, the end of a row is indicated by \n.
For example:

> read.table(text="1 2 3 4 \n 2 3 4 5")
 V1 V2 V3 V4
1 1 2 3 4
2 2 3 4 5

For read.table(), the default value for sep is white space and the default value for
header is FALSE. For read.csv(), the default value for sep is a comma and the default
value for header is TRUE. For read.delim(), the default value for sep is a tab—which in
R is entered as \t—and the default value for header is TRUE. (There are two other related
functions, read.csv2() and read.delim2(), which are for European use and have dec,
the style of the decimal point, set equal to ‘ , ’, and, for read.csv2(), sep set equal to ;.)

The three functions create a data.frame out of the data, so the modes of the elements
only need to be consistent down the columns. If a column contains character data, then
by default the column is converted to a factor. By setting the argument as.is to TRUE, the
conversion is to character. For example:

> read.table("test3.txt", sep=",")
 V1 V2 V3 V4
1 one 1 3 4
2 1 four 3 2

> class(read.table("test3.txt", sep=",")[,1])
[1] "factor"

> class(read.table("test3.txt", sep=",")[,3])
[1] "integer"

> read.table("test3.txt", sep=",", as.is=T)
 V1 V2 V3 V4
1 one 1 3 4
2 1 four 3 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

83

> class(read.table("test.txt3", sep=",", as.is=T)[,1])
[1] "character"

> class(read.table("test.txt3", sep=",", as.is=T)[,3])
[1] "integer"

You can see the difference between not setting as.is and setting as.is to TRUE.
The file test3.txt is a file in the same folder as the workspace, is in matrix form, and
contains both character and integer data.

The three functions can read some types of atomic data: logical, numeric, complex,
and character. From the R help page for the three functions, R reads in the data as
character data and then converts from character to one of the classes logical, integer,
numeric, complex, or factor.

As noted above, if as.is is set to TRUE, columns containing character data are not
converted to factors but retain the class character. The argument as.is can also be entered
as a logical vector with a value for each column. A shorter vector can be entered also, with
the values cycling across the columns.

The argument colClasses manually sets the class of each column and can be used
in place of as.is to keep a column in character mode. The possible values for the column
classes are NA, NULL, logical, integer, numeric, complex, raw, character, factor, Date
or POSIXct. The values are quoted, except for NA and NULL, and are entered as a vector.
The values will cycle.

If the value is NA, the normal conversion will take place. Otherwise, if possible, the
column elements are coerced to the class listed for the column. For example:

> read.table("test2.txt", colClasses=c("character","factor",NA,NA))
 V1 V2 V3 V4
1 one 3 5 7
2 two 4 6 8

> class(read.table("test2.txt", colClasses=c("character","factor",NA,NA))
[,1])
[1] "character"

> class(read.table("test2.txt", colClasses=c("character","factor",NA,NA))
[,2])
[1] "factor"

> class(read.table("test2.txt", colClasses=c("character","factor",NA,NA))
[,3])
[1] "integer"

The arguments row.names and col.names are used to give names to the rows and
columns of the data.frame. For row.names, the argument can be a character vector of
length equal to the number of rows in the data.frame; the argument can be an integer
specifying which column in the data.frame to use as row names; or the argument can be a
character value containing the name of the column to be used as the row names. The row
names do not cycle.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

84

For col.names, the argument is a character vector of names for the columns. The
vector must be of the same length as the number of columns. If col.names is not specified
and header is FALSE, then the columns are named V1, V2,…, Vn, where n is the number
of the last column.

If header is TRUE and the first column does not have a name, while the rest of the
columns do, then R sets the first column as the row names.

Some examples are the following:
For the matrix

c1 c2 c3

one 3 5 7

two 4 6 8

“ ” “ ”

“ ”

“ ”

which is the file test5.txt, the example is

> read.table("test5.txt", header=T)
 c1 c2 c3
one 3 5 7
two 4 6 8

Note that header is TRUE, and there is one less row in the first column.
For a matrix consisting of the second two rows of test5.txt, called test6.txt, an

example follows:

> read.table("test6.txt", col.names=c("c1","c2","c3","c4"), row.names=2)
 c1 c3 c4
3 one 5 7
4 two 6 8

The four names are assigned to the four columns and then column two is used for
the names of the rows while the other columns retain the assigned names.

There are several other arguments for the functions read.table(), read.csv(), and
read.delim(). A full description of the functions can be found by entering ?read.table at
the R prompt.

R Data Sets
R comes with a number of data sets. Some of these data sets are found in the package
datasets, which is one of the packages installed by default in R. To load data sets from
the package datasets, enter library(datasets) at the R prompt. To see the data sets in
datasets, enter library(help=datasets) at the R prompt. Once the library is loaded, the
data sets in datasets are accessible by entering the name of the data set.

For any library, once the library is loaded, the data sets in the library are accessible
like any other object in the workspace. The packaged data sets are not necessarily data.
frames, but many are.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

85

Other Functions to Import Files
Other functions for importing files will not be covered here. A search on read, done by
entering ??read at the R prompt, gives many of the functions that read into the R workspace.

For Excel spreadsheets, the R writers recommend exporting an Excel spreadsheet
to a .csv (comma separated values) file and reading the .csv file into R. There are a few
functions to read Excel spreadsheets, but the R writers say the conversion is full of pitfalls.

Probability Distributions and the Function sample()
R has a wealth of random number generators. The random number generators are one of
four functions associated with the probability distributions, all of which are covered here.
The functions associated with probability distributions mostly have the same form.
Many of the distributions can be found by entering ??distributions at the R prompt.
Entering ?distribution at the R prompt gives the distributions—and generators—in the
package stats.

Probability Distributions
For the probability distributions in the package stats, there are four functions associated
with a distribution: ddist(), pdist(), qdist(), and rdist(), where dist describes
the distribution. For example, for the normal distribution, dist equals norm. Not all
distributions have all four.

The first function is the function for the density. The function, ddist(), gives the
heights of the probability density function at specified values of a vector of numbers. The
second function is for the cumulative probability. The function, pdist(), by default gives
the areas under the probability density function to the left of the specified values of a
vector of numbers.

The third function is for quantiles. The function, qdist(), by default gives the values
on the real line for which the areas to the left of the values are equal to the values of a
specified vector of probabilities. The fourth function is the random number generator.
The function, rdist(), generates pseudorandom variables from the distribution. For all of
the functions, the vectors can be vectors of length one.

The four functions have arguments to specify the standard parameters of the
given distribution, for many of which there are defaults. For example, for the normal
distribution the arguments are mean and sd and are set equal to 0 and 1 by default.
Both the variables mean and sd can be entered as vectors and will cycle. The vectors
must be numeric or logical. Logical vectors are coerced to numeric. The distributions
in the package stats are given in Table 9-1 along with the parameter arguments for the
distributions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

86

Table 9-1. Probability Distributions in Package Stats

Distribution Name in R Parameters of the Distribution

beta shape1=1, shape2=2, npc=0

binom size, prob

birthday classes=365, coincident=2

cauchy location=0, scale=1

chisq df, npc=0

exp rate=1

f df1, df2, npc

gamma shape, rate=1, scale=1/rate

geom prob

hyper m, n, k

lnorm meanlog=0, sdlog=1

multinom size, prob

nbinom size, prob, mu

norm mean=0, sd=1

pois lambda

signrank n

t df, ncp

tukey nmeans, df, nranges=1

unif min=0, max=1

weibull shape, scale=1
wilcox m, n

The prefixes are d, p, q, r. The multinom function only has d
and r. The tukey function only has p and q. The birthday f
unction only has p and q and does not have a log.p argument.
From the CRAN help page for distribution.

For all of the four functions, the first argument is required and does not have a
default. For the density functions, the first argument x is a vector of real numbers or
values that can be coerced to real numbers. For the cumulative probability functions,
the first argument q is also a vector of real numbers or values that can be coerced to real
numbers. For the quantile functions, the first argument p is a vector of probabilities or
values that can be coerced to a value between zero and one inclusive. For the random

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

87

number generators, the first argument n (nn for the hypergeometric, sign rank, and
wilcox distributions) is a positive integer, or a value that can be coerced to integer, that
tells R how many numbers to generate.

In general, for the density functions, if the values of the first argument are to be
considered as logs of the values of interest, the logical argument log is set to TRUE. For
the probability and quantile functions, the logical argument log.p is set to true if the
values that are for the probabilities are entered or output as logs of the probabilities.

In general, for the cumulative probability and quantile functions, whether to use
the upper tail or the lower tail of the distribution can be set using the logical argument
lower.tail. The lower tail is set by default. Lower tails are the area under the distribution
function for values less than or equal to the values of the first argument, and upper tails
are the area under the distribution function for values greater than the values of the first
argument.

Also, in general, parameters can be entered as vectors and will cycle. If an illegal
value for a parameter is entered, the function will give an error.

More information about a given probability distribution can be found by entering
?ddist at the R prompt, where dist is the name of the distribution from Table 9-1, except
for the tukey and birthday distributions for which ?pdist works.

The Function sample()
Sometimes a random sample is needed rather than random numbers. The function
sample() takes a random sample of atomic objects, list objects, or any other mode object
for which length is defined.

The function sample() takes four arguments. The first argument, x, is the object to
be sampled. If x is a single positive real number greater than one, sample() samples from
the sequence from 1 to the real number rounded down to an integer. If x is an object that
can be coerced to a vector or a single positive number and no other arguments are given,
sample() returns a permutation of the object or the sequence from one to the number
rounded down to an integer.

The second argument size is the number of items to be sampled. The argument
size can be a nonnegative integer or a real number that can be rounded down to a
nonnegative integer.

The third argument is the logical argument replace, which tells sample() whether
to sample with replacement. The default value is FALSE, that is to sample without
replacement. If size is larger than the length of x and replace is FALSE, then sample()
will give an error.

The fourth argument is prob and gives a list of weights for the sampling. The
argument prob must be of the same length as x, must have elements that can be coerced
to non-negative numeric elements and for which at least half of the coerced elements are
nonzero. The coerced elements of prob do not have to sum to one.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

88

For example:

> sample(10)
 [1] 8 10 6 4 7 5 3 9 1 2

> sample(10, 5)
[1] 3 1 6 8 9

> sample(c("a1", "a2", "a3"), 6, replace=T)
[1] "a1" "a1" "a1" "a3" "a3" "a1"

> sample(11:21, prob=1:11)
 [1] 18 20 14 21 19 17 12 16 15 13 11

More information about sample() can be found by entering ?sample at the R prompt.

Manually Entering Data and Generating Data
with Patterns
Data can be entered manually using the function c(), where the c stands for collect.
Sometimes data with a certain pattern is needed, for example, in setting up indices for
matrix or array manipulation or as input to functions. There are a number of functions in
R that give patterned results, which can be useful. Sometimes indexed names are needed
for dimensions in a vector, matrix, or array. The function paste() can be used to create
indexed names.

The Function c()
The function c() collects objects together into a single object. The objects to be collected
are separated by commas within the call to c(). The objects can be NULL, raw, logical,
integer, double, character strings (which must be quoted), named objects (which must
be atomic objects, lists, or expressions), lists, and/or expressions. Objects can also be
functional calls that return any of the above classes.

If all of the objects in the call are atomic objects, the function c() collects the objects
into a vector of the elements making up the objects. The class of the resulting vector is
the highest level class within the elements of the vector, where the levels of the classes
increase in the order NULL, raw, logical, integer, double, complex, and character.

An example of the hierarchy follows:

> rw = as.raw(c(36, 37, 38, 39))

> rw
[1] 24 25 26 27

> c(rw, rw)
[1] 24 25 26 27 24 25 26 27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

89

> c(rw, TRUE)
[1] TRUE TRUE TRUE TRUE TRUE

> c(rw, 40)
[1] 36 37 38 39 40

> c(rw, 40.5)
[1] 36.0 37.0 38.0 39.0 40.5

> c(rw, 1+1i)
[1] 36+0i 37+0i 38+0i 39+0i 1+1i

> c(rw, "six")
[1] "24" "25" "26" "27" "six"

The conversion from raw is automatic except for the conversion to character, which
maintains the raw values.

The function c() has one possible named argument, the logical argument recursive.
The default value of recursive is FALSE. If recursive is set to TRUE and the collection
contains a list but not an expression, then the list is taken apart to the lowest level of the
individual elements in the list and a vector of atomic elements is returned. The object
takes on the class of the highest level of class in the object. If recursive is FALSE, the
resulting object becomes a list.

In the hierarchy of classes, list is above the atomic classes but below expression.
If an expression is included in the call to c(), then the result has class expression.

An example for objects of class list and expression follows:

> a.list
[[1]]
 cl1 cl2
[1,] 1 3
[2,] 2 4

[[2]]
[1] "abc" "cde"

> c(a.list, 1:2)
[[1]]
 cl1 cl2
[1,] 1 3
[2,] 2 4

[[2]]
[1] "abc" "cde"

[[3]]
[1] 1

[[4]]
[1] 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

90

> c(a.list, 1:2, recursive=T)
[1] "1" "2" "3" "4" "abc" "cde" "1" "2"

> a.expr = expression(y ~ x, `1`)

> c(a.list, a.expr)
expression(1:4, c("abc", "cde"), y ~ x, `1`)

In the first call to c(), an object of class list is returned. In the second call, an object
of class character is returned. In the third call, an object of class expression is returned.

Names can be assigned to the elements of the object created by c() by setting the
elements equal to a name in the listing—for example:

> c(a=1,b=2,3)
a b
1 2 3

Here the first two elements are assigned the names a and b while the third element is
not assigned a name.

More information about c() can be found by entering ?c at the R prompt.

The Functions seq() and rep()
The functions seq() and rep() are used for sequences and repeated patterns. In the
simplest form, using seq() is the same as using the colon operator to create a sequence.
However, seq() can create more sophisticated sequences than the colon operator. The
function rep() repeats the first argument to the function a specified number of times,
where there are two possible ways to do the repetition.

The Function seq()
The function seq() has six arguments. The first two arguments are the starting and
ending values of the sequence and are named from and to. The arguments from and to
can take on logical, numeric, or complex values. For logical values, TRUE is coerced to
one and FALSE is coerced to zero. For complex values, the imaginary part is dropped.
Both to and from are set to one by default.

The third argument is by. The argument by gives the value by which to increment the
sequence. The argument can also take on logical, numeric, and complex values; however,
it cannot equal FALSE since FALSE coerces to zero and by cannot equal zero. The
argument does not have to divide into the difference between to and from evenly. The
sequence will stop at the largest value less than or equal to to if to is greater than from.
If to is less than from, then by must be negative and the sequence stops at the smallest
value greater than or equal to to.

The fourth argument is length.out. By default, length.out is set to NULL. The argument
length.out can be used in place of by. The argument gives the length of the sequence to
be output. If length.out is specified, by defaults to (to - from) / (length.out-1).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

91

The fifth argument is along.with. The argument along.with is also used in place of by.
The length of the sequence to be output is given by the length of along.with. The sixth
argument is the argument … for any arguments to or from lower-level functions used by
seq(). Some examples follow:

> seq(3)
[1] 1 2 3

Entering just one value without a name gives a sequence from one to the largest
integer less than or equal to the value for positive values or the smallest integer greater
than or equal to the value if the value is negative.

> seq(3, 10)
[1] 3 4 5 6 7 8 9 10

When two values are entered without names, the first is interpreted as the from value,
the second is interpreted as the to value, and by is set equal to one.

> seq(3, 10, 2)
[1] 3 5 7 9

When three values are entered without names, the first is interpreted as the from
value, the second is interpreted as the to value, and the third is interpreted as the by value.

> seq(3, 10, len=4)
[1] 3.000000 5.333333 7.666667 10.000000

Here, length.out is shortened to len.

 > seq(3, 10, along=c(1,2,1,2))
[1] 3.000000 5.333333 7.666667 10.000000

Here, along.with is shortened to along.

> seq(c(1,2,1,2))
[1] 1 2 3 4

If a vector with more than one element is entered as the only argument, a sequence
starting with one is created, with by equal to one, and of length equal to the length of
the vector.

> seq(len=4)
[1] 1 2 3 4

> seq(7,along=c(1,2,1,2))
[1] 7 8 9 10

> seq(7,len=4)
[1] 7 8 9 10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

92

Entering length.out or along.with alone or with a value for from returns a vector
staring with the value of from, with by equal to 1, and of the correct length. For long
sequences, there are lower level functions that are faster. See the help page for seq().
More information about seq() can be found by entering ?seq at the R prompt.

The Function rep()
The function rep() repeats the first argument in a pattern determined by the other the
arguments. The first argument can be any type of object that can be coerced to a vector.
The other three arguments are times, each, and length.out. The default values for times,
each, and length.out in the S3 system are 1, 1, and NA, respectively.

The argument times is a vector of values that can be coerced to integer. The argument
must be either a single value or of the same length as the first argument. If the argument
takes a single value, the first argument is repeated the number of times of the single value.

If the argument times is of length equal to the length of the first argument, then
each element of the first argument is repeated the number of times indicated by the
corresponding element of the argument times. The argument times is the second
argument to rep(). For example:

> rep(0,5)
[1] 0 0 0 0 0

> rep(1:3, 5)
 [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

> rep(1:3, 2:4)
[1] 1 1 2 2 2 3 3 3 3

Here, the second argument is not explicitly called times, but times implicitly takes
on the value.

The argument each can be any object that can be coerced to a vector of integers,
where the first element is non-negative. Only the first element of the object is used. The
argument tells rep() to repeat each element of the first argument each times. For example:

> rep(1:3, each=3)
[1] 1 1 1 2 2 2 3 3 3
>
> rep(1:3, each=3, times=2)
 [1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
>
> rep(rep(1:3, times=2:4), each=2)
 [1] 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3
>
> rep(rep(1:3, times=2:4), times=2)
 [1] 1 1 2 2 2 3 3 3 3 1 1 2 2 2 3 3 3 3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

93

The last argument is length.out. The argument can take on any value that can be
coerced to an integer vector and for which the first element is non-negative. Only the first
element is used. If length.out is set to a value, only the number of elements given by the
value of the argument is returned. For example:

> rep(rep(1:3, times=2:4), times=2, len=8)
[1] 1 1 2 2 2 3 3 3

Here, length.out is shortened to len.
More information about rep() can be found by entering ?rep at the R prompt.

Combinatorics and Grid Expansion
Combinatorics is a subject about the combinations that can be made from a set of
discrete values. Combinations are all of the combinations that are possible from a
discrete set of values for a given number of elements in each combination, where no
element is repeated. Permutations are the set of all possible permutations of a given size
from a discrete set of elements. Grid expansion is about the expansion of different sets of
elements so that each element of each set is linked with every element of the other sets.
Probably the easiest way to see what the combinations, permutations, and grid expansion
involve is by showing some examples.

Three functions that are relevant are combn(), permsn()—which is in library
prob—and expand.grid. The function combn() takes the arguments x, m, FUN, simplify,
and … . The argument x is any object that can be coerced to a vector and is the discrete
set from which the combinations are formed. The argument m is the number of elements
to include in each combination. The argument FUN is an optional function to operate
on the elements of x. The argument simplify is logical. If TRUE, an array or matrix
is returned. If FALSE, a list is returned. The default value is TRUE. The argument …
contains any arguments for FUN. For example:

> combn(1:3,2)
 [,1] [,2] [,3]
[1,] 1 1 2
[2,] 2 3 3

Note that the combinations are down the rows.
The function permsn() is in the package prob. Since the package is not one of the

packages installed by default, the package may need to be installed. (See Chapter 1.) If the
package is installed, the package must be loaded with

library(prob)

The function permsn() takes just two arguments, x and m, which are as described for
combn(). Following is an example for permsn():

> permsn(1:3,2)
 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 1 3 2 3
[2,] 2 1 3 1 3 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ■ ImPoRTIng And CREATIng dATA

94

Note that the permutations are down the rows. Also note that while combn() just has
the combination (1,2), permsn() includes both (1,2) and (2,1) and so forth. The function
permsn() returns a matrix.

The function expand.grid() takes objects as arguments. The objects are separated
by commas and must be able to be coerced to a vector. The function returns the vectors
crossed with each other in a data frame. For example:

> expand.grid(1:2,3:4,5:6)
 Var1 Var2 Var3
1 1 3 5
2 2 3 5
3 1 4 5
4 2 4 5
5 1 3 6
6 2 3 6
7 1 4 6
8 2 4 6

Here, the combinations are across the rows.
More information about combn(), permsn(), and expand.grid() can be found by

entering ?combn, ?prob::permsn, and ?expand.grid at the R prompt. Note that if prob is
not installed, the second command will not work.

The Function Paste
This chapter ends with the function paste(). The function is used to create character
strings out of any type of object. Other than the objects to be strung together, which are
separated by commas, paste takes two arguments, sep and collapse. The argument sep
gives the value of what is to separate the individual terms and is by default a white space.
The argument sep must be a character string or character object. To set the value to
nothing, set sep equal to “”.

The argument collapse is also a character string or object and is used to separate results.
One of the useful applications of paste()is the creation of dimension names. Here

is an example of three simple applications of paste(). The second example would be
appropriate for creating dimension labels.

> paste("a", 1:3)
[1] "a 1" "a 2" "a 3"
>
> paste("a", 1:3, sep="")
[1] "a1" "a2" "a3"
>
> paste("a", 1:3, sep="", collapse="+")
[1] "a1+a2+a3"

You can find more information about paste() by entering ?paste at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

95

Chapter 10

Exporting from R

Being able to export from R makes R more useful. Objects may be exported to any
connection. In this chapter we cover exporting to external files on the hard drive and to
the console. You can find information about connections by entering ?connections at the
R prompt.

There are a number of functions that export to external text files, seven of which we
will discuss in this chapter. The first is the function dump(). The function dump() can write
named objects of any kind to an external file, but it is quite literal.

The next function is sink(). The function sink() can sink output that would
normally be displayed at the console to an external file. Next is the function write().
The function write() can write atomic data to an external file. Next comes the function
write.matrix(). For matrices and data frames, the function write.matrix() exports the
matrix or data frame.

The next two functions are write.table() and write.csv(). For objects that can
be coerced to a data frame, write.table() and write.csv() can write the object to an
external file while maintaining the data frame structure. The functions are slower but
more sophisticated than write.matrix().

The last function we will cover is dput(). For objects of mode function, dput() can
write the contents of a function to an external file. The function deparses objects and can
output other types of objects, but it is mainly used for functions.

There are also functions that convert data frames to Excel, SPSS, SAS, and Stata
formats, which we brief cover in this chapter. Also, output at the console can be cut and
pasted to an external file, which is often the easiest thing to do.

The Function dump()
The function dump() takes a vector of object names and exports the contents of the
objects to a file. The function can be used, along with source(), to move functions from
one workspace to another, but the function is more general. The function source()
reads the dumped file. (For moving data rather than functions, the functions save() and
load() can be used, but they save and load in binary format. See their help page for more
information.)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

96

The first argument to dump() is list and is a collection of the objects to be dumped.
To enter the objects into the function, the object names are collected into a character
vector with the object names in quotes. For example:

> a = function(){print(1:4)}
> b = expression(x~y)
> c = list(1:4, "a")
> d = c(1,2,3,4)

> dump(c("a","b","c","d"), file="")
a <-
function(){print(1:4)}
b <-
expression(x ~ y)
c <-
list(1:4, "a")
d <-
c(1, 2, 3, 4)
.

