
www.it-ebooks.info

http://www.it-ebooks.info/

R Graphs Cookbook

Detailed hands-on recipes for creating the most useful
types of graphs in R—starting from the simplest versions
to more advanced applications

Hrishi V. Mittal

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

R Graphs Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2011

Production Reference: 1110111

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-06-7

www.packtpub.com

Cover Image by Charwak (charwak86@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Hrishi V. Mittal

Reviewers
Patrick Burns

Paul Butler

Markus Loecher

Paolo Sonego

Acquisition Editor
Eleanor Duffy

Development Editor
Maitreya Bhakal

Technical Editor
Vanjeet D'souza

Copy Editor
Neha Shetty

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Jovita Pinto

Proofreader
Joanna McMahon

Indexer
Tejal Daruwale

Production Coordinator
Melwyn D'sa

Aparna Bhagat

Cover Work
Melwyn D'sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Hrishi V. Mittal has been working with R for a few years in different capacities. He was
introduced to the exciting world of data analysis with R when he was working as a Senior
Air Quality Scientist at King's College London, where he used R extensively to analyze
large amounts of air pollution and traffic data to inform the Mayor of London's Air Quality
Strategy. He has experience in various other programming languages, but prefers R for data
analysis and visualization. He is actively involved in various R mailing lists, forums and the
development of some R packages.

In early 2010, Hrishi started Pretty Graph Limited (www.prettygraph.com), a software
company specializing in web-based data visualization products. The company's flagship
product, Pretty Graph, uses R as the backend engine for helping researchers and businesses
visualize and analyze data. The goal is to bring the power of R to a wider audience by providing
a modern graphical user interface which can be accessed by anyone and from anywhere
simply by using a web browser.

First and foremost, I am grateful to the creators of R, Ross Ihaka and Robert
Gentleman, and the countless other contributors who have made one of the
greatest open source software of all time.

I would like to thank my wife Louise for her patience and support throughout
the writing of the book. Her feedback on the writing itself has also been
very useful. Special thanks are also due to Clive and Jimmy, who have
consistently provided silent, warm and furry stress relief.

I'm grateful to my parents and sister for their love and the pride they always
take in my work, even when they are not quite sure what I'm doing.

It's been nice to have support from my friends Madhavi Bhargava, Rohit
Menon and Aniruddha Kembavi, who have been very encouraging and at
times more excited than me about the book.

I'd also like to thank the reviewers for pointing out some errors and
suggesting valuable improvements. Last, but not least, I'd like to thank my
editor Eleanor Duffy and the rest of the team at Packt, who have been very
professional, understanding and helpful throughout the project.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Patrick Burns is well known in the R community, in particular for the free R documents
that are available on the Burns Statistics website (http://www.burns-stat.com/). He
produces software for the fund management industry that runs in R and S+.

Paul Butler studies math and computer science at the University of Waterloo in Canada.
Between academic terms, he has worked on data analysis and data infrastructure projects at
a handful of startups and a large dot-com company. Paul enjoys sailing and bouldering, and
blogs sporadically at http://paulbutler.org/

Markus Loecher is an expert in predictive modeling and statistical analysis of primarily
spatiotemporal data. He holds multiple patents in machine learning and has over nine years
of experience analyzing large, complex data sets to build advanced descriptive and
predictive models.

Markus holds a BSc from the University of Cologne, a PhD in Physics from Ohio University
and a Masters in Statistics from Rutgers University. He completed postdoctoral research in
physics at Ohio State University and at Georgia Tech investigating spatiotemporal chaos. His
work has been published in several prestigious journals, he has authored on the topic of noise
sustained patterns, and co-authored a book on chaos control.

Markus holds R in the highest regard and has been using it actively for about eight years.
He is the author of several popular R packages, such as RgoogleMaps, HTMLUtils and
gbmParallel. He is the author of Noise Sustained Patterns published by World Scientific.

www.it-ebooks.info

http://www.it-ebooks.info/

Paolo Sonego has spent the last three years as a bioinformatician analyzing '-omics' data
for a company in Trieste, Italy. He is a strong supporter and enthusiast of the R programming
language for statistical computing and graphics. He has a blog devoted to his favorite
programming language (onertipaday.blogspot.com). Paolo lives with his love Flavia and
his cat Tristan in Pordenone, Italy.