Other than the vector of named objects, the function takes the arguments file,
append, control, envir, and evaluate.

The argument file contains the location to which the function writes. If the
argument is set to “”, the dump goes to the console. A hard drive address is an option
and can be either relative to the workspace or absolute. For a hard drive address, the
location is a character argument and must be contained in quotes. The default value is
“dumpdata.R”.

The argument append is a logical variable. If append is TRUE and file equals a
file name, dump() appends the dump to the existing file. If FALSE, the existing file is
overwritten. The default value is FALSE.

The argument envir is an argument of mode function and tells dump() where to look
for the objects to be dumped. The default value is parent.frame().

The arguments control and evaluate have to do with saving and reloading functions
by using dump() to save the function and the function source() to load the function. See
the help page for dump() for a description of what control and evaluate do.

You can access the help page by entering ?dump at the R prompt.

The Function sink()
The function sink() can send output from command line commands to a connection.
The function sink() continues writing until sink() or sink(file=NULL) is entered at the
R prompt. The function takes four arguments: file, append, type, and split.

The file argument tells sink() where to write the output. If writing to a hard drive
file, the write location is a character argument, which is a hard drive address within
quotes. The address can be relative to the workspace folder or absolute. The option
file=“” does not work for sink().

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

97

The second argument, append, tells sink() whether to append or overwrite the file.
The argument is a logical argument. For append equal to TRUE, the file is appended. For
FALSE, the file is overwritten. The default value is FALSE.

The third argument, type, tells sink() which of two possible streams to sink. The
argument is a character argument, which can take on one of two values: output or
message. For output, the output stream is sent to the file. For message, any messages
generated by the command are sent to the file. The default value is output.

The fourth argument, split, is a logical argument that tells sink() how to split the
stream. The default value is FALSE. See the help page for sink() for more information
about split.

Following is an example of the use of sink():

> sink("test.txt")
> rnorm(10)
> sink()

The file "test.txt" is relative to the folder containing the R workspace. The contents
of test.txt are

[1] -0.30618294 -0.52505474 0.47243057 -0.89954490 -1.06653790 0.03690703
[7] 1.81562861 -0.74177999 -0.28352208 -1.28133196

Note that the command lines are not output.
For more information, enter ?sink at the R prompt.

The Function write()
The function write() can write atomic objects to a connection, and it writes in tabular
format. The objects are entered as a one-object vector, for example, as a collection of
objects collected using c(). If the data are in a matrix or array, write() reads the
data down columns or dimensions of the matrix or array, but writes across rows in the
two-dimensional output.

The first argument is x, the vector to be exported. The argument is usually any object
of mode atomic.

Other than the vector to be exported, there are four more arguments to write(). The
first is the character argument file, which tells write() where to write the output. The
argument can be a location on the hard drive, relative to the workspace or absolute. If “”
is given for file, the output is sent to the console. The default value is “data”.

The second argument is ncolumns. The argument ncolumns can be logical,
numeric, or complex, and if it is not an integer, it is coerced to an integer. The argument
gives the number of columns for the exported table. By default, the argument takes on the
value if(is.character(x)) 1 else 5. So if the data is of mode character, the output matrix
has one column by default. Otherwise, the output matrix has five columns by default.

The input file does not have to be of a length divisible by ncolumns. In other words,
the last row does not have to be complete.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

98

The third argument, append, is a logical argument. If set to TRUE, the output is
appended to the file. If set to FALSE, the file is overwritten. The default value is FALSE.

The fourth argument, sep, is a character string that gives the characters to be placed
between the elements of the output matrix. The default value is a white space.

An example follows:

> x=1:4
> y=5:8
> z=rbind(x,y)
> w=paste("a",1:3,sep="")
> b = rep(" ",4)

> write(c(x,y,b,z,b,w), file="", ncol=4, sep=" + ")
1 + 2 + 3 + 4
5 + 6 + 7 + 8
 + + +
1 + 5 + 2 + 6
3 + 7 + 4 + 8
 + + +
a1 + a2 + a3

Note that when entered separately, x and y each exports as a row. When x and y are
bound together into a matrix using rbind(), write() goes down the two columns to read
and writes the result across the rows. Also note that there are four columns as specified by
ncol and that there are only three elements in the last row.

You can find more information about write()by entering ?write at the R prompt.

The Function write.matrix()
The function write.matrix() is in the package MASS, which is not a package that is
loaded by default. MASS can be loaded by entering library(MASS) at the R prompt since
MASS is installed by default. According to the CRAN writers, write.matrix() is much
faster than write.table() for large data sets, so the function may be preferable if the
matrix or data.frame is large and the data frame is appropriate.

The function has the arguments x, file, sep, and blocksize. The argument x is the
object to be exported and should be a matrix or a data.frame containing objects of just
one mode. If modes are mixed some strange things can happen. The function only
exports in one mode, which is why write.matrix() is faster than write.table().

The argument file gives the location to which to write. For addresses on the hard
drive, the argument is of mode character and is either relative to the workspace or
absolute. The default value is “”, which directs output to the console.

The argument sep is a character string that gives the separator between the
outputted elements. The argument defaults to white space.

The argument blocksize has no default value and does not need to be entered. If
entered, the argument tells write.matrix() the size of the block of data to be transferred
at one time. According to the CRAN writers, the value should be as large as possible for
the amount of memory available.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

99

Here is an example. The object mat is a matrix, the object df.mat is a data frame of
one mode, the object df.mat.x is a data.frame of mixed numeric and character modes.

> mat = matrix(1:4,2,2,dimnames=list(c("r1","r2"),c("c1","c2")))
> mat
 c1 c2
r1 1 3
r2 2 4

> write.matrix(mat)
c1 c2
1 3
2 4

> mat.df=data.frame(mat)
> mat.df
 c1 c2
r1 1 3
r2 2 4

> write.matrix(mat.df)
c1 c2
1 3
2 4

> mat.df.x = data.frame(mat,c("art","birth"))
> mat.df.x
 c1 c2 c..art....birth..
r1 1 3 art
r2 2 4 birth

> write.matrix(mat.df.x)
c1 c2 c..art....birth..
1 3 art
2 4 birth

More about write.matrix() can be found by entering ?MASS::write.matrix at the
R prompt.

The Functions write.table() and write.csv()
The functions write.table() and write.csv() also export matrices and data frames.
The two are essentially the same function but with different defaults. All of the defaults for
write.table() can be changed. For write.csv(), the defaults append, col.names, sep,
dec, and qmethod cannot be changed. (As with read.csv() there is also the function
write.csv2() for European users. The function write.csv2() uses a semicolon for the
separator and a comma for the decimal point, but otherwise is the same as write.csv().)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

100

The functions take the arguments x, file, append, quote, sep, eol, na, dec,
row.names, col.names, and qmethod. The argument x is the object to be exported and
must be an object that can be coerced to a data frame.

The argument file gives the location to which to export. For external files, file is of
mode character and the address on the hard drive is either relative to the workspace or
absolute. If file equals “”, then the functions export to the console. The value of file is “”
by default.

The argument append is a logical argument. If append is TRUE, then the file is
appended with the new data frame. If FALSE, the file is overwritten. The default value
is FALSE.

The argument quote is either logical or a numeric vector of column numbers and
gives rules for placing quotes around elements. The default value is TRUE.

The argument sep is a character argument and gives the separator to be used
between the elements of the exported data. The separator is entered within quotes. For
read.table(), the default value is a white space. For read.csv(), the value is a comma.

The argument eol is an argument of mode character and gives the end of line
delineator. By default, eol is equal to “\n”. The correct value for eol varies with operating
system. Use “\n” for Windows, “\r” for OS X, and “\r\n” for Linux.

The argument na is also a character argument and gives the string to be output
where data is missing. The default value is NA.

The argument dec is another character argument and gives the character to be used
as the decimal point. By default, dec equals “.”.

The argument row.names is either a logical value or a character vector of row
names. Note that write.table() and write.csv() treat the row names differently if row.
names is set to TRUE or to a character vector of names. If a column of row names is in the
exported data frame, the function write.table() does not create a blank character string
for the name of the row name column, while write.csv() does. If row.names is equal
to FALSE, there is no difference between the two with regard to row names since no row
names are exported.

If no row names are given, row names are not present in the data.frame (for example,
if a matrix without row names is entered for x) and row.names is TRUE, then the rows
are given names, starting with “1” and incrementing by one with each row. By default,
row.names equals TRUE.

The argument col.names is either logical or a character vector of column names.
For write.table(), if col.names is set equal to TRUE, either the column names are taken
from the data frame or, if no names are present in the data frame, column names are
created starting with “V1” and incrementing the integer by one for each new column. If
column names are supplied, the column names are set equal to the supplied names.

As noted above, for write.table(), by default, no value is given for the column of
row names if the row name column exists in the exported file. However, if col.names is
set equal to NA, then columns are treated the same as for col.names set equal to TRUE
except that a blank character string is added for the row name column. If row.names
equals FALSE, then setting col.names equal to NA gives an error. If col.names is set
equal to FALSE, no column names are assigned in the exported file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

101

For write.csv(), the default for col.names depends on the value of row.names.
The default cannot be changed. If row.names equals TRUE, col.names is set to NA.
Otherwise, col.names is set equal to TRUE. In either case, column names are given by
either the names in the data frame or, if there are no column names in the data frame,
names starting with “V1” and with the integer incrementing by one for each new column.

The last argument is qmethod and can take on the values “escape” or “double”. The
default value is “escape”. The argument gives instructions for double quoted values. See
the help page for write.table() for more information.

Here are some examples. The object df.mat.x is a data frame with row and column
names. The object mat is a matrix that does not have row or column names.

> df.mat.x
 c1 c2 C3
r1 1 3 art
r2 2 4 birth

> write.table(df.mat.x)
"c1" "c2" "C3"
"r1" 1 3 "art"
"r2" 2 4 "birth"

> write.table(df.mat.x, sep=",")
"c1","c2","C3"
"r1",1,3,"art"
"r2",2,4,"birth"

> write.table(df.mat.x, sep=",", col.names=NA)
"","c1","c2","C3"
"r1",1,3,"art"
"r2",2,4,"birth"

> write.table(df.mat.x, col.names=F)
"r1" 1 3 "art"
"r2" 2 4 "birth"

> write.table(df.mat.x, row.names=F, col.names=F)
1 3 "art"
2 4 "birth"

> write.table(df.mat.x, sep=",", row.names=F)
"c1","c2","C3"
1,3,"art"
2,4,"birth"

> write.csv(df.mat.x)
"","c1","c2","C3"
"r1",1,3,"art"
"r2",2,4,"birth"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

102

> write.csv(df.mat.x, row.names=F)
"c1","c2","C3"
1,3,"art"
2,4,"birth"

> mat
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> write.table(mat)
"V1" "V2"
"1" 1 3
"2" 2 4

> write.table(mat, row.names=c("r1","r2"), col.names=NA)
"" "V1" "V2"
"r1" 1 3
"r2" 2 4

> write.table(mat, row.names=F, col.names=F)
1 3
2 4

> write.csv(mat)
"","V1","V2"
"1",1,3
"2",2,4

> write.csv(mat, row.names=c("r1","r2"))
"","V1","V2"
"r1",1,3
"r2",2,4

To access the help page for write.table(), enter ?write.table at the R prompt.

The Function dput()
The function dput() deparses the contents of a file and exports the result in ASCII format.
Mainly dput() is used in conjunction with the function dget(), which reads the exported
files. The two functions are usually used to move functions from one workspace to another.

The arguments to dput() are x, file, and control. The argument x is the file to be
deparsed, usually a function.

The argument file tells dput() where to put the output. The value can be an address
on the hard drive either absolute or relative to the workspace. If so, the argument is of
character mode and the value is within quotes. By default, file equals “”, which sends
the output to the console.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 ■ ExPoRTing fRom R

103

The argument control takes character values and gives dput() more information on
what to include in the export. See the help page for dput() for more information.

Here is an example using the primitive function cat(), exported to the console:

> dput(cat)
function (..., file = "", sep = " ", fill = FALSE, labels = NULL,
 append = FALSE)
{
 if (is.character(file))
 if (file == "")
 file <- stdout()
 else if (substring(file, 1L, 1L) == "|") {
 file <- pipe(substring(file, 2L), "w")
 on.exit(close(file))
 }
 else {
 file <- file(file, ifelse(append, "a", "w"))
 on.exit(close(file))
 }
 .Internal(cat(list(...), file, sep, fill, labels, append))
}

The writers at CRAN warn that the deparsing is not necessarily perfect. Also, dput()
strips the attributes of the object and removes any comments. If the comments are not
important, using dput() on objects of mode function should not be a problem.

You can find more information about dput()by entering ?dput at the R prompt.

Other Exporting Functions
Like the functions that read in data, there are a variety of functions that write data. The
CRAN page on importing and exporting data has much information and can be found at
http://cran.r-project.org/doc/manuals/r-release/R-data.html.

For SPSS, SAS, and Stata, the function write.foreign(), which can be found in
the package foreign, can export in the correct format. The function write.foreign()
also exports in some other formats. Also, other exporting functions can be found in the
package foreign.

The package foreign is one of the packages installed by default. To see the contents
of foreign, enter help(package=foreign) at the R prompt. To load foreign, enter
library(foreign).

For Excel, there is a package, xlsx, specifically for working with Excel. The
package xlsx is not a default package in R, so it must be installed. After xlsx is installed,
information about xlsx can be found by entering help(package=xlsx) at the R prompt.

A search done on write() by entering ??write at the R prompt will give some other
options for exporting from R.

www.it-ebooks.info

http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://www.it-ebooks.info/

105

Chapter 11

Descriptive Functions
and Manipulating Objects

For arrays, matrices, vectors, lists, and expressions, there are a number of functions
that describe various attributes of an object. Also, there are a number of functions that
manipulate objects to create new objects. The functions covered in this chapter are the
descriptive functions dim(), nrow(), NROW(), ncol(), NCOL(), length(), and nchar(); and
the functions that manipulate objects: cbind() and rbind(); the apply functions; sweep(),
scale(), and aggregate(); the table functions; and functions tabulate(), and ftable().

Descriptive Functions
The descriptive functions describe qualities of objects. This section discusses some
descriptive functions that are useful when writing functions or creating objects. The
functions are dim(), nrow(), ncol(), NROW(), NCOL(), length(), and nchar().

The Function dim()
For objects for which dimensions make sense—such as matrices, data.frames, tables, or
arrays—the function dim() returns the number of levels in each of the dimensions of the
object. For objects of other classes, dim() returns NULL. An example follows:

> a = 1:2
> b = 1:3
>
> dim(a)
NULL

> a %o% b %o% a
, , 1

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6

, , 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

106

 [,1] [,2] [,3]
[1,] 2 4 6
[2,] 4 8 12

>
> dim(a %o% b %o% a)
[1] 2 3 2

The dimensions of the object can be changed if the product of the original
dimensions equals the product of the dimensions of the result. An example follows:

> a.ar = a %o% b

> a.ar
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6

> dim(a.ar)
[1] 2 3

> dim(a.ar)= c(3,2)

> a.ar
 [,1] [,2]
[1,] 1 4
[2,] 2 3
[3,] 2 6

You can find more information about dim() by entering ?dim at the R prompt.

The Functions nrow(), ncol(), NROW(), and NCOL()
For matrices, data.frames, and arrays, nrow() and ncol() give the number of levels in the
first and second dimensions of the matrix, data frame, or array respectively. Other classes
of objects return NULL. An example follows:

> a.ar = a%o%b

> a.ar
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

107

> nrow(a.ar)
[1] 2

> ncol(a.ar)
[1] 3

> nrow(1:20)
NULL

Sometimes vectors must be treated as matrices or arrays. The functions NROW() and
NCOL() treat vectors as one-column matrices, but otherwise are the same as nrow() and
ncol(). An example follows:

> NROW(1:20)
[1] 20
>
> NCOL(1:20)
[1] 1

You can find more information about nrow(), ncol(), NROW(), and NCOL()by entering
?nrow at the R prompt.

The Function length()
The next descriptive function we will explain is length(). The argument to length() can
be any mode of object. For atomic objects, length() returns the number of elements in
the object. For list objects, length() returns the number of the top level elements. For
functions, length() returns one. For calls, length() returns the number of arguments
entered in the creation of the call. For names, length() returns one. For expressions,
length() returns the number of elements in the expression. Some examples follow:

> mat=matrix(1:4,2,2)
> mat
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> length(mat)
[1] 4

> a.list=list(mat, c("abc","cde"))
> a.list
[[1]]
 [,1] [,2]
[1,] 1 3
[2,] 2 4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

108

[[2]]
[1] "abc" "cde"

> length(a.list)
[1] 2

> a.fun = function(mu, se=1, alpha=.05){
 z_value = qnorm(1-alpha/2, mu, se)
 print(z_value)
}

> length(a.fun)
[1] 1

> a.call=call("lm", y~x)
> a.call
lm(y ~ x)

> length(a.call)
[1] 2

> a.name
`1`

> length(a.name)
[1] 1

> a.exp = expression(a.call, sin(1:5/180 * pi))
> a.exp
expression(a.call, sin(1:5/180 * pi))

> length(a.exp)
[1] 2

The length of an atomic or list object can be assigned using length(). For other
mode objects, an attempted length() assignment returns an error. If n is the length of an
atomic object, then setting the length to a value larger than n generates NAs for the extra
elements. Setting the length shorter than n removes the extra elements. In either case, a
vector is returned unless the length is not changed, in which case the original object is
returned. An example follows:

> mat
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> mat.2 = mat

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

109

> length(mat.2)=6
> mat.2
[1] 1 2 3 4 NA NA

> mat.2 = mat

> length(mat.2)=3

> mat.2
[1] 1 2 3

> mat.2 = mat

> length(mat.2)=4

> mat.2
 [,1] [,2]
[1,] 1 3
[2,] 2 4

For objects of mode list, lengthening the list adds NULL elements at the top level
while shortening the list removes elements at the top level. An example follows:

> a.list
[[1]]
 cl1 cl2
[1,] 1 3
[2,] 2 4

[[2]]
[1] "abc" "cde"

> length(a.list)=4

> a.list
[[1]]
 cl1 cl2
[1,] 1 3
[2,] 2 4

[[2]]
[1] "abc" "cde"

[[3]]
NULL

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

110

[[4]]
NULL

> length(a.list)=3

> a.list
[[1]]
 cl1 cl2
[1,] 1 3
[2,] 2 4

[[2]]
[1] "abc" "cde"

[[3]]
NULL

You can find more information about length()by entering ?length at the R prompt.

The Function nchar()
The function nchar() counts characters in objects that can be coerced to mode
character. The function takes three arguments: x, type, and allowNA.

The argument x is the object. The function coerces the object to character, and the
characters to be counted are the characters of the coerced object. For example:

> as.character(a.list)
[1] "1:4" "c(\"abc\", \"cde\")" "NULL"
> nchar(a.list)
[1] 3 15 4

Quotes are not counted.
The argument type is a character argument and can take on the values of “bytes”,

“chars”, or “width”. If “bytes” is chosen, the bytes of the strings are counted. If “chars”
is chosen, the standard text number of characters are counted. If “width” is chosen, the
number of characters that the function cat() would assign the strings are counted. The
default value is “char”. Usually there is no difference between the three.

The argument allowNA is a logical argument. If set equal to TRUE, strings that are
not valid are set equal to NA. If set equal to FALSE, strings that are not valid give an error
and cause the function to stop. The default value is FALSE.

You can find more information about nchar()by entering ?nchar at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

111

Manipulating Objects
There are a number of functions that manipulate R objects and make programming
easier. This subsection covers some of the functions, including cbind(), rbind(),
apply(), lapply(), sapply(), vapply(), tapply(), mapply(), sweep(), scale(),
aggregate(), table(), tabulate(), and ftable().

The Functions cbind() and rbind()
The functions cbind() and rbind() are self-explanatory for vectors, matrices, data
frames, and some other classes of objects such as time series. The function cbind() binds
columns. The function rbind() binds rows.

For lists that are not matrixlike, the functions return the type and number of
elements in each of the highest level elements of the list arguments, creating a matrix of
the types with integers. Lists can be bound with non-list objects. The result will be a list,
but the non-list arguments will not be converted like the list part of the result.

In the call to the function, the objects to be bound are separated by commas. For
cbind(), vectors are treated as columns. For rbind(), vectors are treated as rows.

For vectors, vectors being bound do not have to be of the same length. The vectors
cycle. For higher dimensional objects, the objects cycle until the bound object is filled if,
for rbind(), the numbers of columns are multiples of each other and, for cbind(), the
number of rows are multiples of each other. Otherwise, the functions give an error if there
is a row/column mismatch.

The resulting object takes on the type of the highest level object entered, where the
hierarchy, from lowest to highest, is raw, logical, integer, double, complex, character,
and list.

There is one argument to cbind() and rbind() other than the objects to be
bound—the argument deparse.level, which is used to create labels for objects that are
not matrixlike. The argument is an integer argument and can take on the values of 0, 1,
or 2, although any value that can be coerced to an integer works. Values that do not give 1
or 2 when coerced to an integer give the same result as 0. The default value is 1.

For data frames, if a data frame is included in the objects to be bound and a list
that is not a data frame is not included, then the result is a data frame. In that case, any
character columns are changed to factors unless specified to not.

For time series, cbind() gives a multivariate time series, whereas for rbind(), the
time series reverts to a matrix. An example follows:

> ab.list = list(one=1:5,two=3:7)
> ab.list
$one
[1] 1 2 3 4 5

$two
[1] 3 4 5 6 7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

112

> cbind(ab.list,1:4)
 ab.list
[1,] Integer,5 1
[2,] Integer,5 2
[3,] Integer,5 3
[4,] Integer,5 4

> rbind(1:3,3:5,5:7)
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 3 4 5
[3,] 5 6 7

The Apply Functions
There are several functions in R for applying a function over a subset of an object, six of
which are covered here. The six functions are apply(), lapply(), sapply(), vapply(),
tapply(), and mapply(). The functions to be applied can be user-defined, which can be
quite useful.

The Function apply()
The function apply() takes three arguments—X, MARGIN, and FUN—as well as any
arguments to the function FUN. The first argument, X, is an array (including matrices). The
second argument gives the margin(s) over which the function is to operate, and FUN is the
function to be applied.

For matrices, entering 1 for MARGIN applies the function across the columns. For 2,
the function is applied down the rows.

The function to be applied is entered without parentheses. Any arguments to the
function are entered next, separated by commas. The result is an array, matrix, or vector.
An example follows:

> mat=matrix(1:4,2,2, dimnames=list(c("r1","r2"),c("c1","c2")))
> mat
 c1 c2
r1 1 3
r2 2 4

> apply(mat,1,sum)
r1 r2
 4 6

> apply(mat,1,pnorm,3,1)
 r1 r2
c1 0.02275013 0.1586553
c2 0.50000000 0.8413447

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

113

In the example, the arguments to pnorm() are the rows in mat for the q values, 3 for the
value of mean, and 1 for the value of sd. Note that the matrix is transposed in the result.