I want to thank Ross Ihaka and Robert Gentleman for creating R and the
wonderful community of both developers and contributors!

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com
Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy & paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Basic Graph Functions	 7

Introduction	 7
Creating scatter plots	 8
Creating line graphs	 12
Creating bar charts	 14
Creating histograms and density plots	 17
Creating box plots	 20
Adjusting X and Y axes limits	 22
Creating heat maps	 24
Creating pairs plots	 27
Creating multiple plot matrix layouts	 30
Adding and formatting legends	 33
Creating graphs with maps	 37
Saving and exporting graphs	 40

Chapter 2: Beyond the Basics: Adjusting Key Parameters	 43
Introduction	 43
Setting colors of points, lines, and bars	 44
Setting plot background colors	 48
Setting colors for text elements: axis annotations, labels, plot titles,
and legends	 50
Choosing color combinations and palettes	 52
Setting fonts for annotations and titles	 54
Choosing plotting point symbol styles and sizes	 56
Choosing line styles and width	 58
Choosing box styles	 60
Adjusting axis annotations and tick marks	 63
Formatting log axes	 65
Setting graph margins and dimensions	 66

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 3: Creating Scatter Plots	 69
Introduction	 69
Grouping data points within a scatter plot	 70
Highlighting grouped data points by size and symbol type	 73
Labelling data points	 75
Correlation matrix using pairs plot	 78
Adding error bars	 79
Using jitter to distinguish closely packed data points	 82
Adding linear model lines	 84
Adding non-linear model curves	 85
Adding non-parametric model curves with lowess	 86
Making three-dimensional scatter plots	 87
How to make Quantile-Quantile plots	 89
Displaying data density on axes	 91
Making scatter plots with smoothed density representation	 93

Chapter 4: Creating Line Graphs and Time Series Charts	 95
Introduction	 96
Adding customized legends for multiple line graphs	 96
Using margin labels instead of legends for multiple line graphs	 99
Adding horizontal and vertical grid lines	 101
Adding marker lines at specific X and Y values	 104
Creating sparklines	 105
Plotting functions of a variable in a dataset	 107
Formatting time series data for plotting	 109
Plotting date and time on the X axis	 111
Annotating axis labels in different human readable time formats	 113
Adding vertical markers to indicate specific time events	 115
Plotting data with varying time averaging periods	 117
Creating stock charts	 118

Chapter 5: Creating Bar, Dot, and Pie Charts	 123
Introduction	 123
Creating bar charts with more than one factor variable	 124
Creating stacked bar charts	 126
Adjusting the orientation of bars—horizontal and vertical	 128
Adjusting bar widths, spacing, colors, and borders	 130
Displaying values on top of or next to the bars	 132
Placing labels inside bars	 134
Creating bar charts with vertical error bars	 135
Modifying dot charts by grouping variables	 137

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Making better readable pie charts with clockwise-ordered slices	 139
Labelling a pie chart with percentage values for each slice	 141
Adding a legend to a pie chart	 143

Chapter 6: Creating Histograms	 145
Introduction	 145
Visualizing distributions as count frequencies or probability densities	 146
Setting bin size and number of breaks	 148
Adjusting histogram styles: bar colors, borders, and axes	 150
Overlaying density line over a histogram	 152
Multiple histograms along the diagonal of a pairs plot	 153
Histograms in the margins of line and scatter plots 	 155

Chapter 7: Creating Box and Whisker Plots	 159
Introduction	 159
Creating box plots with narrow boxes for a small number of variables	 160
Grouping over a variable	 162
Varying box widths by number of observations	 164
Creating box plots with notches	 165
Including or excluding outliers	 166
Creating horizontal box plots	 167
Changing box styling	 169
Adjusting the extent of plot whiskers outside the box	 170
Showing the number of observations	 172
Splitting a variable at arbitrary values into subsets	 175

Chapter 8: Creating Heat Maps and Contour Plots	 181
Introduction	 181
Creating heat maps of single Z variable with scale	 182
Creating correlation heat maps	 185
Summarizing multivariate data in a heat map	 187
Creating contour plots	 192
Creating filled contour plots	 194
Creating three-dimensional surface plots	 197
Visualizing time series as calendar heat maps	 199

Chapter 9: Creating Maps	 205
Introduction	 205
Plotting global data by countries on a world map	 206
Creating graphs with regional maps	 210
Plotting data on Google maps	 215
Creating and reading KML data	 219
Working with ESRI shapefiles	 220

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 10: Finalizing graphs for publications and presentations	 223
Introduction	 223
Exporting graphs in high resolution image formats: PNG, JPEG, BMP, TIFF	 224
Exporting graphs in vector formats: SVG, PDF, PS	 227
Adding mathematical and scientific notations (typesetting)	 229
Adding text descriptions to graphs	 234
Using graph templates	 237
Choosing font families and styles under Windows, Mac OS X, and Linux	 241
Choosing fonts for PostScripts and PDFs	 243

Index	 247

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
With more than two million users worldwide, R is one of the most popular open source
projects. It is a free and robust statistical programming environment with very powerful
graphical capabilities. Analyzing and visualizing data with R is a necessary skill for anyone
doing any kind of statistical analysis, and this book will help you do just that in the easiest
and most efficient way possible.

Unlike other books on R, this book takes a practical hands-on approach and will dive straight
into creating graphs in R right from the very first page. If you wish to harness the power of this
mighty open source programming language to visually present and analyze your data in the
best way possible—this book is going to show you how.

The R Graphs Cookbook takes a practical approach to teaching how to create effective
and useful graphs using R. It will demystify a lot of difficult and confusing R functions and
parameters. It will enable you to construct and modify data graphics to suit your analysis,
presentation, and publication needs.

This practical guide begins by teaching you how to make basic graphs in R and progresses
through subsequent dedicated chapters about each graph type in depth. You will learn all
about making graphics such as scatter plots, line graphs, bar charts, pie charts, dot plots,
heat maps, histograms, and box plots. In addition, there are detailed recipes on making
various combinations and advanced versions of these graphs. Dedicated chapters on
polishing and finalizing graphs will enable you to produce professional quality graphs for
presentation and publication. With the R Graphs Cookbook in hand, making graphs in
R has never been easier.

What this book covers
Chapter 1, Basic Graph Functions introduces recipes for some basic types of graphs, useful in
almost any kind of data analysis. We will go through all the steps to get you going from reading
your data into R, making a first graph, tweaking it to suit your needs, and then saving and
exporting it for use in presentations and publications.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Chapter 2, Beyond the Basics: Adjusting Key Parameters looks more closely at various
arguments to graph functions and their values, highlighting common pitfalls and workarounds.
The par() function is explained with some useful examples showing how to adjust colors,
sizes, margins, and styles of various graph elements such as points, lines, bars, axes,
and titles.

The subsequent chapters 3 to 9 cover the graph types introduced in the first two chapters in
more detail.

Chapter 3, Creating Scatter Plots has over a dozen recipes covering scatter plots, which are
some of the simplest and most commonly used type of graphs in data analysis. We will see
how we can make more enhanced plots by adjusting various arguments and using some
new functions.

Chapter 4, Creating Line Graphs and Time Series Charts discusses some more intermediate
to advanced recipes for customizing line graphs, improving and speeding up line graphs with
multiple lines, processing dates to make time series charts, sparklines and stock charts.

Chapter 5, Creating Bar, Dot, and Pie Charts will show you how you can create many useful
variations of bar graphs and dot plots by using only the base library functions. We will also
look at a few recipes addressing common criticisms of pie charts with some ways to make
them more readable.

Chapter 6, Creating Histograms enhances the basic histogram in R by changing the plotting
mode and bins, in addition to style adjustments. We will also look at some advanced recipes
combining histograms with other types of graphs.