You can find more information about apply()by entering ?apply at the R prompt.

The lapply(), sapply(), and vapply() Functions
The lapply(), sapply(), and vapply() functions work with vectors, including lists,
and expressions. If X is not a list, then X is coerced to a list. The elements must be of the
correct mode for the function being applied.

The function lapply() is the simplest with just two arguments plus any arguments
to the function to be applied. The function sapply() takes four arguments plus any
extra arguments for the function to be applied. The function vapply() also takes four
arguments plus any extra for the function to be applied.

The Function lapply()

The function lapply() takes the arguments X and FUN, plus any extra arguments for
FUN. The function FUN is applied to every element of the vector or every top level element
of the list. The result is a list. An example follows:

> b.list=list(1:7,3:4)
> b.list
[[1]]
[1] 1 2 3 4 5 6 7

[[2]]
[1] 3 4

> lapply(b.list,sum)
[[1]]
[1] 28

[[2]]
[1] 7

You can enter arithmetic operators by enclosing the operators within quotes.
For example:

> lapply(1:2,"^",2)
[[1]]
[1] 1

[[2]]
[1] 4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

114

The Function sapply()

The function sapply() also operates on vectors, including lists, and expressions. The
function takes the arguments X and FUN, then any arguments to FUN followed by the
arguments simplify and USE.NAMES.

The argument simplify can be logical or the character string “array”. The argument
simplify tells sapply() to simplify the list to a vector or matrix if TRUE, and to an array
if set equal to “array”. No simplification is done if set equal to FALSE. For FALSE, a list is
returned. The value TRUE is the default.

The argument USE.NAMES is a logical argument. For an object of mode character,
the argument USE.NAMES tells sapply() to use the elements of the object as names for
the result. The default value is TRUE. An example follows:

> ab.list
$one
[1] 1 2 3 4 5

$two
[1] 3 4 5 6 7

> sapply(ab.list, sum)
one two
 15 25

> a.char
[1] "a7" "a8" "a9" "a10"

> sapply(a.char,paste,"b", sep="")
 a7 a8 a9 a10
 "a7b" "a8b" "a9b" "a10b"

> sapply(a.char,paste,"b", sep="", USE.NAMES=F)
[1] "a7b" "a8b" "a9b" "a10b"

The Function vapply()

The function vapply() takes the arguments X, FUN, FUN.VALUE, any arguments to FUN,
and USE.NAMES, in that order.

The argument FUN.VALUE is a structure for the output from the function. The
structure is the structure of the result of applying FUN to a single element of X. Dummy
values of the correct mode are used in the structure. The number and mode of the
dummy elements must be correct. Any extra arguments for FUN are placed after FUN.
VALUE. The default value of USE.NAMES is TRUE. An example follows:

> set.seed(382765)
> e
[1] 1 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

115

> vapply(e,rnorm,matrix(.1,2,2), n=4, sd=1)
, , 1

 [,1] [,2]
[1,] 1.701435 1.1422971
[2,] 2.068151 0.9604146

, , 2

 [,1] [,2]
[1,] 0.3541925 1.186276
[2,] 2.6841000 1.745577

In the example, e is a vector of means entered into the function rnorm(), and the
other arguments to rnorm() are n=4 and sd=1.

The function vapply() returns an array, matrix, or vector of objects of the kind given
by the argument FUN.VALUE.

You can find more information about lapply(), sapply(), and vapply() by entering
?lapply at the R prompt.

The Function tapply()
The function tapply() applies functions to cross tabulated data. The arguments are X,
IND, FUN, any extra arguments to FUN, and simplify. The default value for FUN is NULL,
and the default value of simplify is TRUE.

The argument X must be an atomic object and is coerced to a vector. The argument
can be a contingency table created by table(). The length of X is then the product of the
dimensions of the contingency table.

The argument IND must be a vector that can be coerced to a factor or a list of vectors
that can be coerced to factors. The length of X and the length(s) of the factor vectors must
all be the same.

The values of X are the number of observations with a given factor combination,
where the factor combinations are given by crossing the factor values. If combinations
are repeated, the function does not work right. There is no need to enter zeroes for factor
combinations without observations, but zeroes may be included.

Using tapply() without a function gives the index of the cells that contain
observations, while using a function gives the factor cross table, with the function applied
to the contents of the cells. An example follows:

> list(c("a","b","b","c"), c(5,5,6,5))
[[1]]
[1] "a" "b" "b" "c"

[[2]]
[1] 5 5 6 5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

116

> cbind(c("a","b","b","c"),c(5,5,6,5))
 [,1] [,2]
[1,] "a" "5"
[2,] "b" "5"
[3,] "b" "6"
[4,] "c" "5"

> tapply(1:4, list(c("a","b","b","c"), c(5,5,6,5)))
[1] 1 2 5 3

> tapply(1:4, list(c("a","b","b","c"), c(5,5,6,5)), "^",3)
 5 6
a 1 NA
b 8 27
c 64 NA

You can find more information about tapply()by entering ?tapply at the R prompt.

The Function mapply()
The function mapply() takes an object that is a vector or a list as an argument and applies
a function to each element of the vector or list. If an object that is not a vector or list is
entered, mapply() attempts to coerce the object to a vector or list. The elements of the
resulting object must be legal for the function to be applied. The result of mapply() is a
vector, matrix, or list.

The arguments to mapply() are FUN, . . ., MoreArgs, SIMPLIFY, and USE.NAMES.
The argument FUN is the function to be applied. The argument . . . refers to the vectors or
lists on which the argument FUN operates and may be a collection of lists and/or vectors
collected using c(). The argument MoreArgs refers to any additional arguments to FUN
and by default equals NULL. The arguments must be in list mode, with a separate list
for each argument.

The argument SIMPLIFY tells mapply() to attempt to simplify the result to a vector
or matrix. The default value is TRUE. The argument USE.NAMES tells mapply() to
use the names of the elements or, if the vector is of mode character, the characters
themselves, as names for the output. By default, the value is TRUE. An example follows:

> set.seed(382765)

> a.mat = matrix(1,4,4)
> b.mat = matrix(runif(9),3,3)
> c.vec = 1:2

> mapply(det, list(a.mat, b.mat))
[1] 0.0000000 -0.3349038

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

117

> mapply(mean, c(list(a.mat,b.mat), c.vec))
[1] 1.0000000 0.6208733 1.0000000 2.0000000

> mapply(mean, c(list(a.mat,b.mat), list(c.vec)))
[1] 1.0000000 0.6208733 1.5000000

Here det finds the determinants of the elements and mean finds the means of
the elements.

Another example—using MoreArgs—follows:

> set.seed(382765)
>
> mapply(cor, c(list(a.mat,b.mat), list(c.vec)), list(y=1:4,y=1:3,y=3:4),
list(use="everything"), list(method="pearson"))
[[1]]
 [,1]
[1,] NA
[2,] NA
[3,] NA
[4,] NA

[[2]]
 [,1]
[1,] 0.1872769
[2,] 0.8836377
[3,] -0.4585219

[[3]]
[1] 1

Warning message:
In (function (x, y = NULL, use = "everything", method = c("pearson", :
 the standard deviation is zero

Here the function is the correlation function and the arguments y, use, and method
are supplied, each as a list.

You can find more information about mapply()by entering ?mapply at the R prompt.

The sweep() and scale() Functions
The sweep() function operates on arrays (including matrices and vectors that have been
converted to matrices), and the scale() function operates on numeric matrixlike objects.
The sweep() function sweeps out a margin(s) of an array (say, the columns of a matrix)
with values (say, the column means) using a function (say, the subtraction operator).
The scale() function by default centers and normalizes the columns of matrices by
subtracting the mean and dividing by the standard deviation for each column.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

118

The Function sweep()
The function sweep() takes the arguments x, MARGIN, STATS, FUN, check.margin,
and The argument x is the array. The array can be of any atomic mode.

The argument MARGIN gives the margins over which the sweep is to take place. For
a matrix, MARGIN equals 1, 2, or 1:2 (or c(1,2)). If MARGIN equals 1:2, the entire matrix
is swept, rather than the sweeping being done by column or row. For an array of more
than two dimensions, MARGIN can be any subset of the margins, including all of the
margins.

The argument STATS gives the value(s) to sweep with. For example, to use column
means the function apply() can be applied; that is apply(mat, 2, mean) would work as a
value for STATS, where mat is the matrix being swept. The value(s) for STATS cycle.

The argument FUN is the function to use. By default, FUN equals “-”, the subtraction
operator, but FUN can be any function legal for the values of the array. For example, paste
can be used with arrays of mode character.

The argument check.margin checks to see if the dimensions or length of STATS
agrees with the dimensions given by MARGIN. If not, just a warning is given. The function
does not stop, but cycles the values in STATS. The default value is TRUE.

The argument . . . gives any extra arguments to the function FUN. An example
follows:

> d.mat = matrix(1:8,2,4)
> d.mat
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

> a = sweep(d.mat, 2, apply(d.mat, 2, mean))
> a
 [,1] [,2] [,3] [,4]
[1,] -0.5 -0.5 -0.5 -0.5
[2,] 0.5 0.5 0.5 0.5

> sweep(a, 2, apply(d.mat, 2, sd), "/")
 [,1] [,2] [,3] [,4]
[1,] -0.7071068 -0.7071068 -0.7071068 -0.7071068
[2,] 0.7071068 0.7071068 0.7071068 0.7071068

Since MARGIN is set equal to 2, the function mean() takes the mean of each column
and the function sd() takes the standard deviation of each column. In the second
statement, the mean of each column is subtracted from the elements in the column.
The subtraction function is the default, so it does not need to be entered. In the third
statement, the centered elements in the columns are divided by the standard deviations
for the columns.

Note that the function returns a matrix. You can find more information about
sweep()by entering ?sweep at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

119

The Function scale()
The function scale() is used to scale columns of a matrix—that is, to center the column
to a specified center and to scale the column to a specified standard deviation. The
function scale() takes three arguments: x, center, and scale. The argument x is a matrix
or matrixlike numeric object (for example a data frame or time series).

The argument center can be either logical or a numeric vector of length equal to
the number of columns in x. If set to TRUE, the column mean is subtracted from each
element in a column. If set to a vector of numbers, then each number is subtracted from
the elements in the number’s corresponding column. If set equal to FALSE, nothing is
subtracted. The default value is TRUE.

The argument scale can also be logical or a vector of numbers. If scale is set equal
to TRUE, each centered (if centering has been done) element is divided by the standard
deviation of the elements in the column, where NAs are ignored and the division is by
n-1. If set equal to a vector of numbers, each (centered) element of a column is divided
by the corresponding number in the vector. Dividing by zero will give an NaN but will not
stop the execution. If scale is set equal to FALSE, no division is done. The default value is
TRUE. An example follows:

> d.mat = matrix(1:8,2,4)
> d.mat
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

> scale(d.mat)
 [,1] [,2] [,3] [,4]
[1,] -0.7071068 -0.7071068 -0.7071068 -0.7071068
[2,] 0.7071068 0.7071068 0.7071068 0.7071068
attr(,"scaled:center")
[1] 1.5 3.5 5.5 7.5
attr(,"scaled:scale")
[1] 0.7071068 0.7071068 0.7071068 0.7071068

> e.mat = matrix(c(1:8,NA,2),2,5)
> e.mat
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 NA
[2,] 2 4 6 8 2

> scale(e.mat, center=rep(3,5), scale=rep(4,5))
 [,1] [,2] [,3] [,4] [,5]
[1,] -0.50 0.00 0.50 1.00 NA
[2,] -0.25 0.25 0.75 1.25 -0.25
attr(,"scaled:center")
[1] 3 3 3 3 3
attr(,"scaled:scale")
[1] 4 4 4 4 4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

120

Note that scale() returns the scaled matrix, the values used to center the elements,
and the values used to scale the elements.

For more information, enter ?scale at the R prompt.

The Functions aggregate(), table(), tabulate(), and ftable()
Like the apply functions, the function aggregate() finds statistics for data groups. The
functions table(), tabulate(), and ftable() create contingency tables out of data.

The Function aggregate()
The function aggregate() applies a function to the elements of an object based on the
values of another object. The object to be operated on is either a time series, a data frame,
or an object that can be coerced to a data frame. The values of the other object must be a
list with elements that can be interpretable as factors and, at the second level, must be of
length equal to the rows of the data frame or time series. The function treats data frames
and time series differently.

Data Frames

For data frames, the arguments are x, by, FUN, . . ., and simplify. The argument x is a
data frame. The argument by is an object of mode list consisting of elements that can be
interpreted as factors. The elements of by are used to group the rows of x.

The argument FUN is the function to be applied and . . . are any extra arguments
for that function. The argument simplify tells aggregate() whether to try to simplify the
result to a vector or matrix. The default value is TRUE. The result of aggregate() for a
data frame is a data frame. An example follows:

> x2=rep(1:2,3)
> x1=rep(1:2,3)
> y1=1:6
> y2=7:12

> a.df=data.frame(y1,y2,x1,x2)

> a.df
 y1 y2 x1 x2
1 1 7 1 1
2 2 8 2 2
3 3 9 1 1
4 4 10 2 2
5 5 11 1 1
6 6 12 2 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

121

> aggregate(a.df[,1:2], list(x1,x2), mean)
 Group.1 Group.2 y1 y2
1 1 1 3 9
2 2 2 4 10

For data frames, a formula may be used to classify x rather than using the argument
by. For the formula option, the arguments are formula, data, FUN, . . ., subset, and na.
action. The argument formula takes the form y~x, where y is numeric and can have
more than one column and x is a formula such as x1 or x1+x2, where both x1 and x2 can
be interpreted as factors.

The argument data gives the name of the data frame and must be included. The
argument FUN is the function to be applied and . . . contains any extra arguments for
FUN. The argument subset gives the rows of the data frame on which to operate. The
argument na.action gives the choice for how to handle missing values and is a character
string. The default value is “na.omit”, which tell aggregate() to omit missing values. An
example follows:

> a.df
 y1 y2 x1 x2
1 1 7 1 1
2 2 8 2 2
3 3 9 1 1
4 4 10 2 2
5 5 11 1 1
6 6 12 2 2

> aggregate(cbind(y1,y2)~x1+x2, data=a.df, sum, subset=1:3)
 x1 x2 y1 y2
1 1 1 4 16
2 2 2 2 8

Note that the by variable must be a list while the right side of a formula cannot be a list.

Time Series

Time series have both a frequency and a period. In R, the frequency is the inverse of the
period and vice versa. For example, a year can be the period of interest. Then the months
have a frequency of 12 while having sub-periods of 1/12.

For time series, the arguments are x, nfrequency, FUN, ndeltat, ts.eps, and
The argument x must be a time series. The argument nfrequency is the number of
sub-periods for each period after FUN has operated on the time series. The value must
divide evenly into the original time series frequency. The argument equals 1 by default.
(The original time series frequency divided by nfrequency gives the number of elements
that are grouped together—on which FUN operates.)

The argument FUN is the function to be applied and . . . gives any extra arguments to
FUN. The argument . . . is at the end of the argument list. The function FUN must be legal
for the values of the time series and is by default sum.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

122

The argument ndeltat tells aggregate() the length of the sub-periods for the output
and equals 1 by default. The product of the frequency of the original time series and
ndeltat must be an integer.

Either nfrequency or ndeltat can be set. The other is set to the inverse of the one set.
The argument ts.eps gives the tolerance for accepting that nfrequency divides

evenly into the frequency of the time series. By default, nfrequency equals
getOption(“ts.eps”), which value can be found by entering options(“ts.eps”) at the
R prompt. The value is numeric and can be set manually. An example follows:

> x1=c(1,2,1,2,1,2)
> x2=c(1,2,3,1,2,3)

> a.ts=ts(cbind(x1,x2), start=1, frequency=3)
> a.ts
Time Series:
Start = c(1, 1)
End = c(2, 3)
Frequency = 3
 x1 x2
1.000000 1 1
1.333333 2 2
1.666667 1 3
2.000000 2 1
2.333333 1 2
2.666667 2 3

> aggregate(a.ts, FUN=sum)
Time Series:
Start = 1
End = 2
Frequency = 1
 x1 x2
1 4 6
2 5 6

Note that in the example, nfrequency and ndeltat both equal one.
You can find more information about aggregate() by entering ?aggregate at the

R prompt.

The Functions table(), as.table(), and is.table()
There are three functions associated with creating tables using table(). The function
table() creates a contingency table from atomic data or some lists. The data must be
able to be interpreted as factors. The result has class table. The function as.table()
attempts to coerce an object to class table. The function is.table() tests if an object is of
class table.

The arguments to table() are . . ., exclude, useNA, dnn, and deparse.level.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

123

The argument . . . refers to the object(s) that are to be cross-classified. The objects
are separated by commas and, for atomic objects, must have same length. For list objects,
the second level elements must all have the same length and be atomic. Atomic and list
objects cannot be combined in a call to table().

The argument exclude gives values to be excluded from the contingency table. By
default, exclude equals if(useNA==“no”) c(NA, NaA), which tells table() not to set
a level for missing values or illegal values, such as one divided by zero, if the argument
useNA equals “no”.

The argument useNA is a character argument and can take on the value “no”,
“ifany”, or “always”. For “no”, no level is set for missing values. For “ifany”, a level is set
if missing values are present. For “always”, a level for missing values is always set. The
default level is “no”.

The argument dnn is a list argument and gives dimension names for the contingency
table. The default value is list.names(. . .). The function list.names() is defined in
table() and gives the names of the dimensions being tabulated.

The argument deparse.level is an integer argument that can take on the values of
0, 1, or 2. The argument controls list.names() if dnn is not given. For 0, no names are
given. For 1, the column names are used. For 2, column names are deparsed. The default
value is 1. An example follows:

> table(c(1,2,1,2),1:4, useNA="always", deparse.level=0)

 1 2 3 4 <NA>
 1 1 0 1 0 0
 2 0 1 0 1 0
 <NA> 0 0 0 0 0

> table(c(1,2,1,NA),1:4,c(5,6,6,5), useNA="no", deparse.level=1)
, , = 5

 1 2 3 4
 1 1 0 0 0
 2 0 0 0 0

, , = 6

 1 2 3 4
 1 0 0 1 0
 2 0 1 0 0

> table(c(1,2,1,NA),1:4,c(5,6,6,5), useNA="ifany", deparse.level=2)
, , c(5, 6, 6, 5) = 5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

124

 1:4
c(1, 2, 1, NA) 1 2 3 4
 1 1 0 0 0
 2 0 0 0 0
 <NA> 0 0 0 1

, , c(5, 6, 6, 5) = 6

 1:4
c(1, 2, 1, NA) 1 2 3 4
 1 0 0 1 0
 2 0 1 0 0
 <NA> 0 0 0 0

Note that the first and last arrays have four non-zero elements, but the second array
only has three since the NA is excluded.

The function as.table() takes the arguments x and The argument x is the
object to be coerced to class table. The argument must be of mode numeric. The
argument. . . provides any arguments for lower-level functions.

The function is.table() takes the argument x and returns TRUE if x is of class table
and FALSE if not.

You can find more information about table(), as.table(), and is.table() by
entering ?table() at the R prompt.

The Function tabulate()
The function tabulate() coerces numeric or factor objects to vectors and tabulates the
result. The arguments are bin and nbins. The argument bin is the object to be binned.
If the object is not an integer or factor object, then the elements are rounded down to
integers. The resulting integers must be positive. If an illegal element is present, the
element is ignored.

The argument nbins gives the largest integer to be binned and by default equals
max(1, bin, na.rm=T)—that is, the largest value in bin, assuming the largest value in bin
is larger than one.

If nbins is smaller than the largest value in bin, then only those values with a value
less than or equal nbins are binned. All of the integers between one and nbins are binned
even if there are zero elements in a given bin. The function creates a vector without labels.
The bins always start with one. An example follows:

> tabulate(c(-3.5,.9,1,4,5.6,5.4,4,1,3))
[1] 2 0 1 2 2

> tabulate(c(-3.5,.9,1,4,5.6,5.4,4,1,3), nbins=3)
[1] 2 0 1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 ■ DEsCRiPTivE FunCTions AnD MAniPulATing objECTs

125

In the example, there are two ones, zero twos, one three, two fours, and two fives in
the reduced object.

The function tabulate() is good when all of the bins, including those with zero
elements, are needed. You can find more information about tabulate()by entering
?tabulate at the R prompt.

The Function ftable()
The function ftable() creates a matrix out of a contingency table—that is, a matrix that
is a flat table. The arguments are . . ., exclude, row.vars, and col.vars. The argument . . .
can be objects that can be coerced to a vector and that can be interpreted as factors. The
argument can be a list whose elements can be interpreted as factors, or the argument can
be of class table or ftable.

The argument exclude gives the values to be excluded when building the flat table.
By default, exclude equals c(NA, NaN).

The arguments row.vars and col.vars give the dimensions to put in the rows and
columns. The values can go from one to the number of dimensions in the table—in other
words, a table with three dimensions can have row.vars and col.vars equal to 1:2 and 3;
or 2:1 and 3; or 1 and 3; or c(3,1) and 2; and so forth. An example follows:

> a.list = list(1:2,3:4,5:6)
> ftable(a.list)
 x.3 5 6
x.1 x.2
1 3 1 0
 4 0 0
2 3 0 0
 4 0 1

> a1 = 1:2
> a2 = 3:4
> a3 = 5:6
> ftable(a1, a2, a3, row.vars=3, col.vars=2:1)
 a2 3 4
 a1 1 2 1 2
a3
5 1 0 0 0
6 0 0 0 1

> a.table = table(1:2,3:4,5:6)
> ftable(a.table, row.vars=2, col.vars=3)
 5 6

3 1 0
4 0 1

You can find more information about ftable() by entering ?ftable at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 5

Flow Control

Part V covers the flow control commands and functions. Flow control involves
directing the flow of a function based on conditions. In R, the flow control
statements are for, while, if, if/else, and repeat. The flow control functions are
ifelse() and switch().

Many computer languages use similar flow control, but in R it is usually
easier and faster to use indices rather than flow control. Chapter 13 gives
examples of the two approaches.

Chapter 12 describes the five flow control commands and the way to use the
commands. It also describes the use of the statements break and next.

Chapter 13 gives five examples using the control commands, each of which
is accompanied by a counterexample of the same exercise using indices.

Chapter 14 gives descriptions and examples of the flow control functions
ifelse() and switch().

www.it-ebooks.info

http://www.it-ebooks.info/

129

Chapter 12

Flow Control

Flow control statements are used to repeat a series of tasks a number of times or to direct
flow based on a logical object. For persons who came into programming in the age of
FORTRAN and BASIC, using loops is very comfortable. In R, the better choice, if possible,
is to use arrays and index selection instead of looping. Using indices is much faster
than looping.

That said, the control statements are if, if/else, while, for, and repeat. They are
sometimes necessary and often useful. In this chapter, we give syntax for the flow control
statements. We give examples of the use of flow control in Chapter 13.

Brackets “{ }” and the Semicolon “;”
Curly brackets are used to enclose sections of code. Brackets can be used with if, while,
for, and repeat flow control statements to delineate the section of code on which the
control statement is to operate, both within functions and at the R console.

Brackets can also be used without an accompanying flow control statement, directly
at the R console. Starting with an opening bracket, code statements can be entered one
line at a time. The statements do not execute until the closing bracket is entered.

The semicolon is used to include more than one statement on one line. A statement
is not evaluated until the statement before it has finished executing. If the first statement
is a flow control statement followed by a single statement of code, the control flow must
finish before the second statement executes. However, if the two—or more—statements
are enclosed in an opening and a closing bracket after a flow control statement, all of
the statements within the brackets are executed together based on the flow control
statement.

The “if” and “if/else” Control Statements
The if control statement takes a logical object and executes code if the object is true. If the
object is not true, then, optionally, different code given by an else executes.

The logical object must be an object that can be coerced to logical. If the logical
object is of length greater than one, only the first element of the object is used.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ Flow ConTRol

130

The if statement can take the following forms:

if ('logical object') 'single code statement'

if ('logical object') 'single code statement';'single code statement'

if ('logical object') {'more than one code statement separated by semicolons'}

if ('logical object') {
'lines of code statements'
}

These four forms are not exhaustive of the possible forms. In the second form, the
second statement will execute even if the logical object is false since the two statements
are not enclosed in brackets.

If the logical object is false, then the option exists to have R execute different code
by using an else statement. For the two control statements if and else, two examples
of form follow:

if ('logical object') 'single code statement' else 'single code statement'

if ('logical object') {
'lines of the code statements'
}
else {
'lines of the code statements'
}

Again, the two forms are not exhaustive. If no else control statement is present and
logical object is false, then the code statements following the if statement are skipped.

The “while” Control Statement
The while control statement executes a block of code while a logical condition is true.
Again, the logical object must be an object that can be coerced to logical. If the logical
object is of length greater than one, only the first element of the object is used.

The control statement can take the following forms:

while ('logical object') 'single code statement'

while ('logical object') 'single code statement'; 'single code statement'

while ('logical object') {'multiple code statements separated by semicolons'}

while ('logical object') {
'lines of code statements'
}

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ Flow ConTRol

131

Again, the forms shown are not exhaustive of the possible forms. Note that for the
second form, the second statement does not execute until the while loop is ended since
the two statements are not in brackets.

The “for” Control Statement
The for control statement instructs R to loop through a section of code for a set
number of times. There are a number of ways that the looping can be done based on
the looping criteria.

The looping criteria can be quite flexible. The simplest form is

for (i in 1:n)

where i is an object that indexes from 1 to n and where n is an integer.

In general, the syntax of the flow control statement for for loops is

for ('indexing variable' in 'vector object')

where indexing variable is a variable whose value changes at each iteration of the loop
and vector object contains the values that indexing value takes. The vector object
can be any object that can be coerced to a vector, including objects of mode list and
expression.

The object indexing variable will take on the values of vector object sequentially.
Usually, the indexing variable is used in the code statements executed by the for loop.

Note that if the vector object is created using the function seq() within the for
statement and the seq() argument along.with—which can be abbreviated along—is used,
seq() gives the indices of the elements of along.with rather than the values of the object.

Some forms of a for loop are the following:

for ('looping criteria') 'single code statement'

for ('looping criteria') 'single code statement'; 'single code statement'

for ('looping criteria') {'multiple code statements separated by semicolons'}

for ('looping criteria') {
'lines of code statements'
}

Again, the four forms are not exhaustive of the possible forms. In the second form,
the code after the semicolon does not execute until after the for loop is finished since the
two statements are not in brackets.

According to the CRAN help page for flow control, the value of the indexing variable
can be changed in the code statements referenced by for but, at the start of the next loop,
reverts to the next indexed value of the variable. At the end of the looping, the value of
indexing variable is the final value of the indexing variable in the loop.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ■ Flow ConTRol

132

The “repeat” Control Statement
The repeat flow control statement repeats a section of code until a stopping point is
reached. The stopping point must be programmed into the section of code. Unlike while,
repeat does not have a logical object as part of the control statement and, unlike for, no
looping index is part of the control statement. Following are two forms for repeat:

repeat {'some code statements separated by semicolons'}

repeat {
'lines of code statements'
}

Again, the two are not exhaustive. Infinite loops are possible with repeat, so use caution.

The Statements “break” and “next”
The statements break and next are used for flow control within those sections of code
controlled by one of the flow controllers.

The statement break tells R to leave a for, while, or repeat loop or an if section and
go to the first statement after the loop or section.

The statement next tells R to stop executing the code statements in a for, while, or
repeat loop and start again at the beginning of the loop—with the value of the indexing
variable, if there is one, taking on the next value of the variable.

Nesting
Any of the flow control statements can be nested within other flow control sections of
code. For the sake of clarity and to prevent subtle bugs, use brackets at all levels when
nesting flow control sections within other flow control sections.

Most of the information presented here on flow control is from the CRAN help page
on controlling flow, which can be found by entering ?“if" at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

133

Chapter 13

Examples of Flow Control

This chapter gives some examples of flow control as well as ways to do the examples using
indexing. The first example uses nested for loops and if/else statements. The second
example uses the while statement. The third example is of nested for loops. The fourth
example uses a for loop, an if statement, and a next statement. The fifth example is of a
for loop, a repeat loop, an if statement, and a break statement.

Nested ‘for’ Loops with an ‘if/else’ Statement
In this example, we do an element-by-element substitution into a matrix based on an if/else test.

First, a two-by-five matrix x is generated and the matrix is displayed. Next, two
for loops cycle through the row and column indices of x. At each cycle, a set of if/else
statements test whether the element in the matrix is greater than five.

If the value of the element is greater than five, the value of the element is replaced
with one. If not, control goes to the else statement. Within the else statement, the value
of the element is replaced by zero.

Last, the resultant matrix is displayed. The example follows:

> x = matrix(1:10,2,5)

> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> for (i in 1:2) {
+ for (j in 1:5) {
+ if (x[i,j]>5) x[i,j]=1
+ else x[i,j]=0
+ }
+ }

> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 1 1
[2,] 0 0 1 1 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

134

Using Indices
Doing the same substitution without loops is easier. First, the matrix x is generated and
displayed. Next, a second matrix, y, is set equal to x. The matrix y is used to hold the
values of x since the values of x are changed in two steps. Next, the elements in x are set
equal to the new values based on the original values—which are in y. Last, the resultant
matrix is displayed. The example follows:

> x = matrix(1:10,2,5)

> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

> y=x

> x[y>5] = 1
> x[y<=5] = 0

> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 1 1
[2,] 0 0 1 1 1

On my computer, using a matrix with 43,830 rows and 35 columns, the looping
method took around five seconds and the indexing method took under a second.

A ‘while’ Loop
In this example, a while loop is used to find how many iterations it takes for a sum
of variables distributed randomly and uniformly between zero and one to be greater
than five.

After initially setting the seed for the random number generator and setting n and x
to zero, a while loop is started to increment n and to sum x. A number generated using
the random number generator for the uniform distribution is added to x at each iteration.
When x is greater than five, the looping stops. The values for n and x are printed out. The
example follows:

> set.seed(129435)

> n=0
> x=0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

135

> while (x<=5) {
+ x = x + runif(1)
+ n = n + 1
+ }

> n
[1] 7

> x
[1] 5.179325

Using Indices
To do the same task using indices, a vector of uniform random variables is generated of
length greater than what would be expected for the result of the sum.

Then the function cumsum(), which creates a cumulative sum along a vector, is used
to find when the sum is greater than five. Since the elements of x are always greater than
zero, the accumulated sum always increases along the vector.

Next, the function length() is used to find the number of elements for which the
sum is less than or equal to five. Then the values for n and x are printed out, where x
equals x[n].

> set.seed(129435)

> x = runif(25)
> x = cumsum(x)
> n = length(x[x<=5])+1
> x = x[n]

> n
[1] 7

> x
[1] 5.179325

Note that the random number generator is set to the same seed value for both parts
of the example, so the results for the two match since the same first seven numbers are
generated.

On my computer, if I substitute 1,000,000 for 5 in the examples above, and 3,000,000
for 25, the method using indices is almost instantaneous, while the method using looping
takes about nine seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

136

Nested ‘for’ Loops
Sometimes the differences between each of the columns of a matrix are needed. In this
example, nested for loops are used to find the differences.

First, a matrix x is generated with two rows and four columns and is assigned column
names. Next, the matrix is displayed. Then a matrix xp of zeroes with two rows and six
columns is generated to hold the result of the differences, and the matrix is assigned
blank column names.

Next, a counter k for the columns in the matrix xp is set to zero. As the two for loops
increment, k will increase by one at each step.

Then the two for loops are run. In the loops, the elements of xp are filled with
differences between different the columns in x. The two loops loop through the columns
in the matrix x in such a way that no column combinations are repeated and the two
columns are never the same. At each step, the columns of xp are assigned names based
on the names in x.

Last, the resulting matrix xp is displayed. The example follows:

> x = matrix(1:8,2,4)
> colnames(x) = paste("c", 1:4, sep="")
> x
 c1 c2 c3 c4
[1,] 1 3 5 7
[2,] 2 4 6 8

> xp = matrix(0,2,6)
> colnames(xp) = rep("",6)
> xp

[1,] 0 0 0 0 0 0
[2,] 0 0 0 0 0 0

> k=0

> for (i in 1:3) {
+ for (j in (i+1):4) {
+ k = k+1
+ xp[,k] = x[,i]-x[,j]
+ colnames(xp)[k] = paste(colnames(x)[i], "-", colnames(x)[j], sep="")
+ }
+ }
>
> xp
 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4
[1,] -2 -4 -6 -2 -4 -2
[2,] -2 -4 -6 -2 -4 -2

Note that the number of columns in xp equals p(p-1)/2, where p is the number of
columns in x.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

137

Using Indices
To do this problem using indices, two vectors of indices are created.

First, the initial matrix x is generated, assigned column names, and displayed. Then
two sets of indices of the same length, ind.1 and ind.2, are created. The respective indices
in the two sets are never the same and all possible combinations are present and present
only once.

Next, the resultant matrix xp is created by subtracting the columns of x in the second
index set from the columns of x in the first index set. Next, the column names for xp are
created and assigned using paste() and the two index sets.

Last, the matrix xp is displayed. The example follows:

> x = matrix(1:8,2,4)
> colnames(x) = paste("c", 1:4, sep="")
> x
 c1 c2 c3 c4
[1,] 1 3 5 7
[2,] 2 4 6 8

> ind.1 = rep(1:3,3:1)
> ind.1
[1] 1 1 1 2 2 3

> ind.2 = 2:4
> for(i in 3:4) ind.2 = c(ind.2,i:4)
> ind.2
[1] 2 3 4 3 4 4

> xp = x[,ind.1] - x[,ind.2]
> colnames(xp) = paste("c", ind.1, "-","c", ind.2, sep="")

> xp
 c1-c2 c1-c3 c1-c4 c2-c3 c2-c4 c3-c4
[1,] -2 -4 -6 -2 -4 -2
[2,] -2 -4 -6 -2 -4 -2

Note that a for loop is used to create the second set of indices. Also, column indices
are repeated in both sets of indices.

For large matrices, the second method is faster than the first. On my computer,
column differences for two matrices each with 43,830 rows and 35 columns were found by
the two methods. The two methods both gave the same 43,830-by-595 matrix. The looping
method took around 1.5 seconds and the indexing method took around 1.0 second.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

138

A ‘for’ Loop, ‘if’ Statement, and ‘next’ Statement
In this example, standard normal random numbers are generated and compared to 1.965.
Only those values that are less than or equal to 1.965 are kept.

First, the seed for the random number generator is set to an arbitrary value. Then a
single standard normal number is generated. (We ignore the possibility that the number
is greater than 1.965.) In the for loop that comes next, for 10,000 iterations a standard
normal random number is generated at each iteration. If the number is larger than 1.965,
the next loops starts. Otherwise, the number is added to a vector of numbers. A histogram
is plotted of the final vector. See Figure 13-1 for the result. The example follows:

> set.seed(69785)
>
> x = rnorm(1)
>
> for (i in 1:10000) {
+ x2 = rnorm(1)
+ if (x2>1.965) next
+ x = c(x, x2)
+ }
>
> hist(x)

Figure 13-1. Using a loop to generate a histogram of random standard normal
variates that are less then 1.965

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

139

Using Indices
Using indices is much simpler. First, the random number generator seed is set to the same
value as for the previous example. Next, a vector of standard normal random variables of
length 10,001 is generated. Next, only those values in the vector that are less than or equal
to 1.965 are kept. Last, a histogram of the vector is generated. The histogram is shown in
Figure 13-2. The example follows:

> set.seed(69785)
>
> x = rnorm(10001)
> x = x[x<=1.965]
>
> hist(x)

Figure 13-2. Using indices to generate a histogram of random standard normal variates
that are less then 1.965

Note that the two histograms are the same since the seeds are the same and the same
10,001 numbers are used.

If 10,000 is increased to 100,000 above, on my computer the method using loops
takes about 13 seconds while the method using indices takes less than 1 second.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

140

A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’ Statement,
and a ‘break’ Statement
In this example, random samples of size 100 of standard normal numbers are generated
within a repeat loop, which is within a for loop that goes through 10,000 iterations.

For each sample, the sum of the sample is divided by the square root of 100 and
then compared to 1.965. If the value is less than 1.965, then the repeat loop continues.
Otherwise, the repeat loop stops, the number of times through the loop is recorded, and
the next for loop starts. At the end, the vector of the numbers of times through the loop is
plotted in a histogram and the mean and median of the numbers of times is found.

First, the seed for the random number generator is set. Then a vector n.hist is
created to hold the results, with a space for each iteration of the for loop. Next, the for
loop opens and the counter n is set to zero. Then the repeat loop opens.

At the beginning of the repeat loop, the counter n is incremented by one. Then
the sample is taken, divided by ten, and the result is set equal to x. Next, the value of x
is compared to 1.965 in an if statement. If the value is greater than 1.965, then n.hist for
index i is set equal to the counter n and a break statement breaks the function out of the
repeat loop. Otherwise, the repeat loop continues looping.

At the end, hist() is run to create a histogram of n.hist, mean() is run to find the
mean of n.hist, and median() is run to find the median of n.hist. See Figure 13-3 for the
histogram. The example follows:

> set.seed(69785)

> n.hist = numeric(10000)
> for (i in 1:10000) {
+ n=0
+ repeat{
+ n=n+1
+ x=sum(rnorm(100)/10)
+ if (x>1.965) {n.hist[i]=n; break}
+ }
+ }

> hist(n.hist)

> mean(n.hist)
[1] 40.4769

> median(n.hist)
[1] 28

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

141

Note that the mean is close to 40, which is the expected number of trials necessary
on average to see an event with a probability of 0.025 of occurring. However, the median
is much smaller since the distribution is highly skewed.

Using Indices
To do this example using indices, we found the repeat loop necessary, but that the for
loop could be dispensed with.

Once again, the random number generator seed is set—to the same number as
in the first part of the example—and n.hist is defined numeric with 10,000 elements.
Then the counter n is set to zero, the counter cl.sv is set to zero, and the counter n.col is
set to 10,000.

Next, the repeat loop opens. The matrix x is defined as a matrix with 100 rows
and n.col columns (initially 10,000). The elements of x are 100 times n.col randomly
generated standard normal numbers.

Next, the function apply() is used to sum each column of the matrix, and the result
is assigned to x. Then each element of x is divided by 10. Next, the length of the vector
containing those elements of x that are larger than 1.965 is assigned to x.

Then x is added to cl.sv and n is incremented by one. Next, values of n.hist are set
equal to n, where cl.sv and x are used to say where along the vector n.hist to put the
value of n.

Next, n.col is decremented by the value of x. The repeat loop continues until n.col
equals zero.

Figure 13-3. The numbers of times needed until the result exceed 1.965 for sums of 100
standard normal variable divided by 10—using a for loop

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

142

The histogram of n.hist is generated using hist(), the mean of n.hist using mean(),
and the median of n.hist using median(). See Figure 13-4 for the histogram.
The example follows:

> set.seed(69785)

> n.hist = numeric(10000)
> n = 0
> cl.sv = 0
> n.col = 10000

> repeat{
+ x = matrix(rnorm(n.col*100), 100, n.col)
+ x = apply(x, 2, sum)
+ x = x/10
+ x = length(x[x>1.965])
+ cl.sv = cl.sv + x
+ n = n+1
+ n.hist[(cl.sv-x+1):cl.sv] = n
+ n.col = n.col-x
+ if (n.col==0) break
+ }

> hist(n.hist)

> mean(n.hist)
[1] 40.5015

> median(n.hist)
[1] 28

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ examples of flow Control

143

Once again, the mean is close to 40 and the median is 28.
Both methods use about the same amount of time. If 10,000 is replaced by 100,000

above, then the looping method takes about 53 seconds and the indexing method takes
about 56 seconds on my computer.

Since the process of generating the random samples is different between the two
methods—the second method generates more numbers than the first—the results for the
two methods are not identical even though the seed for the random number generator is
the same.

Figure 13-4. The numbers of times needed to exceed 1.965 for sums of 100 standard normal
variable divided by 10—using indices

www.it-ebooks.info

http://www.it-ebooks.info/

145

Chapter 14

The Functions ifelse()
and switch()

The two functions ifelse() and switch() execute flow control within a function. The
function ifelse() evaluates a logical expression and chooses one of two values based on
the result. The function switch() takes a value as an argument and returns another value
based on the value of the first argument.

The Function ifelse()
The ifelse() function takes three arguments. The first is a logical object or any object
that can be coerced to logical, such as objects of the atomic modes or objects of mode
list where there is only one level of depth to the list and where each element takes on
only one value. Also, you can use a function that returns values that can be coerced to
logical. The second argument is the value(s) to be returned where the first argument is
true. The third argument is the value(s) to be returned where the first argument is false.

Each element of the first argument is tested separately. Elements of mode character
and missing elements return NA. Otherwise, the value that is returned for a given element
is the value in the same position in the second (or third) argument. For example, if the
first argument is the vector (T,T,F,T), the second argument is the vector (1,2,1,2), and the
third argument is (4,5,6,4), then ifelse() returns (1,2,6,2). That is:

> ifelse(c(T,T,F,T), c(1:2,1:2), c(4:6,4))
[1] 1 2 6 2

If possible, the result has the same dimensions as the first argument. Otherwise,
a vector of mode list of length equal to the length of the first argument is returned.
For example:

> a.mat = matrix(0:3,2,2)
> a.mat
 [,1] [,2]
[1,] 0 2
[2,] 1 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ the FunCtions iFelse() and switCh()

146

> a.list = list(a.mat,c("a","b","c"))
> a.list
[[1]]
 [,1] [,2]
[1,] 0 2
[2,] 1 3

[[2]]
[1] "a" "b" "c"

> ifelse(a.mat,1:4,30:33)
 [,1] [,2]
[1,] 30 3
[2,] 2 4

> ifelse(a.mat,1:4,a.list)
[[1]]
 [,1] [,2]
[1,] 0 2
[2,] 1 3

[[2]]
[1] 2

[[3]]
[1] 3

[[4]]
[1] 4

Note that in the second call to ifelse(), the first element of a.mat results in a FALSE
and the first element of a.list is a matrix, so a list is generated.

If the first argument is of length less than the length of the second (or third)
argument, only those elements in the second (or third) argument up to the length of the
first argument will be used. For example:

> ifelse(c(T,F), 1:5, 10:15)
[1] 1 11

The first element of 1:5 is 1 and the second element of 10:15 is 11, so (1,11) is returned.
If the first argument is of length longer than the second (or third) argument, the

second (or third) argument cycles. For example:

> ifelse(c(T,F,F,F,T), 1:3, 10:12)
[1] 1 11 12 10 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ the FunCtions iFelse() and switCh()

147

The second argument cycles to (1,2,3,1,2) and the third argument cycles to
(10,11,12,10,11).

If the modes of the resulting elements are not the same, then the result will have the
mode of the element with the highest hierarchy, where the hierarchy goes—from lowest
to highest—logical, integer, double, complex, character, and list. Objects of mode
NULL and raw give an error. For example:

> ifelse(c(T,F,F,F,T), 1:5+1i, 1:5)
[1] 1+1i 2+0i 3+0i 4+0i 5+1i

> ifelse(c(T,F,F,F,T), as.raw(2:6), as.raw(12:16))
Error in ifelse(c(T, F, F, F, T), as.raw(2:6), as.raw(12:16)) :
 incompatible types (from raw to logical) in subassignment type fix

A function can be used as the value for any of the three arguments. If the function
is evaluated, the result of the function is returned first. The last result is the result of the
substitution. For example:

> f.fun = function(mu, se=1, alpha=.05){
 q_value = qnorm(1-alpha/2, mu, se)
 print(q_value)
}

> ifelse (f.fun(1:2, alpha=1.0), f.fun(1:2), f.fun(3))
[1] 1 2
[1] 2.959964 3.959964
[1] 2.959964 3.959964

> ifelse (f.fun(0:2, alpha=1.0), f.fun(1:2), f.fun(3))
[1] 0 1 2
[1] 2.959964 3.959964
[1] 4.959964
[1] 4.959964 3.959964 2.959964

Note that in the first call to f.fun(), alpha is set to 1.0, so the median is returned.
Also, in the first call, the first two functions are evaluated while in the second call all three
functions are evaluated.

If the result is assigned to an object, then the results of the functions are printed at
the console, but the result of the ifelse() is passed to the object. For example:

> a=ifelse (f.fun(1:2, alpha=1.0), f.fun(1:2), f.fun(3))
[1] 1 2
[1] 2.959964 3.959964
> a
[1] 2.959964 3.959964

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ the FunCtions iFelse() and switCh()

148

The function ifelse() can be nested. For example, a first order Markov chain of
length six with two states, where the transition matrix is

0 7 0 3

0 8 0 2

. .

. .

é

ë
ê

ù

û
ú

can be generated using nested ifelse() functions. That is, letting “A” be the first
state and “B” be the second state:

> set.seed(6978)
> mc="A"

> for (i in 2:6) {
+ rn = runif(1)
+ mc = c(mc, ifelse(mc[i-1]=="A", ifelse(rn<=0.7,"A","B"),
ifelse(rn<=0.8,"B","A")))
+ }

> mc
[1] "A" "A" "B" "B" "B" "B"

You can find more information about ifelse()by entering ?ifelse at the R prompt.

The Function switch()
The function switch() takes any number of arguments. The first argument tells switch()
which of the following arguments to return. The arguments that follow the first argument
are the objects to be returned. The first argument must be numeric, logical, complex,
character or NA, and it must consist of a single element. The rest of the arguments can be
of any mode and dimension. Commas separate the arguments.

If the first argument is numeric, the number is rounded down to an integer; if logical,
TRUE is coerced to 1 and FALSE to 0; and if complex, the imaginary part is discarded and
the real part is treated like numeric.

The function returns the argument indicated by the first argument. For example, if
the first argument is 3, then the fourth argument is returned. That is:

> switch(3,5,"a","b",6)
[1] "b"

If the first argument is larger than the number of arguments minus one, is less than
one, or is NA, then a NULL object is returned. For example:

> switch(0,1,2,3)
> mode(switch(0,1,2,3))
[1] "NULL"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ the FunCtions iFelse() and switCh()

149

A character string for the first element causes switch() to behave differently. The
function looks at the names of the arguments following the character string to try to find a
match. All of the following arguments must be named with the exception of one possible
element without a name. (Arguments can be named in the listing by entering the name,
followed by an equal sign, followed by an - optional - value.)

If there is an argument without a name, then that argument becomes the default
value if there is no match to the character string. If there is no argument without a name,
then the default value is a NULL object. For example:

> switch("e", a=1, b=2, c=3, d=4, e=f.fun(0))
[1] 1.959964

> switch("e", a=1, b=2, c=3, d=4, 25)
[1] 25

> switch("e", a=1, b=2, c=3, d=4)
> mode(switch("e", a=1, b=2, c=3, d=4))
[1] "NULL"

The unnamed argument can appear anywhere in the listing except as the first
argument. If more than one unnamed argument is entered, then switch() returns an error.

With a character string for the first argument, the subsequent arguments do not have
to be assigned a value, only a name. If the character string matches a name without a
value, then switch() continues along the listing of the arguments and returns the value
of the next argument with a value. If none of the subsequent arguments contain a value,
switch returns a NULL object. For example:

> switch("b", a=1,b=2,c=,d=,e=5)
[1] 2

> switch("b", a=1, b=, c=3, d=)
[1] 3

> switch("b", a=1, b=, c=, d=)
> mode(switch("b", a=1, b=, c=, d=))
[1] "NULL"

Note that the first argument is enclosed in quotes, while the names of the subsequent
arguments are not. The switch() function can be nested.

You can find more information about switch()by entering ?switch at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Part 6

Some Common Functions,
Packages, and Techniques

This final part of the book discusses some common functions and describes what
is in the packages base, stats, and graphics, as well as giving brief descriptions
of the packages datasets, grDevices, and utils. It also covers some common
frustrations with R and provides solutions. It briefly discusses the class formula
and recursive functions.

Chapter 15 goes over some functions for making nice output and for
summarizing data textually and visually.

Chapter 16 lists some of the contents of base, stats, and graphics along with
descriptions.

Chapter 17 talks about a number of frustrations that come up often in R and
offers solutions. It also describes the class formula and a recursive function.

www.it-ebooks.info

http://www.it-ebooks.info/

153

Chapter 15

Some Common Functions

This chapter covers some common functions in R. The first section discusses the
function options(), which sets the default options for R. The second section describes
the functions round(), signif(), and noquote(), which are used in formatting objects.
The third section covers the function cat(), which is used to print results to the console,
a file, or a connection. The fourth section discusses the functions format(), print(),
plot(), and summary() for displaying objects. The functions in the fourth section operate
differently on different classes of objects. In the fifth section, we cover the functions
anova(), coef(), effects(), residuals(), fitted(), vcov(), confint(), and predict(),
which are functions that operate specifically on models and which also operate differently
depending on the class of the object.

The Function options()
Currently on my Windows system, there are 55 options in the function options(). The
options are loaded when the packages are loaded. To see a list of the options with their set
values, enter options() at the R prompt. The options for all loaded packages are in the list.

To see the value(s) of specific options, enter options(“opt1”, “opt2”, … ,“opt_n”)
at the R prompt, where opt1 through opt_n are the names of the options. To access the
value(s) of an option, use getOption(“opt”), where opt is the name of the option.

To set option values, enter options(opt1=value1, opt2=value2, opt3=value3, … ,
opt_n=value_n) at the R prompt, where opt1 through opt_n are the options and value1
through value_n are the values assigned to the options. Note that for setting and accessing
an option, the option is entered as a character string (in quotes), whereas for setting a
value, the option is entered as an object (no quotes).

For descriptions of the options and the packages to which they belong, enter
?options at the R prompt.

When options are changed during an R session, the change is only good for the
session. To change the values of the option defaults that are loaded when R is run, try
creating the file .Rprofile in the same folder as .RData and .Rhistory. If the file does
not already exist, this method works. If the file does exist, editing the file works. The file
.Rprofile must be a plain text file with no extension. The file tells R what functions to run
at startup.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

154

Putting lines in the file to run options() sets default options. For example, the
contents of .Rprofile might be the following:

options(defaultPackages=c(getOption("defaultPackages"),"MASS"),
contrasts=c("contr.sum","contr.poly"))

Here the package MASS is added to the packages that are loaded at startup and the
contrast for unordered factors is changed from the default “contr.treatment” to
“contr.sum”. More about the startup process can be found by entering ?Startup at the R
prompt.

Some options include the following:

continue—a character string—gives what R prints at the
console when more than one line is used for R code—the
default value is "+".

contrasts—character strings—the types of contrasts to
use for factor data in linear models—the default values are
“contr.treatment” for unordered contrasts and “contr.poly” for
ordered contrasts—other possible values are “contr.sum” and
“contr.helmert”—information about the contrasts can be found
by entering ?contrasts at the R prompt.

defaultPackages—character strings—the packages to be
loaded by default when R is run—the default values are
“datasets”, “utils”, “grDevices”, “graphics”, “stats”, and “methods”
(base is always loaded).

digits—an integer—the recommendation for the number of
digits to be returned for numbers—R does not necessarily use
the recommended number—the default value is “7”.

editor—a character string—gives the editor that the function
edit() calls—the default value varies with operating system—see
the help page for edit() for more information.

expressions—an integer—how deep nesting can go—the
value can be between 25 and 500,000—the default value is
“5000”.

na.action—a character string giving a function—gives the
option for missing values—the default value is “na.omit”—other
values are “na.fail”, “na.pass”, and “na.exclude”—see the help
pages for na.omit(), na.fail(), na.pass(), and na.exclude()
for more information.

scipen—an integer—an option that gives R a tendency toward
either scientific notation (negative integers) or fixed notation
(positive integers)—see the options() help page for more
information—the default value is “0”.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

155

show.coef.Pvalues—a logical value—an option that tells R
whether to show p values in the summary() output from linear
models—the default value is “TRUE”.

show.signif.stars—a logical value—an option that tells
R whether to show stars to give significance levels in the
summary() output from linear models—the default value is
“TRUE”.

stringsAsFactor—a logical value—tells data.frame() and
read.table() whether to convert character strings to
factors—the default value is “TRUE”—yes convert strings.

OutDec—a single character string—gives the value to use for a
decimal point—the default value is “.”.

prompt—a character string—the value to use as the R
prompt—the default value is “>”.

ts.eps—a numeric value—the tolerance level for comparing
time periods in more than one time series—the default value is
“1.0e-5”.

The Functions round(), signif(), and noquote()
The functions round(), signif(), and noquote() make output easier to read.

The Function round()
The function round() rounds the elements of objects of mode numeric or complex to a
given number of digits after the decimal point. The function takes two arguments, the
object to be rounded, x, and the number of digits, digits. A negative number for digits
rounds to places to the left of the decimal point. For example:

> round(c(1.2344, 5.67, 1234.567),3)
[1] 1.234 5.670 1234.567

> round(rnorm(3)+63, -1)
[1] 60 60 60

> round(1.34+3.0i,1)
[1] 1.3+3i

Note that all of the values returned have the same number of places after the decimal
point, if there is one, except that the real and imaginary parts of complex numbers are
treated separately. The default value for digits is zero. See the help page of round() for
rounding rules if the last digit in x equals five.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

156

The Function signif()
The function signif() rounds the elements of a numeric or complex object to a given
number of significant digits. The function takes two arguments, the object x and the
number of significant digits digit. For example:

> signif(c(1.2344, 5.67, 1234.567),3)
[1] 1.23 5.67 1230.00

> signif(rnorm(3)+63,-1)
[1] 60 60 60

> signif(1.34+3.0i,1)
[1] 1+3i

Note that, like round(), all of the returned numbers go out to the same number of
places, but the significant digits are limited to the integer given by digit. If a value less
than one is given for digit, then the number of significant digits is set to one. The default
value for digit is six.

The Function noquote()
The function noquote() returns output where the quotes have been removed from any
character strings in the object. The function takes one argument obj, which can be any
type of object. For example:

> noquote(c(" a", "bc", "d"))
[1] a bc d

More information about round() and signif() can be found by entering ?signif at
the R prompt. More information about noquote() can be found by entering ?noquote at
the R prompt.

The Function cat()
The function cat() can be used to output data from a function to the console, a
file, or a connection. The function name cat stands for concatenate. The objects to
be concatenated must be of mode atomic and separated by commas. The objects
are coerced to vectors. The function has five arguments other than the objects to be
concatenated.

The five arguments are file, sep, fill, labels, and append. The argument file tells
cat() where to send the output. The argument is a character string and can be a file
address, a connection, or “”—for the console. The default value is “”. The argument sep
is a character string. The value of sep separates the objects printed in the output. The
default value is “ ”.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

157

The argument fill is either a logical variable or a positive number. If FALSE, line
breaks are set with “\n” or a break in a quoted string. If TRUE, the value of the option
width is used to set the width of the output. If fill is a positive number, the number is used
to set the width. The default value is FALSE.

The argument labels is a vector of character strings that is used to label the lines
of output and is only used if fill is TRUE or numeric. The default value is NULL. The
argument append is used when file is an external file. If TRUE, then the output is
appended to the file. Otherwise, the file is overwritten. The default value is FALSE.

The string “\n” tells cat() to go to the next line. A line break can also be entered by
breaking the line within a quoted string. For example:

> set.seed(69235)
> x=1:4
> y= runif(4)
> a.lm=lm(y~x)
> a.sm=summary(a.lm)

> cat("\nThe intercept is ", round(coef(a.lm)[1],3), ". The slope is ",
round(coef(a.lm)[2],3), ". The F statistic is ", round(a.sm$f[1],4), " on
", a.sm$f[2], " and ", a.sm$f[3], " degrees of freedom. The p value is ",
round(1-pf(a.sm$f[1], a.sm$f[2], a.sm$f[3]),4), ".\n", sep="")

The intercept is -0.301. The slope is 0.257. The F statistic is 4.5039 on 1
and 2 degrees of freedom. The p value is 0.167

> cat(round(coef(a.lm)[1],3), round(coef(a.lm)[2],3), round(a.sm$f[1],4),
a.sm$f[2], a.sm$f[3],
+ round(1-pf(a.sm$f[1], a.sm$f[2], a.sm$f[3]), 3), fill=17, labels =
c("intercept ", "slope ",
+ "F ", "df 1 & 2 ", "p value "))
intercept -0.301
slope 0.257
F 4.5039
df 1 & 2 1 2
p value 0.168

More information about cat() can be found by entering ?cat at the R prompt.

The Functions format(), print(), plot(), and
summary()
The functions format(), print(), plot(), and summary() behave differently depending
on the class of the object on which the functions operate. For a given function, in
order to see the classes of objects that have special methods for the function, enter
methods(‘function’) at the R prompt, where function is the name of the function.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

158

R automatically uses the special method for an object if the class of the object has a
special function, even if the class extension is not included. For example, plot(a.ts) and
plot.ts(a.ts) give the same result if a.ts is a time series. If there is no special function
for the class of the object, then the default method is used, if there is a default method.
For information about the default method, enter ?function.default at the R prompt,
where function is the name of the function; for example, ?plot.default.

The Function format()
The function format() has 59 methods on my Windows system, including default. The
function returns a character version of atomic objects and, for many list objects, reduced
character versions of the list. The function takes several arguments that can structure the
output to make a visually nice result. The arguments vary from method to method. For
example:

> a.date = as.Date(1:4, "2014-3-9")

> a.date
[1] "2014-03-10" "2014-03-11" "2014-03-12" "2014-03-13"

> format(a.date, "%m/%d/%Y")
[1] "03/10/2014" "03/11/2014" "03/12/2014" "03/13/2014"

> a.list = list(c("a","b","c"), matrix(1:4,2,2))

> dimnames(a.list[[2]]) = list(c("r1","r2"),c("c1","c2"))

> a.list
[[1]]
[1] "a" "b" "c"

[[2]]
 c1 c2
r1 1 3
r2 2 4

> format(a.list)
[1] "a, b, c" "1, 2, 3, 4"

For more information about format(), enter ?format or ?format.'ext' at the R
prompt, where ext is the extension for the class. Extensions can be found by entering
methods(format) at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

159

The Function print()
The function print() prints objects. The function has 201 methods on my Windows
system, including default. The functions can take on a variety of arguments depending
on the class of the object to be printed. Some useful ones that are available for many
classes are quote, which is a logical argument that tells print whether to print quotes
or not; print.gap, which is an integer argument that tells print() how many spaces to
put between columns for matrices, arrays, and data frames; and right, which is a logical
argument that tells print whether to right or left justify strings. For example:

> a.mat = matrix(paste("m",1:8,sep=""),2,4)

> print(a.mat)
 [,1] [,2] [,3] [,4]
[1,] "m1" "m3" "m5" "m7"
[2,] "m2" "m4" "m6" "m8"

> print(a.mat, quote=F, right=T, print.gap=3)
 [,1] [,2] [,3] [,4]
[1,] m1 m3 m5 m7
[2,] m2 m4 m6 m8

To find more information about print() and the various print methods, enter at the
R prompt ?print or ?print.'ext' where ext is the extension for the class of the object.

The Function plot()
The function plot() is one of the functions that makes plots. The function has 33 methods
on my Windows system, including default. Plotting in R can go from simple descriptive
plots to very sophisticated plots. The subject deserves a book of its own; consequently,
it will not be covered here. Information about plot() can be found by entering ?plot or
?plot.‘ext’, where ext is the extension for the class of the object to be plotted.

The Function summary()
The function summary() has 36 methods on my Windows system, including default. For
some objects, for example, the output from lm(), summary() is sub-scriptable and returns
variables not returnable from the object itself. Some examples follow:

> x = sample(3,1000, rep=T)
> y = sample(5,1000, rep=T)

> a.tab = table(x,y)
> a.tab
 y

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

160

x 1 2 3 4 5
 1 69 70 57 59 55
 2 61 78 68 69 68
 3 75 60 72 76 63

> summary(a.tab)
Number of cases in table: 1000
Number of factors: 2
Test for independence of all factors:
 Chisq = 6.641, df = 8, p-value = 0.5758

> a.ar = array(1:8, c(2,2,2))
> a.ar
, , 1

 [,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

 [,1] [,2]
[1,] 5 7
[2,] 6 8

> summary(a.ar)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 2.75 4.50 4.50 6.25 8.00

More information about summary() can be found by entering ?summary or
?summary.‘ext’, where ext is the extension for the class of the object, at the R prompt.

Some Functions for Models: anova(), coef(),
effects(), residuals(), fitted(), vcov(), confint(),
and predict()
While print(), plot(), and summary() have special methods for model classes such as
lm and glm, the functions also cover many other classes. The functions anova(), coef(),
effects(), residuals(), fitted(), vcov(), confint(), and predict() are functions
which also behave differently depending on the class of the main argument and which
are specifically written for models.

For the examples in this section, we use the following liner model:

> x=1:5
> y = rnorm(5)
> a.lm = lm(y~x)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

161

The function anova() has ten methods on my Windows system and returns an anova
table for a model. For example:

> anova(a.lm)
Analysis of Variance Table

Response: y
 Df Sum Sq Mean Sq F value Pr(>F)
x 1 1.12231 1.12231 7.9294 0.06696 .
Residuals 3 0.42462 0.14154

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The function coef() has nine methods on my Windows system, including default,
and returns the coefficients of a model. For example:

> coef(a.lm)
(Intercept) x
 1.8579552 -0.3350095

The function effects() has two methods (lm and glm) on my Windows system. For
example:

> effects(a.lm)
(Intercept) x
 -1.9072023 -1.0593929 -0.1839281 -0.1798352 0.5987044
attr(,"assign")
[1] 0 1
attr(,"class")
[1] "coef"

Enter ?effects at the R prompt for more information about effects().
The function residuals() has nine methods on my Windows system, including

default. The function returns the residuals of a model. For example:

> residuals(a.lm)
 1 2 3 4 5
-0.04429571 0.35401363 -0.26173492 -0.36138822 0.31340522

The function fitted() has six methods on my Windows system, including default,
and returns the fitted values for a model. For example:

> fitted(a.lm)
 1 2 3 4 5
1.5229457 1.1879363 0.8529268 0.5179174 0.1829079

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 ■ SomE Common FunCTionS

162

The function vcov() has 11 methods on my Windows system and returns the
estimated variance-covariance matrix of the coefficients of the model. For example:

> vcov(a.lm)
 (Intercept) x
(Intercept) 0.15569297 -0.04246172
x -0.04246172 0.01415391

The function confint() has eight methods on my Windows system, including
default. The function returns confidence intervals for the coefficients of a model. For
example:

> confint(a.lm)
 2.5 % 97.5 %
(Intercept) 0.6022272 3.11368324
x -0.7136257 0.04360679

The function predict() has 23 methods on my Windows system and returns
predictions from the model. For some classes of objects, predict() can return confidence
or prediction intervals for predicted values. If the original model is used for the first
argument in predict(), then the intervals are for the fitted values. For our model a.lm
and for finding 95-percent confidence intervals for the fitted values, an example follows:

> predict(a.lm, interval="confidence")
 fit lwr upr
1 1.5229457 0.5955291 2.450362
2 1.1879363 0.5321537 1.843719
3 0.8529268 0.3174826 1.388371
4 0.5179174 -0.1378652 1.173700
5 0.1829079 -0.7445087 1.110325

More information for the functions in this section can be found by entering
?'function' or ?'function'.'ext' at the R prompt, where function is the function name
and ext is the extension for the class.

www.it-ebooks.info

http://www.it-ebooks.info/

163

Chapter 16

The Packages base, stats,
and graphics

In this chapter, we take a quick look at the packages base, stats, and graphics—three
of the packages loaded by default in R. The package base contains things such as the
trigonometric function and other mathematical functions, many of the as. and is.
functions, the arithmetic operators, the flow control statements, some apply functions,
and many other basic functions in R.

The package stats contains many basic statistical functions, such as functions to
find the median, the standard deviation, and the variance. It also includes the functions
associated with common probability distributions as well as many more. The package
graphics contains the basic plotting functions and their ancillary functions.

The other packages loaded by default are datasets, which contains data sets;
utils, which contains utility functions; grDevices, which contains information used in
plotting—such as fonts and colors; and methods—enter ?Methods at the R prompt for
information about the methods package and about using methods in R.

For a list of the functions in a package with clickable links to the function help pages,
enter help(package=package.name) at the R prompt, where package.name is the name of
the package. For information about the package and a text list of the contents of the package,
enter library(help=package.name) where package.name is the name of the package.

The source of the information in this chapter is the CRAN help pages.

The base Package
The base package contains many functions basic to R. The documentation for base is
seven pages long (library(help=base)). The list of links to the help pages for base is
32 pages long (help(package=base)). This section covers the reserved words, the built-in
constants, the trigonometric and hyperbolic functions, the functions related to the beta
and gamma functions, some other mathematical functions, and functions for complex
numbers, matrix functions, and a few other functions. It also discusses some other
functions for the package base.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

164

Reserved Words
The reserved words in R are if, else, repeat, while, for, function, next, break, in, TRUE,
FALSE, Inf, NULL, NA, NaN, NA_integer_, NA_real_, NA_complex_, NA_character_, ...,
..1, ..2, and so forth. See Table 16-1.

Table 16-1. The Reserved Words in R

if else repeat while for

in next break function TRUE

FALSE Inf NULL NA NAN

NA_integer_ NA_real_ NA_complex_ NA_character_

‘. . .’ ‘. ._1’ ‘. ._2’ ‘. . _n’

Table 16-2. The Built-In Constants in R

Constants Description

LETTERS the 26 capital letters

letters the 26 lowercase letters

month.abb the 12 names of the months abbreviated to three letters

month.name the 12 names of the months

pi p; 1/2 the circumference of a unit circle

For more information, enter ?Reserved at the R prompt.

Built-In Constants
The built-in constants in R are LETTERS, which are the 26 letters in the English alphabet
and which are capitalized; letters, which are the 26 letters in the English alphabet and
which are lowercase; month.abb, which are three-letter abbreviations of the names of the
months in English; month.name, which are the names of the months in English; and pi,
the mathematical constant p. See Table 16-2 for a listing of the constants.

You can find more information about the constants by entering ?Constants at the
R prompt.

Trigonometric and Hyperbolic Functions
The trigonometric and hyperbolic functions available in R are the cosine - cos(), sine - sin(),
tangent - tan(), inverse cosine - acos(), inverse sine - asin(), two versions of the inverse
tangent - atan() and atan2(), hyperbolic cosine - cosh(), hyperbolic sine - sinh(),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

165

hyperbolic tangent - tanh(), inverse hyperbolic cosine - acosh(), inverse hyperbolic
sine - asinh(), and inverse hyperbolic tangent - atanh().

Angles are entered into the functions as radians (radians = pi/180 x degrees). For the
inverse functions, the angles are returned in radians (degrees = 180/pi x radians). The
arguments must be of an atomic mode and logical, numeric, or complex. Logical values
are coerced to numeric.

For the inverse cosine and sine, the values must be between -1 and 1, inclusive. For
other values, the result is NaN. For the inverse tangent, atan() takes one argument and
the result falls between –p/2 and p/2.

The function atan2() takes two arguments. The function returns the inverse tangent
of the ratio of the two arguments, with the first argument being the numerator and
the second the denominator. The function takes any number (real or complex) for the
numerator and any number (real or complex) as the denominator. The arguments can be
of different lengths and will cycle.

The function atan2() returns results between -p and p. The quadrant of the angle
depends on signs of the numerator and the denominator, that is: (+,+) first quadrant;
(+,-) second quadrant; (-,-) third quadrant; and (-,+) fourth quadrant. (By definition,
the tangent of x, for any number x, is the sine of x divided by the cosine of x.) Zero in the
denominator returns p/2 or –p/2 depending on the sign of the numerator.

The hyperbolic functions can also take on any number (real or complex). For the
inverse of the hyperbolic functions, the argument for acosh() must be between 1 and ∞,
inclusive, and the argument for atanh() must be between -1 and 1, inclusive.

Arguments can be vectors, matrices, data frames, or arrays. For arguments with
more than one element, the operation is carried out element-wise. For atan2(), which
takes two arguments, the arguments cycle. The functions return an object of the same
dimensions as the argument(s) to the function.

See Table 16-3 for a listing of the functions, with restrictions.

Table 16-3. The Trigometric and Hyperbolic Functions

Function R Function Restrictions

cosine cos(x) logical, numeric, or complex; logical
coerced to numeric

sine sin(x) see cosine

tangent tan(x) see cosine

inverse cosine acos(x) -1 £ x £ 1

inverse sine asin(x) see inverse cosine

inverse tangent atan(x) see cosine

 “” atan2(y,x) see cosine; inverse of tangent of y divided
by x; maintains quadrant information

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

166

You can find more information about the trigonometric functions by entering ?Trig
at the R prompt; for the hyperbolic functions, by entering ?cosh at the R prompt.

Beta- and Gamma-Related Functions
The functions related to the beta and gamma functions are beta(), lbeta(), gamma(),
lgamma(), psigamma(), bigamma(), trigamma(), choose(), lchoose(), factorial(),
and lfactorial(). In R, these functions are the Special functions. The arguments to
these functions must be of the atomic mode and logical (which are coerced to numeric)
or numeric. The function returns a result in the same form as the argument (the same
dimensions). Arguments cycle.

The beta() and lbeta() functions take the arguments a and b, both of which must
be non-negative, and return the value of the beta function or the natural logarithm of the
value of the beta function respectively. Negative numbers return NaN.

The gamma(), lgamma(), psigamma(), digamma(), and trigamma() functions take
the argument x, and for psigamma(), the argument deriv. The argument x can be any
number, except for zero or the negative integers, for which NaNs are returned. The
functions gamma() and lgamma() return the value of the gamma function and the natural
logarithm of the absolute value of the gamma function respectively. The function
psigamma() returns the derivative of the natural logarithm of the gamma function to the
order given by deriv. The argument deriv must be an integer greater than or equal to
zero. By default, deriv, equals zero. The function digamma() returns the value of the first
derivative of the natural logarithm of the gamma function while trigamma() returns the
second derivative.

The functions choose() and lchoose() return binomial coefficients and the natural
logarithms of the absolute values of binomial coefficients, respectively. Both functions
take the arguments n, which can be any real number, and k, which can be any real
number and is rounded to an integer. Negative numbers for k return 0. The function
choose() is the familiar “n choose k” for n a positive integer and k a non-negative integer
less than or equal to n.

Function R Function Restrictions

hyperbolic cosine cosh(x) see cosine

hyperbolic sine sinh(x) see cosine

hyperbolic tangent tanh(x) see cosine

inverse hyperbolic cosine acosh(x) 1 £ x £ ∞

inverse hyperbolic sine asinh(x) see cosine

inverse hyperbolic tangent atanh(x) -1 £ x £ 1

Table 16-3. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

167

The functions factorial() and lfactorial() return the factorial value and the
natural logarithm of the absolute value of the factorial value, respectively. The functions
take one argument, x. The value of x can be any real number (numeric or logical coerced
to numeric). The factorial value is defined as

factorial(x) = gamma(x+1)

for any value of x and equals x! (that is, (x)(x-1)(x-2)...(2)(1)) for positive integer values of
x. For x equal to zero, factorial(x) equals one. Negative integers return NaNs.

See Table 16-4 for a listing of the functions. You can find more information about the
functions by entering ?Special at the R prompt.

Table 16-4. The Beta, Gamma, and Related Functions

Function Function in R Arguments

beta beta(a, b) a, b; both integers ³ 0

natural log beta lbeta(a,b) see beta

gamma gamma(x) x, any real number; zero and
negative integers return NaN

natural log of absolute
value of gamma

lgamma(x) x, any real number; zero and
negative integers return Inf

nth derivative of natural
log of gamma function
where deriv equals n

psigamma(x, deriv=0) x, any real number;

deriv, an integer ³ 0; returns
NaN's where not defined

1st derivative of natural
log of gamma function

digamma(x) x, any real number; returns
NaN's where not defined

2nd derivative of natural
log of gamma function

trigamma(x) see digamma

binomial coefficients choose(n, k) n, any real number

k, integer ³ 0

natural log absolute value
binomial coefficients

lchoose(n, k) see binomial coefficients

factorial factorial(x) x, any real number; factorial(x)
equals gamma(x+1); negative
integers return NaN

natural log absolute
value factorial

lfactorial(x) x, any real number; lfactorial(x)
equals lgamma(x+1); negative
integers return Inf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

168

Miscellaneous Mathematical Functions
Some other mathematical functions include the following:

abs() for the absolute values of the elements of an object

sqrt() for the square roots of the elements of an object

ceiling() for rounding the elements of an object up to an integer

floor() for rounding the elements of an object down to an integer

trunc() for truncating the elements of an object to the decimal point

cummax() for the cumulative maximum over an atomic object

cummin() for the cumulative minimum over an atomic object

cumprod() for the cumulative product over an atomic object

cumsum() for the cumulative sum over an atomic object

exp() for e to the powers of the elements of an object

log(), log10(), and log2() for the logarithms of the elements of
an object for a specified base, base 10, and base 2, respectively

max() for the maximum of the elements in an object

min() for the minimum of the elements in an object

pmax() for vectors (will cycle) or matrices—returns the
maximum across rows

pmin() for vectors (will cycle) or matrices—returns the
minimum across rows

sum() for the sum of the elements of an object

prod() for the product of the elements of an object

mean() for the mean of the elements of an object

range() for the range of the elements of an object

rank() for the ranks of the elements of an object

sign() for the signs of the elements of an object—returns 1 for
positive numbers, -1 for negative numbers, and 0 for zeroes

order() for indices giving the order of the elements of an object;
with more than one object, the order of the first object, using
the second object for ties, and so forth; used to reorder vectors,
matrices, data frames, and arrays; x[order(x)] equals sort(x)

sort() for sorting the elements of objects

zapsmall() for setting very small numbers to zero

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

169

Atomic vectors, matrices, arrays, and data frames of the legal modes can be used for
these functions. The results of these functions are various types of objects, depending on
the function.

See Table 16-5 for a listing of the functions with restrictions.

Table 16-5. Some Other Mathematical Functions

Function in R Restrictions

abs(x) logical, numeric, or complex objects; logical coerced to
numeric; returns object of same dimensions

sqrt(x) see abs(); negative real numbers return NaN

ceiling(x) logical or numeric object; logical coerced to numeric;
returns object of same dimensions

floor(x) see ceiling()

trunc(x, ...) x, logical or numeric object; logical coerced to numeric;
returns object of same dimensions

. . ., any arguments to be passed on to lower level functions
called by trunc()

cummax(x) raw, logical, numeric, or character object; will be coerced to
numeric; character objects return NAs; returns vector

cummin(x) see cummax()

cumsum(x) see cummax()

cumprod(x) see cummax()

exp(x) logical, numeric, or complex object; logical coerced to
numeric; returns object of same dimensions

log(x, base=exp(1)) x, logical, numeric, or complex object; logical coerced to
numeric; x ³ 0; 0's return -Inf; negative real numbers return
NaN; returns object of same dimensions

base, the base for the logarithm; numeric or complex—logical
is legal but returns Inf for T and 0 for F; base ³ 0

log2(x) logical, numeric, or complex; logical coerced to numeric;
x ³ 0; 0's return -Inf; negative real numbers return NaN;
returns object of same dimensions

log10(x) see log2()

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

170

Function in R Restrictions

max(..., na.rm=FALSE) . . ., logical, numeric, complex, and character objects
separated by commas; do not need to be of the same length;
can mix modes; returns a single value

na.rm, logical; if an NA is present and na.rm is set to FALSE
returns NA, if TRUE ignores the NA

min(..., na.rm=FALSE) see max()

pmax(..., na.rm=FALSE) . . ., logical, numeric, and character objects separated by
commas; do not need to be of the same length—cycle; can
mix modes; returns a vector

na.rm, logical; if an NA is present and na.rm is set to FALSE
returns NA, if TRUE ignores the NA

pmin(..., na.rm=FALSE) see pmax()

sum(..., na.rm=FALSE) . . ., logical, numeric, and complex objects separated by
commas; can mix modes; returns a single value

na.rm, logical; if an NA is present and na.rm is set to FALSE
returns NA, if TRUE ignores the NA; NaN similar but are
treated differently for complex numbers

prod(..., na.rm=FALSE) see sum()

mean(x, trim=0,
na.rm=FALSE, ...)

x, logical, numeric, or complex object; returns a single value

trim, 0 £ trim £ .5; is proportion of elements to trim before
taking the mean

na.rm, logical; if an NA is present and na.rm is FALSE
returns NA, if TRUE ignores NA; NaN the same

. . . any arguments to be passed to lower level functions
called by mean()

range(...,
na.rm=FALSE)

. . ., logical, numeric, and character objects separated by
commas; can mix modes; returns two values

na.rm, logical; if an NA is present and na.rm is set to FALSE
returns NA, if TRUE ignores the NA; NaN the same

Table 16-5. (continued)

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

171

Function in R Restrictions

rank(x,
na.last=TRUE, ties.
method=c("average",
"first", "random",
"max", "min"))

x, logical, numeric, complex, or character object

na.last, logical or character; if TRUE, NAs and NaNs are
ranked last, if FALSE they are first, if NA they are discarded,
if “keep” they keep their place in the order; NaNs return
NAs; returns a vector

ties.method, character; method for setting a value for ties;
the default is “average”

sign(x) logical or numeric object; returns object of same
dimensions

order(...,
na.last=TRUE,
decreasing=FALSE)

. . . , logical, numeric, complex or character vectors of the
same length—can use just one vector—can mix modes;
returns a permutation of indices of length equal to the
length of the vector(s)

na.last, logical; for TRUE NAs are placed last, for FALSE NAs
first, for NA NAs are removed

decreasing, logical; must be TRUE or FALSE; if TRUE order
is decreasing, if FALSE increasing

sort(x,
decreasing=FALSE,
na.last=NA, ...)

x, logical, numeric, complex, or character object; sorts real
and imaginary parts of complex separately; returns a vector

decreasing, logical; if TRUE sorts in decreasing order, if
FALSE increasing; must be TRUE or FALSE

na.last, logical; if TRUE, NAs are put last, if FASLE, they are
put first, if NA they are discarded; NaNs are put last

. . ., any arguments to be passed on to lower level functions
called by sort()

zapsmall(x, digits=
getOptions("digits"))

x, logical, numeric, or complex object; returns object of
same dimensions

digits, numeric; will round to an integer

You can find more information about any of these functions by going to the help page
of the function (?function.name, where function.name is the name of the function).

Complex Numbers
The following functions are for complex numbers:

Re(), the real part of a complex number

Img(), the complex part of a complex number

Table 16-5. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

172

Arg(), the angle from the x axis in radians of the line between
the origin and the complex number

Mod(), the modulus of a complex number; equals the length of
the line between the origin and the complex number

Conj(), the complex conjugate of a complex number

The functions take logical, numeric, and complex objects for arguments. Logical
arguments are coerced to numeric. The result has the same dimensions as the argument.

You can find more information about the complex functions by entering ?Re at the
R prompt.

Matrices, Arrays, and Data Frames
There is an operator and there are a number of functions for matrices, arrays, and data
frames in base that we have not yet covered.

The operator is %x% for the Kronecker product of matrices and arrays.
Some of the functions include the following:

aperm(), which permutes an array

rowsum(), which sums over rows of a matrix or data frame in
groups set by the group variable

colMeans(), which returns the means of the columns of a
data frame or matrix or the means for given dimensions for
an array—going from the first dimension to the specified
dimension

colSums(), which returns the sums of the columns of a data
frame or matrix or the sums for an array—going from the first
dimension to the specified dimension

rowMeans(), which returns the means of the rows of a data
frame or matrix or the sums over dimensions of an array—going
from the specified dimension plus one to the last dimension

rowSums(), which returns the sums of the rows or a data frame
or matrix—going from the specified dimension plus one to the
last dimension

col(), which returns a matrix of the same dimensions as
the argument and which contains the column indices in the
columns or a matrix of factors with each column one factor

row(), which returns a matrix of the same dimensions as the
argument and which contains the row indices in the rows or a
matrix of factors with each row one factor

det(), which returns the determinant of a matrix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

173

determinant(), which returns the modulus or the logarithm of
the modulus of the determinant and the sign of the modulus

eigen(), which returns the eigenvalues and eigenvectors of
a matrix

kappa(), which calculates the condition of a square matrix

kronecker(), which returns the matrix or array which is the
kronecker product of two objects and where product is a
specified function. The two objects can be vectors, matrices,
and/or arrays. The dimensions of the result are the products
of the dimensions of the two objects.

norm(), which returns the norm of a matrix calculated by the
one, infinity, Frobenius, maximum modulus, or spectral
(or 2 method)

Some functions used in model fitting are the following:

backsolve(), which solves a matrix equation where the matrix
on the left of the equation is upper triangular

forwardsolve(), solves a matrix equation where the matrix on
the left of the equation is lower triangular

chol(), the Choleski decomposition of a square positive
definite matrix

chol2inv(), the inverse of a positive definite matrix using the
Choleski decomposition of the matrix

qr(), the QR decomposition of a matrix

svd(), a singular value decomposition of a matrix.

See Table 16-6 for a listing of the functions with arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

174

Table 16-6. Some Functions for Matrices, Arrays, and Data Frames

Function in R Restrictions

aperm(a, perm=NULL,
resize=TRUE, ...)

a, matrix or array

perm, NULL, integer or character vector; gives
order of the dimensions by index or character
string; if not NULL must be of length equal to
the dimensions of a and a permutation of the
dimensions of a; NULL returns the dimensions
reversed

resize, logical; must be TRUE or FALSE

..., any arguments to be passed to lower level
functions

rowsum(x, group,
reorder=TRUE,
na.rm=FALSE, ...)

x, any numeric matrix

group, a vector or factor of length equal to the
number of rows in x—used for grouping

reorder, logical; must be TRUE or FALSE

na.rm, logical; must be TRUE or FALSE

..., any arguments to be passed to or from lower
level functions

colMeans(x,

na.rm=FALSE, dims=1)

x, logical, numeric or complex matrix, data frame,
or array

na.rm, logical; must be TRUE or FALSE

dims, numeric; 1 £ dims £ n-1, where n is the
number of dimensions

colSums(x,
na.rm=FALSE, dims=1)

see colMeans()

rowMeans(x,
 na.rm=FALSE, dims=1)

see colMeans()

rowSums(x,
na.rm=FALSE, dims=1)

see colMeans()

col(x,
as.factor=FALSE)

x, any matrix

as.factor, logical; must be TRUE or FALSE

row(x,
as.factor=FALSE)

see col()

det(x, ...) x, a logical or numeric square matrix; logical coerced
to numeric

..., ignored

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

175

Function in R Restrictions

determinant(x,
logarithm=TRUE, ...)

x, a logical or numeric square matrix; logical coerced
to numeric

logarithm, logical; must be TRUE or FALSE

..., ignored

eigen(x, symmetric,
only.values=FALSE,
EISPACK=FALSE)

x, a logical, numeric, or complex square matrix;
logical coerced to numeric

symmetric, logical; if TRUE matrix is assumed
symmetric, if FALSE not

only.values, logical; if TRUE only eigenvalues
are returned, if FALSE both eigenvalues and
eigenvectors are returned

EISPACK, logical; defunct and ignored

kappa(z, exact=FALSE,
norm=NULL, method= c("qr",
"direct"), ..)

z, logical or numeric square matrix; logical coerced
to numeric

exact, logical; must be TRUE or FALSE

norm, character; must be NULL, “O”, or “I”—for
norm one and norm infinite

method, character; must be “qr” or “direct”; default
is “qr”

..., any arguments to lower level functions

kronecker(X, Y, FUN="*",
make.names=FALSE, ...)

X, Y, vectors, matrices, and arrays; do not have to
be of the same mode; must be legal for the function
FUN

FUN, a function; can be a character string

make.names, logical; must be TRUE or FALSE; does
not work with all functions

..., any arguments for the function FUN

norm(x, type=
c("O","I","F","M", "2")

x, logical, numeric, or complex matrix; logical and
complex are coerced to numeric

type, character; default value is “O”

(continued)

Table 16-6. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

176

Function in R Restrictions

backsolve(r, x,
k=ncol(r), upper.tri=TRUE,
transpose=FALSE)

r, upper triangular matrix of mode logical, numeric,
or complex—logical and complex values are
coerced to numeric

x, vector or matrix of mode logical, numeric, or
complex—logical and complex values are coerced
to numeric

k, numeric—rounds down to an integer; 1 £ k £
ncol(r); is the number of columns in 'r' to use

upper.tri, logical; for TRUE the upper triangle is
used, for FALSE, the lower is used

transpose, logical; for TRUE r is transposed in the
formula

forwardsolve(l, x,
k=ncol(l), upper.tri=FALSE,
transpose=FALSE)

l, lower triangular matrix of mode logical, numeric,
or complex—logical and complex values are
coerced to numeric

x, a vector or matrix of mode logical, numeric,
or complex—logical and complex values are
coerced to numeric

k, numeric—rounds down to an integer; 1 £ k £
ncol(l); the number of columns in 'l' to use

upper.tri, logical; for TRUE the upper triangle is
used, for FALSE, the lower is used

transpose, logical; for TRUE l is transposed in the
formula

chol(x, pivot=FALSE,
LINPACK=FALSE,
tol=-1, ...)

x, raw, logical, or numeric matrix—where raw and
logical matrices are coerced to numeric; must be
square and positive definite

pivot, logical; for TRUE pivot, FALSE do not pivot

LINPACK, (deprecated) logical; for TRUE use
LINPACK, FALSE do not use LINPACK

tol, numeric; tolerance when pivot=TRUE and
LINPACK=FALSE

..., any arguments to be passed to lower level
functions

Table 16-6. (continued)

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

177

Function in R Restrictions

chol2inv(x, size=NCOL(x),
LINPACK=FALSE)

x, matrix for which the first size columns are a
Choleski decomposition

size, numeric, logical, or complex - logical and
complex coerced to numeric; 1 £ size £ ncol(x)

LINPACK, logical; defunct—no longer used

qr(x, tol=1e-7,
LAPACK=FALSE, ...)

x, logical, numeric, or complex matrix; logical
matrices are coerced to numeric

tol, numeric; tolerance for singularity

LAPACK, logical; if FALSE qr() uses

LINPACK

..., any arguments to be passed to lower level
functions

svd(x, nu=min(n,p),
nv=min(n,p), LINPACK=FALSE)

x, logical, numeric, or complex matrix; logical
matrices are coerced to numeric

nu, integer; 0 £ nu £ n; n = nrow(x)

nv, integer; 0 £ nv £ p; p = ncol(x)

LINPACK, logical; defunct and ignored

You can find more information by going to the individual help pages (?function.
name, where function.name is the name of the function).

A Few Other Functions and Some Comments
A few other functions that are often useful are unique(), jitter(), append(),
duplicated() (and anyDuplicated()), attr() (and attributes()), pretty(), prop.
table(), cut(), rev(), and stop(). For the functions, we will just describe what they do.
You can find more information about the functions by entering ?‘function.name’ at the
R prompt, where function.name is the name of the function.

Following are the function descriptions:

unique() returns a vector with any duplicated elements in the
original vector removed. The function only works on vectors,
including vectors of mode list.

jitter() adds a little jitter (noise) to the elements of numeric
objects. The arguments to jitter() control how much jitter is
added.

append() is used to append vectors. An argument to append()
gives where along the vector the appending is done.

Table 16-6. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

178

duplicated() and anyDuplicated() look for duplicates. For
vectors, including lists, duplicated() returns a vector of the same
length containing FALSE for elements that are not duplicated
and for the first instance of elements that are duplicated.
The function returns TRUE for the rest of the duplicates. For
matrices and data frames, rows are compared. The function
anyDuplicated() counts how many differing elements have
duplicates, or duplicated rows for matrices and data frames.

attr() and attributes() return an attribute or a list of
the attributes of an object. To use an attribute, the function
attr() returns a value that can be accessed. To see a list of the
attributes of an object, use attributes().

pretty() takes any object that can be coerced to numeric and
returns a vector of evenly spaced values close to a given length
and similar to the values in the original object.

prop.table() takes a logical, numeric, or complex object and
returns the object divided by the sum of the elements in the
object. Logical objects are coerced to numeric and the real and
imaginary parts of complex objects are treated separately.

cut() cuts a numeric vector into factors and returns a character
vector with the factor names in the place of the original
elements. The object to be cut can be any object that can be
coerced to vector, but must be numeric. The break points and
factor names can be assigned, but cut() creates break points
and factor names from the break points by default.

rev() reverses the order of the elements of an object and
returns a vector. The object can be atomic or of any mode
where reversing the order makes sense, like the modes list,
expression, and call.

stop() tells R to stop the execution of a function. If stop()
has a character string for an argument, the character string
prints when stop() executes. The function is very useful for
the process of debugging a function as well as for checking if
conditions are met for objects entered into a function.

There are many other functions in base, many of which have to do with the running
of R. The as. and is. functions are prevalent. In the list of help pages, there are 52 links for as.
functions and 44 links for is. functions. If you are interested in what is in the listings, go to
the page of the links and look at what is there. The Bessel functions are also part of base.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

179

The stats Package
The stats package contains items such as basic descriptive statistics, probability
distributions, tests, functions to fit models, clustering functions, some plotting functions
and other functions used for outputting results. The documentation for stats is six pages
long (library(help=stats)). The list of links to the help pages for stats is 18 pages long
(help(package=stats)). In this chapter, we cover the basic descriptive statistics, the tests,
clustering and other functions for multivariate data, and modeling functions, but in little
detail. The probability distributions can be found in Chapter 9.

Basic Descriptive Statistics
Some of the basic statistical functions in package stats include the following:

weighted.mean(), which finds the weighted mean of an object

sd(), which finds the standard deviation of an object

var(), which finds the variance of a vector or the covariance
matrix of a matrix or data frame

cov(), which finds the covariance matrix of a matrix or data
frame—more flexible than var()

cov.wt(), which finds the weighted covariance or correlation
matrix of a matrix or data frame

cor(), which finds the correlation between vectors or within
matrices and data frames

median(), which finds the median of the elements of an object

mad(), which finds the median absolute deviation of the
elements of an object

IQR(), which finds the interquartile range of the elements of an
object

quantile(), which finds specific quantiles of the elements in
an object

fivenum(), which finds Tukey’s five-number summary for the
elements in an object

ave(), which uses a function to operate on different rows of an
object

cancor(), which finds the canonical correlation between two
matrices

dist(), which finds a type of average difference between the
rows of a matrix, based on the type of distance and the power
used to find the average

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

180

Table 16-7. Basic Statistical Functions in Package stats

Function in R Description

weighted.mean(x, w, ..., na.rm=FALSE) Finds the weighted mean of x, where x
is coerced to a vector.

sd(x, na.rm=FALSE) Finds the standard deviation x, where
x is coerced to a vector; divides by the
square root of (n-1).

var(x, y=NULL, na.rm=FALSE, use) Finds the variance of x if x is a vector
or the covariance of x and y or the
covariance matrix of x if x is a matrix or
data frame; divides by (n-1)

cov(x, y=NULL, use="everything",
method=c("pearson", "kendall",
"spearman"))

Finds the covariance between x and
y if y is given or the covariance matrix
of x if x is a matrix or data frame; more
options are available than with var()

cov.wt(x, wt=rep(1/nrow(x),
nrow(x)), cor=FALSE, center=TRUE,
method=c("unbiased", "ML"))

Finds the weighted covariance matrix
or weighted correlation matrix of x,
where x is a matrix or data frame

cor(x, y=NULL, use="everything",
method=c("pearson", "kendall",
"spearman"))

Finds the correlation between x and y if y
is supplied or within x if just x is supplied,
where x is a vector, matrix, or data frame

mahalanobis(), which finds the Mahalanobis distance
between rows of a matrix

ecdf(), which finds the empirical cumulative distribution
function of the elements in an object—a quantile method
exists for the function

r2dtable(), which creates a random two-way table based on
marginal values—using Patefield’s algorithm

simulate(), which simulates observations from a model that
has been fitted

TukeyHSD(), which finds confidence intervals for the
coefficients of a model that take into account that more than
one hypothesis is being tested—for analysis of variance models

xtabs(), which creates a contingency table based on a formula

smooth(), which creates a smoother version of a noisy set of
data using Tukey’s running median smoothers—usually used
for time series

See Table 16-7 for a listing of the functions, with arguments.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

181

Function in R Description

median(x, na.rm=FALSE) Finds the median of the elements of x

mad(x, center=median(x),
constant=1.4826, na.rm=FALSE,
low=FALSE, high=FALSE)

Finds the median absolute
deviation of x

IQR(x, na.rm=FALSE, type=7) Finds the interquartile range of x

quantile(x, probs=seq(0,1,.25),
na.rm=FALSE, names=TRUE, type=7, ...)

Finds the quantiles of x for the values
of probs

fivenum(x, na.rm=FALSE) Finds Tukey's five-number summary
for x

ave(x, ..., FUN=mean) The function in FUN operates on
groups of the elements of x, where the
grouping variables are in the argument
. . .

cancor(x, y, xcenter=TRUE,
ycenter=TRUE)

Finds canonical correlation between
the matrices x and y

dist(x, method="euclidean",
diag=FALSE, upper=FALSE, p=2)

Finds distance between rows of a
matrix, where the type of distance is
specified by method

mahalanobis(x, center, cov,
inverted=FALSE)

Finds the Mahalanobis distance
between rows of a matrix

ecdf(x) Finds the empirical cumulative
distribution function of x

r2dtable(n, r, c) Creates a random table based on
marginal totals for the rows and columns

simulate(x, nsim=1, seed=NULL, ...) Simulates observations from the model
given in x; x is a model

TukeyHSD(x, which, order=FALSE,
conf.level=0.95, ...)

Tukey’s honest significant differences
for analysis of variance models

xtabs(formula=~., data=parent.frame(),
subset, sparse=FALSE, na.action,
exclude=c(NA,NaN), drop.unused.
levels=FALSE)

Creates a contingency table based on
the formula, where the variables on the
right side of the formula are used to
group the object on the left

smooth(x, kind=c("3RS3R", "3RSS",
"3RSR", "3R", "3S", "3", "S"),
twiceit=FALSE, endrule="Tukey",
do.ends=FALSE)

Smooths a vector or time series using
Tukey’s running median smoothers

Table 16-7. (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

182

You can find more information about the functions by entering ? function.name at
the R prompt where function.name is the name of the function.

 Some Functions That Do Tests
There are a number of functions in stats that do hypothesis tests. Some of the functions
include the following:

bartlett.test() for the homogeneity of variances

binomial.test() for exact tests using the binomial
distribution

Box.test() for the Box-Pierce and Ljug-Box tests—used in
time series to test for independence

chisq.test() for testing count data using Pearson’s test

cor.test() for correlations in paired samples

fisher.test() for contingency tables using Fisher’s exact test

fligner.test() for the Fligner-Killeen test for homogeneity of
variances

friedman.test() for the Friedman rank sum test

kruskal.test() for the Kruskal-Wallis rank sum test

mantelhaen.test() for the Cochran-Mantel-Haenszel chi
squared test for count data

mauchly.test() for the test of sphericity developed by
Mauchly

mcnemar.test() for the chi squared test for count data
developed by McNemar

mood.test() for the two sample tests of scale developed by
Mood

oneway.test() for testing for equal means if the layout is one way

pairwise.prop.test() for comparing proportions pairwise

pairwise.t.test() for comparing t tests pairwise

pairwise.wilcox.test() for comparing Wilcox rank sum tests
pairwise

poisson.test() for an exact test using the Poisson distribution

power.anova.test() to find powers for a balanced one-way
analysis or variance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

183

Table 16-8. Some Tests in stats

Test

bartlett.test(x, g, ...)

biniom.test(x, n, p=0.5, alternative=c(“two-sided”, “less”, “greater”), conf.level=0.95)

Box.test(x, lag=1, type=c(“Box-Pierce”, “Ljung-Box”), fitdf=0)

chisq.test(x, y=NULL, correct=TRUE, p=rep(1/length(x), length(x)), rescale.p=FALSE,
B=2000)

cor.test(x, y, alternative=c(“two.sided”, “less”, “greater”), method=c(“pearson”, “kendall”,
“spearman”), exact=NULL, conf.level=0.95, continuity=FALSE, . . .)

fisher.test(x, y=NULL, workspace=200000, hybrid=FALSE, control=list(), or=1,
alternative=“two.sided”, conf.int=TRUE, conf.level=0.95, simulate.p.value=FALSE,
B=2000)

fligner.test(x, g, . . .)

friedman.test(y, groups, blocks, . . .)

kruskal(x, g, . . .)

ks.test(x, y, . . . , alternative=c(“two-sided”, “less”, “greater”), exact=NULL)

mantelhaen.test(x, y=NULL, z=NULL, alternative=c(“two.sided”, “less”, “greater”),
correct=T, exact=F, conf.level=0.95)

power.prop.test() to find the powers for comparing two
proportions

power.t.test() for the powers in one and two sample t tests

PP.test() for the Phillops-Perron test to test for unit roots in
time series data

prop.test() for testing proportions

prop.trend.test() for testing trend in proportions

quade.test() for the Quade test

shapiro.test() for the Shapiro-Wilk test for normality

t.test() for doing a t test

var.test() for an F test to compare two variances

wilcox.test() for Wilcoxon rank sum and sign tests

The tests are listed with arguments in Table 16-8.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

184

Test

mauchly.test(object, . . .)

mcnemar.test(x, y=NULL, correct=TRUE)

mood.test(x, y, alternative=c(“two.sided”, “less”, “greater”), . . .)

oneway.test(formula, data, subset, na.action, var.equal=FALSE)

pairwise.prop.test(x, n, p.adjust.method=p.adjust.methods, . . .)

pairwise.t.test(x, g, p.adjust.method=p.adjust.methods, pool.sd=!paired, paired=FALSE,
alternative=c(“two.sided”, “less”, “greater”), . . .)

pairwise.wilcox.test(x, g, p.adjust.method=p.adjust.methods, paired=FALSE, . . .)

poisson.test(x, T=1, r=1, alternative=c(“two-sided”, “less”, “greater”), conf.level=0.95)

power.anova.test(groups=NULL, n=NULL, between.var=NULL, within.var=NULL, sig.
level=0.05, power=NULL)

power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=0.05, power=NULL,
alternative=c(“two-sided”, “one.sided”), strict=FALSE)

power.t.test(n=NULL, delta=NULL, sd=1, sig.level=0.05, type=c(“two.sample”,
“one.sample”, “paired”), alternative=c(“two.sided”, “one.sided”), strict=FALSE)

PP.test(x, lshort=TRUE)

prop.test(x, n, p=NULL, alternative=c(“two-sided”, “less”, "greater”), conf.level=0.95,
correct=TRUE)

prop.tend.test(x, n, score=seq_along(x))

quade.test(y, . . .)

shapiro.test(x)

t.test(x, y=NULL, alternative=c(“two-sided”, “less”, “greater”), mu=0, paired=FALSE, var.
equal=FALSE, conf.level=0.95, . . .)

var.test(x, y, ratio=1, alternative=c(“two-sided”, “less”, “greater”), conf.level=0.95, . . .)
wilcox.test(x, y=NULL, alternative=c(“two-sided”, “less”, “greater”), mu=0,
paired=FALSE, exact=NULL, correct=TRUE, conf.int=FALSE, conf.level=0.95, . . .)

Table 16-8. (continued)

For more information about any of the tests, enter ? function.name at the R prompt
where function.name is the name of the function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

185

Some Modeling Functions in stats
There are a number of functions in stats that do modeling, including the following:

acf() to estimate autocorrelation and autocovariance in time
series

aov() to fit an analysis of variance model

ar() to fit a time series autoregressive model

arima() to fit an autoregressive integrated moving average to
time series data

ccf() to estimate cross correlation and cross covariance for
two time series

cpgram() to plot a cumulative periodogram for time series data

glm() to fit a generalized linear model

fft() for fast discrete fourier transforms for time series data

filter() for linear filtering of time series

KalmanForcast(), KalmanLike(), KalmanRun(),
KalmanSmooth(), and makeARIMA() for Kalman filtering

line() to fit a line robustly—based on Tukey’s Exploratory
Data Analysis

lm() to fit a linear model

loess() to fit a local polynomial model

loglin() to fit a loglinear model

lsfit() to fit a least squared linear model with one
explanatory variable

manova() to fit multiple analysis of variance models

mvfft() for fast discrete fourier transforms for matrices

nlm() to find a minimum of a nonlinear model

nls() to fit a nonlinear least squares model

optim(), optimHess(), optimise(), and optimize() to
optimize a function

pacf() to estimate partial autocovariances and
autocorrelations for a time series

ppr() to fit a projection pursuit regression model

smooth.spline() to fit a smooth spline model

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

186

spec() to find the spectral density for time series data

step() to use the AIC to choose a model using a stepwise
algorithm

stl() to use the loess method to seasonally decompose a time
series

StrucTS() to fit a structural time series model

supsmu() for Friedman’s super smoother

There are many functions in stats that support the modeling functions, which we do
not cover. You can find more information at the help pages for the individual functions:
enter ?function.name at the R prompt where function.name is the name of the function.

Clustering Algorithms and Other Multivariate
Techniques
Some of the functions used in multivariate analysis for clustering and working with
multivariate data are the following:

cmdscal() for classical multidimensional scaling

cophenetic() for cophenetic distances in hierarchical
clustering

cut.dendrogram() for a general tree structure

cutree() for cutting a tree into groups

dendrapply() to apply a function to all nodes of a dendrogram

as.dendrogram() to give an appropriate object the class
dendrogram

factanal() for factor analysis

hclust() for hierarchical clustering

identify.hclust() to identify clusters

kmeans() for k means clustering

labels.dendrogram() gives the ordering of or the labels of the
leaves on a dendrogram

loadings() printing loadings from a factor analysis

merge.dendrogram() merges two dendrograms

order.dendrogram() gives the ordering or the labels of the
leaves of a dendrogram

prcomp() does principal components analysis

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

187

princomp() also does principal component analysis

promax() used for rotation of axes in factor analysis

reorder.dendrogram() for reordering a dendrogram
maintaining the initial constraints

rev.dendrogram() reverses the order of the nodes in a
dendrogram

str.dendrogram() displays the internal structure of a
dendrogram

varimax() used for rotation of axes in factor analysis

For more information about any of the functions, enter ?‘function.name’ at the R
prompt where function.name is the name of the function.

The package stats also contains several probability distributions (see Chapter 9);
eight as. functions; six is. functions; a number of plotting functions—like heatmap() and
20 plot. functions—which are specific for many of the classes associated with modeling
functions; functions used in kernel estimation; ancillary functions for models—like the
seven model. functions; seven na. functions—to handle missing data; 14 predict.—
functions for model output, 36 print. functions for printing output; and ten summary.
functions for summarizing output.

The graphics Package
The package graphics contains the function plot()—for which the many plot. methods
are written. The ancillary functions for plot() are also in graphics. There are also
several plotting functions for specific types of plots—like histograms and bar charts. The
documentation for graphics is two pages long (library(help=base)). The list of links to the
help pages for base is three pages long (help(package=base)). In this section, we cover the
specific types of plots and a few other functions related to plotting.

Following are the functions in graphics that do specific types of plots:

assocplot() for a Cohen-Friendly association plot; used for
contingency tables; will work with any matrix that is logical or
numeric

barplot() for a bar plot; takes vector or matrix objects, which
are of mode logical or numeric, for the heights of the bars

boxplot() for box plots; logical or numeric vectors, matrices,
arrays, data frames, and some lists can be used as input to the
function

cdplot() for a conditional density plot

coplot() for scatter plots using a conditioning variable

dotchart() for a Cleveland’s dot plot; numeric vectors and
matrices can be used for the plot

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16 ■ the paCkages base, stats, and graphiCs

188

hist() for histograms; gives histograms for numeric vectors,
matrices, and arrays

mosaicplot() for mosaic plots; takes numeric or logical
arguments that are vectors, matrices, data frames, or arrays;
is meant for contingency tables

pairs() for scatter plots of paired variables; takes numeric
vectors, matrices, and data frames as input; creates a matrix
of plots

persp() for a perspective plot; does three-dimensional
plotting

pie() for pie charts; use numeric vectors, matrices, and arrays
as input

smoothScatter() for a smoothed version of scatter plots—
which are colored; is copyrighted by M. P. Wand

spineplot() for spine plots; use a logical, numeric, or complex
matrix as input to the plot; logical and complex matrices are
coerced to numeric; was developed for two-way contingency
tables

stars() for star or segment plots; use a numeric matrix or data
frame for the input to the plot

stem() for a stem and leaf plot; use a numeric vector, matrix,
or array as the input to the plot

sunflowerplot() for a sunflower plot, which is a scatter plot
in which points with duplicates have sunflower leaves for the
duplicated points; use a logical, numeric, or complex vector,
matrix, or data frame for the input to the plot

There are also some functions in graphics that control the screen for plotting
functions. The function splitscreen() and its ancillary functions close.screen(),
erase.screen(), and screen() are used to split the plotting screen into regions and to
plot to the regions. The functions frame() and plot.new() open a new frame for plotting.

The function par() is like options()—except for plotting—and contains the default
options for plots. The options can be changed at any time. Calling par() opens a new
plotting frame. To see the list of options, call par() with no arguments.

The function plot() is the basic plotting function and has a numbers of ancillary
functions and is defined for quite a few methods. We do not cover plot() in this book.

You can find more information about the functions in graphics by entering ?
function.name at the R prompt where function.name is the name of the function.

www.it-ebooks.info

http://www.it-ebooks.info/

189

Chapter 17

Tricks of the Trade

This book would not be complete without advice on some tricky parts of R. When it seems
that everything is set up right, but things still do not do what you expect and you do not know
why, this chapter can help. This chapter also describes some not-so-obvious parts of R.

Value Substitution: NA, NaN, Inf, and -Inf
This section has to do with missing data (NA) or illegal elements (NaN, Inf, or -Inf).
Say you want to substitute a value, for example 0, for missing values. The intuitive
approach would be to enter something like the following:

mat[mat==NA] = 0

This does not work. What does work is to enter the following:

mat [is.na(mat)] = 0

For example:

> mat = matrix(c(1,NA,3,4),2,2)
> mat
 [,1] [,2]
[1,] 1 3
[2,] NA 4

> mat[mat==NA]=2
> mat
 [,1] [,2]
[1,] 1 3
[2,] NA 4

> mat[is.na(mat)]=2
> mat
 [,1] [,2]
[1,] 1 3
[2,] 2 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

190

The same method works for illegal values. The values NaN, Inf, and -Inf are defined
in R for illegal operations. For example:

> 1/0
[1] Inf

> -1/0
[1] -Inf

> 0/0
[1] NaN

> log(-1)
[1] NaN
Warning message:
In log(-1) : NaNs produced

In this example, dividing a positive number by zero results in plus infinity; dividing
a negative number by zero gives negative infinity; dividing zero by zero is not defined,
so NaN is returned. Trying to find the logarithm of minus one returns NaN with a warning
since the logarithm of minus one is not defined.

The functions is.finite(), is.infinite(), and is.nan() take the place of is.na()
in tests for finite, Inf and -Inf, and NaN elements. For example:

> mat = matrix(c(1,NaN,Inf,-Inf),2,2)
> mat
 [,1] [,2]
[1,] 1 Inf
[2,] NaN -Inf

> mat[is.finite(mat)]=2
> mat
 [,1] [,2]
[1,] 2 Inf
[2,] NaN -Inf

> mat[is.infinite(mat)]=3
> mat
 [,1] [,2]
[1,] 2 3
[2,] NaN 3

> mat[is.nan(mat)]=4
> mat
 [,1] [,2]
[1,] 2 3
[2,] 4 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

191

Note that is.infinite() treats Inf and -Inf the same.
The function sign() returns -1 for an argument equal to -Inf. As a result, a simple

way to handle the sign problem is to take the sign of the object first, and then multiply
the absolute value of the object resulting from the substitution by the sign object after
assigning a number to -Inf. For example:

> mat=matrix(c(1,2,Inf,-Inf),2,2)
> mat
 [,1] [,2]
[1,] 1 Inf
[2,] 2 -Inf

> sg.mat = sign(mat)
> sg.mat
 [,1] [,2]
[1,] 1 1
[2,] 1 -1

> mat[is.infinite(mat)] = 4
> mat
 [,1] [,2]
[1,] 1 4
[2,] 2 4

> mat = sg.mat*abs(mat)
> mat
 [,1] [,2]
[1,] 1 4
[2,] 2 -4

You can find more information about NA and is.na() by entering ?is.na at the R
prompt. You can find more information about NaN, Inf, -Inf, is.nan(), is.finite(), and
is.infinite()by entering ?is.finite at the R prompt.

If Statements and Logical Vectors
Often when a logical test is done, the objects being tested are of length greater than one.
R does not like this and gives a warning that only the first logical element is used. Suppose
you want to test whether any element of a logical object is TRUE. Then the function any()
is useful. The function any() returns TRUE if there are any TRUEs in the object, and
FALSE otherwise. For example:

> a.logical=c(T,T,F,T)
> a.logical
[1] TRUE TRUE FALSE TRUE
> test=8
> test
[1] 8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

192

> if (a.logical==T) test=1
Warning message:
In if (a.logical == T) test = 1 :
 the condition has length > 1 and only the first element will be used
> test
[1] 1

> if (any(a.logical)) test=2
> test
[1] 2

> if (any(!a.logical)) test=3
> test
[1] 3

> if (any(!a.logical[1:2])) test=4
> test
[1] 3

Note that in the third and fourth tests, the test is for FALSEs. The ! is used to logically
negate the object as.logical in the test for FALSEs.

You can find more information about any()by entering ?any at the R prompt.

Lists and the Functions list() and c()
Adding to lists can be confusing. Do you use list() or c()? When creating a list, the
elements to be entered into the list are separated by commas. But say you want to add
some elements. Then you will usually want to use c(). For example:

> a.list = list(1:4, paste("a",1:7,sep=""))
> a.list
[[1]]
[1] 1 2 3 4

[[2]]
[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

> b.list = list(a.list,1:3)
> b.list
[[1]]
[[1]][[1]]
[1] 1 2 3 4

[[1]][[2]]
[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

193

[[2]]
[1] 1 2 3

> c.list = c(a.list,1:3)
> c.list
[[1]]
[1] 1 2 3 4

[[2]]
[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

[[3]]
[1] 1

[[4]]
[1] 2

[[5]]
[1] 3

> d.list = c(a.list,list(1:3))
> d.list
[[1]]
[1] 1 2 3 4

[[2]]
[1] "a1" "a2" "a3" "a4" "a5" "a6" "a7"

[[3]]
[1] 1 2 3

The object d.list is probably what you wanted as a result. (Another method to get
the same results is to use append() instead of c() in the above expressions.)

Getting Data out of Functions
When you are writing functions, sometimes the purpose of the function is to print results
to the console; sometimes the purpose is to export an object—which will be written to the
console if not assigned to an object; and sometimes both types of output are needed.
The functions print() and cat() write to the console. To output an object, the object
must be the last statement in the function. For example:

> a.function = function() {
 print(1:3)
 print(5:6)
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

194

> a.function()
[1] 1 2 3
[1] 5 6

> a.result = a.function()
[1] 1 2 3
[1] 5 6

> a.result
[1] 5 6

Since the two sequences are in print functions in the example, the sequences
are printed out whether an assignment takes place or not. Note that only the second
sequence is assigned to the object a.result, since the print statement for the second
sequence is the last statement in the function before the close bracket. For another
example, the print() function is removed:

> a.function = function() {
 1:3
 5:6
 }

> a.function()
[1] 5 6

> a.result = a.function()

> a.result
[1] 5 6

In this example, since there is no print() function, the sequences are not printed.
The second sequence, being the last statement, is returned by the function.

Recursive Functions
R functions can be applied recursively. A recursive function is a function that calls itself
until a condition is met. We use the series that defines the exponential distribution to
illustrate the workings of a recursive function.

Recall that

0

x
!

i

i

x
e

i

∞

=

= ∑ .

So, we want a function that adds
!

ix
i

 at each step for i equal to 0, 1, …, n for some

stopping point n. Since
!

ix
i

 decreases at each step and gets arbitrarily small, we used

the size of
!

ix
i

 to set the stopping point.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

195

The function follows:

> r.exp =
function(x,i=0) {
 if (abs(x^i/factorial(i)) > 1.0e-8) {

 r.exp(x,i+1) + x^i/factorial(i)

 }
 else {
 0
 }
}

At the first step of the recursion, i equals zero, so the value of r.exp() is

+
0

(,1)
0!

x
r. exp x

At the second step, the value is

+ +
1 0

(,2)
1! 0!

x x
r. exp x

If i equal to n is the last step before
!

ix
i

 is less than our stopping point of 1.0e-8,

then for i equal to n, the value of r.exp() equals

=

+ + ∑
0

(, 1)
!

in

i

x
r. exp x n

i

But

+ =(, 1) 0r.exp x n

so the recursion stops. Since the expression in the if section of the function is the last
statement executed in the function, the function returns the result.

To see how the function works, we let x equal one:

> r.exp(1)
[1] 2.718282

> exp(1)
[1] 2.718282

Note that for x equal to one, the function gives the same value as the function exp().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 17 ■ triCks of the trade

196

Some Final Comments
R is a great program. In this last section, we give some final comments.

First, there is a class that we should have included earlier, the class formula.
Formulas such as y~x are of class formula and can be assigned a name. Formulas are
used in many of the modeling functions or as a way of grouping the object on the left by
the values of the objects on the right, for example in boxplot(). In boxplot(), a box plot
is created for the values on the left of the tilde for each combination of the values on the
right of the tilde.

On the left of the tilde is one object that can be a vector or a matrix and that is the
dependent variable(s). On the right of the tilde are the independent variables separated
by plus or minus signs. See the help page for formula for information about crossing and
nesting variables as well as not including various variables—such as the intercept term or
a specific interaction. You can open the help page by entering ?formula at the R prompt.

R takes some determination to use. If you get stuck on a problem and cannot find an
answer, do not be afraid to experiment. You cannot break R. If you are creating functions,
remember to try to figure out a way to use indices rather than loops. Take the process in
small steps. And remember that data frames are lists, not matrices.

www.it-ebooks.info

http://www.it-ebooks.info/

A���������
Accessing output function, 73
aggregate() function

data frames, 120
time series, 121

anova() function, 161
append() function, 177
apply() function, 112
Argument function, 72
Arithmetic operators, 15
Arrays, 172
as.character() function, 30
as.factor() function, 48
as.name() function, 26
as.numeric() function, 27
as.ordered() function, 46
Assignments

function.name, 22
help pages, 21
package.name, 22
types, 11

as.table() function, 124
Atomic modes, 26

character(), 30
complex(), 28
logical(), 27
NULL(), 26
numeric(), 27
raw(), 30

attr() and attributes() function, 178

B���������
Base package, 163

append() function, 177
arrays, 172

attr() and attributes() function, 178
beta functions, 166
built-in constants, 164
complex numbers, 171
cut() function, 178
data frames, 172
duplicated() function, 178
gamma functions, 166
hyperbolic functions, 165
jitter() function, 177
mathematical functions, 168
matrices, 172
pretty() function, 178
prop.table() function, 178
reserved words, 164
rev() function, 178
stop() function, 178
trigonometric functions, 164
unique() function, 177

Beta functions, 166

C���������
c() function, 88, 192
Call function, 71
Call mode, 33
cat() function, 156, 193
Character mode, 30
Clustering algorithms, 186
coef() function, 161
Combinatorics, 93
Complex mode, 28
Comprehensive R Archive

Network (CRAN), 3
confint() function, 162
cumsum() function, 135
cut() function, 178

Index

197

www.it-ebooks.info

http://www.it-ebooks.info/

D���������
ddist() function, 85
Descriptive functions

dim() function, 105
length() function, 107
nchar() function, 110
ncol() function, 106–107
nrow() function, 106–107

Dimension names creation, 94
dim() function, 105
dput() function, 102
dump() function, 95
duplicated() function, 178

E���������
effects() function, 161
Exporting R functions

dput() function, 102
dump() function, 95
package foreign, 103
sink() function, 96
write.csv() function, 99
write() function, 97
write.matrix() function, 98
write.table() function, 99
xlsx package, 103

Expression mode, 35

F���������
factor() function, 46
fitted() function, 161
Flow control

brackets, 129
break and next statement, 132
for statement, 131
if/else statement, 130, 133–134
if statement, 130
mean and median function, 142–143
nested for loop, 133

indices, 137
matrix x and xp, 136

nested statement, 132
random number generator

arbitrary value, 138
histogram, 138
indices, 139

repeat loop, 140–141
repeat statement, 132

semicolon, 129
while loop, 134–135
while statement, 130

for control statement, 131
for loop, 131
format() function, 158
ftable() function, 125
Function mode, 33

G���������
Gamma functions, 166
Graphics package, 187

H���������
Hyperbolic functions, 165

I���������
if and else control statement, 130
if control statement, 129
ifelse() function

nested, 148
three arguments, 145–147

If statements, 191
Indexing variable, 131
installed.packages(), 59
is.character() function, 32
is.factor() function, 48
is.name() function, 26
is.numeric() function, 28
is.ordered() function, 46
is.table() function, 124

J, K���������
jitter() function, 177

L���������
Language modes, 26

call(), 33
expression(), 35
name(), 34

lapply() function, 113
length() function, 107, 135
Linux

R downloading process, 4
separate workspace images, 8

198

■ index

www.it-ebooks.info

http://www.it-ebooks.info/

list() function, 192
List mode, 32
Logical mode, 27
Logical operators and functions, 14
Logical vectors, 191
ls() and rm() functions, 13

M���������
Manual data

c() function, 88
rep() function, 92
seq() function, 90

mapply() function, 116
Mathematical functions, 168
Matrix operators and functions, 16
Modeling functions, 185
Modes

atomic
as.name() function, 26
character, 30
complex, 28
is.name() function, 26
logical(), 27
name() function, 26
NULL, 26
numeric, 27
raw, 29

definition, 25
language

call, 33
expression, 35
name, 34

recursive
call, 33
expression, 35
function, 33
lists(), 32

S4, 36
types, 25–26

Multivariate analysis, 186

N���������
name() function, 26
Name mode, 34
nchar() function, 110
Nonprimitive function, 60
noquote() function, 156
numeric() function, 27
Numeric mode, 27

O���������
Object classes

array class, 43
data frame class

as.data.frame() function, 48, 51
data.frame() function, 48–49, 51
I() function, 49
is.data.frame() function, 48, 51
stringsAsFactors argument, 49

date and time class
as.Date() function, 52
as.POSIXct() function, 53
as.POSIXlt() function, 53
difftime() and as.difftime()

function, 53
is.Date() function, 53
system date function, 52

dimnames() function, 55
factor and ordered class, 46
glm and lm function, 37
matrix

as.matrix() function, 41–42
atomic, list, or expression mode, 39
byrow argument, 40
data.matrix() function, 41–42
is.matrix() function, 42
nrow/ncol argument, 40

names() function, 54
rownames() and colnames()

function, 54
time series classes, 44
vectors, 38

Operators
arithmetic, 15
logical, 14
matrix, 16
relational, 18
subscripting (see Subscripting operators)

options() function
character string

continue, 154
contrasts, 154
defaultPackages, 154
editor, 154
na.action, 154
prompt, 155
OutDec, 155

integer
digits integer, 154
expressions, 154
scipen, 154

199

■ index

www.it-ebooks.info

http://www.it-ebooks.info/

logical value
show.coef.Pvalues, 155
show.signif.stars, 155
stringsAsFactor, 155

run options(), 154
setting and accessing, 153
ts.eps, numeric value, 155

ordered() function, 46
OS X link

install packages, 6
R downloading process, 4
R updation, 7
separate workspace images, 7–8

P���������
Packaged function

defaultPackages, 60
help page

arguments, 61
description, 60
details section, 61
examples, 63
fitting linear models, 60
optional sections, 62
references, 62
See Also section, 62
usage, 61
value, 61

library() function, 59
nonprimitive function, 60
primitive function, 60

paste() function, 94
pdist() function, 85
plot() function, 159, 187
predict() function, 162
pretty() function, 178
Primitive function, 60
print() function, 159, 193–194
Probability distributions, 85
prop.table() function, 178

Q���������
qdist() function, 85

R���������
Raw mode, 29
R datasets, 84
rdist() function, 85

read.delim() function, 82
Reading data into R

as.is to TRUE argument, 82–83
colClasses argument, 83
col.names argument, 83–84
fill argument, 82
header argument, 81
R datasets, 84
read.csv() function, 82
read.table() function, 82
row.names argument, 83
scan() function, 79
sep argument, 81
text argument, 81–82

Recursive function, 194
Recursive modes, 26

call(), 33
expression(), 35
function(), 33
list, 32

Relational operators, 18
repeat control statement, 132
rep() function, 92
residuals() function, 161
Resultant matrix, 133
rev() function, 178
R file system, 3

download process, 3–4
install packages, 5–6
RData file, 7
separate workspace

images, 7–8
update packages, 6–7

Rhistory file, 7
R objects. See Modes
R objects manipulation

aggregate() function
data frames, 120
time series, 121

apply() function, 112
as.table() function, 124
cbind() function, 111
ftable() function, 125
is.table() function, 124
lapply() function, 113
mapply() function, 116
rbind() function, 111
sapply() function, 114
scale() function, 119
sweep() function, 118
table() function, 122
tabulate() function, 124

200

options() function (cont.)

■ index

www.it-ebooks.info

http://www.it-ebooks.info/

tapply() function, 115
vapply() function, 114

round() function, 155
R prompt

assignments, 9
calculations, 10
expressions, 9
objects, 9
operators, 9

S���������
S3-level classification, 25
S4 level classification, 25
S4 mode, 36
sample() function, 87
sapply() function, 114
scan() function, 79
seq() function, 90
signif() function, 156
sink() function, 96
Statistical functions, 179
Stats package, 179

clustering algorithms, 186
hypothesis test function, 182
modeling functions, 185
multivariate analysis, 186
statistical functions, 179

stop() function, 178
Subscripting operators

arrays, 19–20
factors, 21
lists, 20–21
matrices, 19
slots, 21
vectors, 18

summary() function, 159
sweep() function, 118
switch() function, 148–149

T���������
table() function, 122
tabulate() function, 124
tapply() function, 115
Trigonometric functions, 164
typeof(), 25

U���������
unique() function, 177
User-created functions

R function
editing function, 67
inline entry, 69
outside editor, 70

structure, 65

V���������
Value substitution

Inf, and-Inf, 190–191
NA, 189
NaN, 190

vapply() function, 114
vcov() function, 162

W, X, Y, Z���������
while control statement, 130
Windows

install packages in, 5
R downloading process, 3–4
R updation, 6
separate workspace images, 7

write.csv() function, 99
write() function, 97
write.matrix() function, 98
write.table() function, 99

201

■ index

www.it-ebooks.info

http://www.it-ebooks.info/

R Quick Syntax
Reference

Margot Tollefson

www.it-ebooks.info

http://www.it-ebooks.info/

R Quick Syntax Reference

Copyright © 2014 by Margot Tollefson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6640-2

ISBN-13 (electronic): 978-1-4302-6641-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning
Acquisitions Editor: Jonathan Hassell
Technical Reviewer: Jessica Orth
Developmental Editor: Robert Hutchinson
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade

Coordinating Editor: Rita Fernando
Copy Editor: Ann Dickson
Compositor: SPi Global
Indexer: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To Clay

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author �� xv

About the Technical Reviewer �� xvii

Acknowledgments �� xix

Introduction �� xxi

Part 1: R Basics ■ �� 1

Chapter 1: Downloading R and Setting Up a File System ■ ��������������� 3

Downloading R �� 3

Windows �� 3

OS X �� 4

Linux ��� 4

Installing and Updating Packages ��� 5

Windows ��� 5

OS X �� 6

Updating R ��� 6

Windows ��� 6

OS X �� 7

Using R in Separate Folders �� 7

Windows ��� 7

OS X �� 7

Linux ��� 8

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Chapter 2: The R Prompt ■ �� 9

The Three Parts of R: Objects, Operators, and Assignments ������������������� 9

The R Prompt ��� 10

An Example of a Calculation �� 10

Chapter 3: Assignments and Operators ■ �� 11

Types of Assignment �� 11

Example of Three Types of Assignment ��� 12

The ls() and rm() Functions �� 13

Operators ��� 14

Logical Operators and Functions �� 14

Arithmetic Operators �� 15

Matrix Operators and Functions ��� 16

Relational Operators ��� 17

Subscripting Operators ��� 18

Odds and Ends �� 21

Part 2: Kinds of Objects ■ �� 23

Chapter 4: Modes of Objects ■ �� 25

Overview of the Modes�� 25

Commonly Used Modes �� 25

Atomic, Recursive, and Language Modes ��� 26

Some Functions for Atomic Modes �� 26

The NULL Mode �� 26

The Logical Mode ��� 27

The Numeric Mode ��� 27

The Complex Mode ��� 28

The Raw Mode �� 29

The Character Mode ��� 30

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

The Common Recursive and Language Modes ������������������������������������� 32

The List Mode ��� 32

The Function Mode ��� 33

The Call Mode ��� 33

The Name Mode ��� 34

The Expression Mode ��� 35

The S4 Mode ��� 36

Chapter 5: Classes of Objects ■ ��� 37

Some Basics on Classes ��� 37

Vectors �� 38

Some Common Classes ��� 39

The Matrix Class: matrix ��� 39

The Array Class: array ��� 43

The Time Series Classes: ts and mts �� 44

The Factor Classes: factor and ordered �� 46

The Data Frame Class: data�frame ��� 48

The Date and Time Classes: Date, POSIXct, POSIXlt, and difftime �������������������������� 52

Names for Vectors, Matrices, Arrays, and Lists ������������������������������������� 54

Part 3: Functions ■ �� 57

Chapter 6: Packaged Functions ■ �� 59

The Libraries �� 59

Default Packages and Primitive Functions �� 60

Using the Help Pages �� 60

Title ��� 60

Description ��� 60

Usage �� 61

Arguments �� 61

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Details ��� 61

Value ��� 61

Some Other Optional Sections �� 62

References ��� 62

See Also �� 62

Examples �� 63

Chapter 7: User-Created Functions ■ ��� 65

The Structure of a Function ��� 65

How to Enter a Function into R �� 67

Using an Editor ��� 67

Inline Entry ��� 69

An Outside Editor: dget() and Copying and Pasting �� 70

Chapter 8: How to Use a Function ■ �� 71

Calling a Function �� 71

Arguments ��� 72

The Output from a Function��� 73

 Part 4: Inputting and Creating Data, Outputting Data ■
and Output, and Manipulating Objects ������������������������� 77

Chapter 9: Importing and Creating Data ■ ��������������������������������������� 79

Reading Data into R, Including R Data Sets��� 79

The Function scan() �� 79

The Functions read�table(), read�csv(), and read�delim() ��������������������������������������� 81

R Data Sets ��� 84

Other Functions to Import Files �� 85

Probability Distributions and the Function sample() ����������������������������� 85

Probability Distributions ��� 85

The Function sample() �� 87

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Manually Entering Data and Generating Data with Patterns ����������������� 88

The Function c() ��� 88

The Functions seq() and rep() ��� 90

Combinatorics and Grid Expansion ��� 93

The Function Paste ��� 94

Chapter 10: Exporting from R ■ ��� 95

The Function dump() ��� 95

The Function sink() ��� 96

The Function write() �� 97

The Function write�matrix() ��� 98

The Functions write�table() and write�csv() �� 99

The Function dput() ��� 102

Other Exporting Functions ��� 103

Chapter 11: Descriptive Functions and Manipulating Objects ■ ���� 105

Descriptive Functions �� 105

The Function dim() ��� 105

The Functions nrow(), ncol(), NROW(), and NCOL() ��� 106

The Function length() ��� 107

The Function nchar() �� 110

Manipulating Objects �� 111

The Functions cbind() and rbind() �� 111

The Apply Functions ��� 112

The sweep() and scale() Functions �� 117

The Functions aggregate(), table(), tabulate(), and ftable() ��������������������������������� 120

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

Part 5: Flow Control ■ �� 127

Chapter 12: Flow Control ■ �� 129

Brackets “{ }” and the Semicolon “;” ��� 129

The “if” and “if/else” Control Statements ��� 129

The “while” Control Statement �� 130

The “for” Control Statement �� 131

The “repeat” Control Statement �� 132

The Statements “break” and “next” �� 132

Nesting �� 132

Chapter 13: Examples of Flow Control ■ ��������������������������������������� 133

Nested ‘for’ Loops with an ‘if/else’ Statement ������������������������������������ 133

Using Indices �� 134

A ‘while’ Loop �� 134

Using Indices �� 135

Nested ‘for’ Loops ��� 136

Using Indices �� 137

A ‘for’ Loop, ‘if’ Statement, and ‘next’ Statement �������������������������������� 138

Using Indices �� 139

A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’ Statement, and a ‘break’
Statement �� 140

Using Indices �� 141

Chapter 14: The Functions ifelse() and switch() ■ ������������������������ 145

The Function ifelse() ��� 145

The Function switch() ��� 148

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiii

 Part 6: Some Common Functions, Packages, ■
and Techniques ��� 151

Chapter 15: Some Common Functions ■ ��������������������������������������� 153

The Function options() �� 153

The Functions round(), signif(), and noquote() ����������������������������������� 155

The Function round() �� 155

The Function signif() �� 156

The Function noquote() �� 156

The Function cat() ��� 156

The Functions format(), print(), plot(), and summary() ���������������������� 157

The Function format() ��� 158

The Function print() �� 159

The Function plot() ��� 159

The Function summary() �� 159

Some Functions for Models: anova(), coef(), effects(), residuals(),
fitted(), vcov(), confint(), and predict() �� 160

Chapter 16: The Packages base, stats, and graphics ■ ����������������� 163

The base Package ��� 163

Reserved Words �� 164

Built-In Constants ��� 164

Trigonometric and Hyperbolic Functions �� 164

Beta- and Gamma-Related Functions �� 166

Miscellaneous Mathematical Functions ��� 168

Complex Numbers �� 171

Matrices, Arrays, and Data Frames ��� 172

A Few Other Functions and Some Comments �� 177

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xiv

The stats Package ��� 179

Basic Descriptive Statistics �� 179

 Some Functions That Do Tests ��� 182

Some Modeling Functions in stats ��� 185

Clustering Algorithms and Other Multivariate Techniques ������������������������������������ 186

The graphics Package ��� 187

Chapter 17: Tricks of the Trade ■ ��� 189

Value Substitution: NA, NaN, Inf, and -Inf �� 189

If Statements and Logical Vectors ��� 191

Lists and the Functions list() and c() �� 192

Getting Data out of Functions �� 193

Recursive Functions �� 194

Some Final Comments �� 196

Index �� 197

www.it-ebooks.info

http://www.it-ebooks.info/

xv

About the Author

Margot Tollefson is a self-employed consulting
statistician residing in the tiny town of Stratford in the
corn and soybean fields of north-central Iowa. She
started using the S-Plus language in the early 1990s
and happily switched to R about ten years ago. Margot
enjoys writing her own functions in R—to do plots and
simulations as well as to implement custom modeling
and use published statistical methods. She earned
her graduate degrees in statistics from Iowa State
University in Ames, Iowa.

www.it-ebooks.info

http://www.it-ebooks.info/

xvii

About the Technical
Reviewer

Jessica Orth is a graduate student in the Department
of Statistics and Actuarial Science at the University of
Iowa. She graduated from the University of Minnesota,
Morris, with a degree in statistics in May 2012.

www.it-ebooks.info

http://www.it-ebooks.info/

xix

Acknowledgments

I would like to thank the writers of the R Development Core Team at the Comprehensive
R Archive Network. Without their help pages, this book could not have been written.
I would also like to thank the editors at Apress, Jonathan Hassell, Rita Fernando, and
Kevin Shea for guiding my progress; the copy editor, Ann Dickson, for her fine work;
Jessica Orth for her helpful comments; and my husband, Clay Conard, for his support and
patience over the last few months.

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Introduction
	Part 1: R Basics
	Chapter 1: Downloading R and Setting Up a File System
	Downloading R
	Windows
	OS X
	Linux

	Installing and Updating Packages
	Windows
	OS X

	Updating R
	Windows
	OS X

	Using R in Separate Folders
	Windows
	OS X
	Linux

	Chapter 2: The R Prompt
	The Three Parts of R: Objects, Operators, and Assignments
	The R Prompt
	An Example of a Calculation

	Chapter 3: Assignments and Operators
	Types of Assignment
	Example of Three Types of Assignment
	The ls( ) and rm( ) Functions
	Operators
	Logical Operators and Functions
	Arithmetic Operators
	Matrix Operators and Functions
	Relational Operators
	Subscripting Operators
	Vectors
	Matrices
	Arrays
	Lists
	Other Types

	Odds and Ends

	Part2: Kinds of Objects
	Chapter 4: Modes of Objects
	Overview of the Modes
	Commonly Used Modes
	Atomic, Recursive, and Language Modes

	Some Functions for Atomic Modes
	The NULL Mode
	The Logical Mode
	The Numeric Mode
	The Complex Mode
	The Raw Mode
	The Character Mode

	The Common Recursive and Language Modes
	The List Mode
	The Function Mode
	The Call Mode
	The Name Mode
	The Expression Mode

	The S4 Mode

	Chapter 5: Classes of Objects
	Some Basics on Classes
	Vectors
	Some Common Classes
	The Matrix Class: matrix
	The Array Class: array
	The Time Series Classes: ts and mts
	The Factor Classes: factor and ordered
	The Data Frame Class: data.frame
	The Date and Time Classes: Date, POSIXct, POSIXlt, and difftime

	Names for Vectors, Matrices, Arrays, and Lists

	Part3: Functions
	Chapter 6: Packaged Functions
	The Libraries
	Default Packages and Primitive Functions
	Using the Help Pages
	Title
	Description
	Usage
	Arguments
	Details
	Value
	Some Other Optional Sections
	References
	See Also
	Examples

	Chapter 7: User-Created Functions
	The Structure of a Function
	How to Enter a Function into R
	Using an Editor
	Inline Entry
	An Outside Editor: dget( ) and Copying and Pasting

	Chapter 8: How to Use a Function
	Calling a Function
	Arguments
	The Output from a Function

	Part4: Inputting and Creating Data, Outputting Data and Output, and Manipulating Objects
	Chapter 9: Importing and Creating Data
	Reading Data into R, Including R Data Sets
	The Function scan()
	The Functions read.table(), read.csv(), and read.delim()
	R Data Sets
	Other Functions to Import Files

	Probability Distributions and the Function sample()
	Probability Distributions
	The Function sample()

	Manually Entering Data and Generating Data with Patterns
	The Function c()
	The Functions seq() and rep()
	The Function seq()
	The Function rep()

	Combinatorics and Grid Expansion
	The Function Paste

	Chapter 10: Exporting from R
	The Function dump( )
	The Function sink( )
	The Function write( )
	The Function write.matrix( )
	The Functions write.table( ) and write.csv( )
	The Function dput( )
	Other Exporting Functions

	Chapter 11: Descriptive Functions and Manipulating Objects
	Descriptive Functions
	The Function dim()
	The Functions nrow(), ncol(), NROW(), and NCOL()
	The Function length()
	The Function nchar()

	Manipulating Objects
	The Functions cbind() and rbind()
	The Apply Functions
	The Function apply( )
	The lapply( ), sapply( ), and vapply( ) Functions
	The Function lapply()
	The Function sapply()
	The Function vapply()

	The Function tapply( )
	The Function mapply( )

	The sweep() and scale() Functions
	The Function sweep( )
	The Function scale( )

	The Functions aggregate(), table(), tabulate(), and ftable()
	The Function aggregate( )
	Data Frames
	Time Series

	The Functions table( ), as.table( ), and is.table( )
	The Function tabulate( )
	The Function ftable( )

	Part5: Flow Control
	Chapter 12: Flow Control
	Brackets “{ }” and the Semicolon “;”
	The “if” and “if/else” Control Statements
	The “while” Control Statement
	The “for” Control Statement
	The “repeat” Control Statement
	The Statements “break” and “next”
	Nesting

	Chapter 13: Examples of Flow Control
	Nested ‘for’ Loops with an ‘if/else’ Statement
	Using Indices

	A ‘while’ Loop
	Using Indices

	Nested ‘for’ Loops
	Using Indices

	A ‘for’ Loop, ‘if’ Statement, and ‘next’ Statement
	Using Indices

	A ‘for’ Loop, a ‘repeat’ Loop, an ‘if’ Statement, and a ‘break’ Statement
	Using Indices

	Chapter 14: The Functions ifelse( ) and switch( )
	The Function ifelse( )
	The Function switch( )

	Part6: Some Common Functions, Packages, and Techniques
	Chapter 15: Some Common Functions
	The Function options( )
	The Functions round( ), signif( ), and noquote( )
	The Function round()
	The Function signif()
	The Function noquote()

	The Function cat( )
	The Functions format( ), print( ), plot( ), and summary( )
	The Function format()
	The Function print()
	The Function plot()
	The Function summary()

	Some Functions for Models: anova( ), coef( ), effects( ), residuals( ), fitted( ), vcov( ), confint( ), and predict( )

	Chapter 16: The Packages base, stats, and graphics
	The base Package
	Reserved Words
	Built-In Constants
	Trigonometric and Hyperbolic Functions
	Beta- and Gamma-Related Functions
	Miscellaneous Mathematical Functions
	Complex Numbers
	Matrices, Arrays, and Data Frames
	A Few Other Functions and Some Comments

	The stats Package
	Basic Descriptive Statistics
	Some Functions That Do Tests
	Some Modeling Functions in stats
	Clustering Algorithms and Other Multivariate Techniques

	The graphics Package

	Chapter 17: Tricks of the Trade
	Value Substitution: NA, NaN, Inf, and -Inf
	If Statements and Logical Vectors
	Lists and the Functions list( ) and c( )
	Getting Data out of Functions
	Recursive Functions
	Some Final Comments

	Index