Chapter 7, Creating Box and Whisker Plots looks into various stylistic and structural
adjustments to box plots. We will start by looking at some basic arguments to change
individual aspects of a box plot and slowly move to more advanced recipes involving the use
of multiple function calls.

Chapter 8, Creating Heat Maps and Contour Plots discusses various types of heat maps
for visualizing correlations, trends and multivariate data, and contour plots for showing
topographical information in various two-dimensional and three-dimensional ways.

Chapter 9, Creating Maps builds on top of the introduction to visualizing data on geographical
maps in the first chapter, covering recipes for plotting data from the World Bank, World Health
Organization (WHO), Google Maps API, and some Geographical Information Systems (GIS).

Chapter 10, Finalizing Graphs for Publications and Presentations discusses some tricks
and tips to add some polish to our graphs so that they can be used for publication and
presentation. We will cover many important practical topics such as exported graph file
formats, high resolution formats, vector formats such as PDF, SVG, and PS, mathematical
and scientific notations, text descriptions, fonts, graph templates, and themes.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

What you need for this book
The only software needed for this book is R itself, which is available for download for all
major operating systems at http://cran.r-project.org. Some additional R packages
are required, but these can be installed from within R. The instructions are provided in the
relevant sections of the book.

You will also need the example datasets, which can be downloaded from the book's
companion website: https://www.packtpub.com/r-graph-cookbook/book.

Who this book is for
This book is for readers already familiar with the basics of R and want to learn the best
techniques and code to create graphics in R in the best way possible. It will also serve
as an invaluable reference book for expert R users.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " We will use the base graphics function hist() to
make our histogram."

A block of code is set as follows:

hist(air$Nitrogen.Oxides,
breaks=20,
xlab="Nitrogen Oxide Concentrations",
main="Distribution of Nitrogen Oxide Concentrations")

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

hist(air$Nitrogen.Oxides,
breaks=20,
xlab="Nitrogen Oxide Concentrations",
main="Distribution of Nitrogen Oxide Concentrations")

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Select an appropriate mirror
site from the CRAN mirror window."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1
Basic Graph

Functions

In this chapter, we will cover the following recipes:

ff Creating scatter plots

ff Creating line graphs

ff Creating bar charts

ff Creating histograms and density plots

ff Creating box plots

ff Adjusting X and Y axis limits

ff Creating heat maps

ff Creating pairs plots

ff Creating multiple plot matrix layouts

ff Adding and formatting legends

ff Creating graphs with maps

ff Saving and exporting graphs

Introduction
In this chapter, we will see how to use R to make some very basic types of graphs, which are
likely to be used in almost any kind of analysis. The recipes in this chapter will give you a feel
for how much can be accomplished with very little R code, which is one big reason why R is a
good choice for an analysis platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

8

Although the examples in this chapter are of a basic nature, we will go through all the steps
to get you going from reading your data into R, making a first graph, tweaking it to suit your
needs, and then saving and exporting it for use in presentations and publications.

First and foremost, you need to download and install R on your computer. All R packages are
hosted on the Comprehensive R Archive Network or CRAN (http://cran.r-project.
org/). R is available for all the three major operating systems at the following locations on
the web:

ff Windows: http://cran.r-project.org/bin/windows/base/

ff Linux: http://cran.r-project.org/bin/linux/

ff Mac OS X: http://cran.r-project.org/bin/macosx/

Please read the FAQs (http://cran.r-project.org/faqs.html) and manuals
(http://cran.r-project.org/manuals.html) on the CRAN site for detailed help
on installation.

Just having the base installation of R should set you up for all the recipes in this book.

Please note that the R code in this book has some comments explaining the code. Any text
on a line following the # symbol is treated by R as a comment. For example, you may see
something like this:

col="yellow" #Setting the color to yellow

As you can see clearly, the text after the # explains what the code is doing. Setting the color
to yellow in this case. Comments are a way of documenting code so that others reading your
code can understand it better. It also serves to help you and you can also understand your
code better when you come back to it after a long period of time. Please read each line of
code carefully and look out for any comments that will help you understand the code better.

Creating scatter plots
This recipe describes how to make scatter plots using some very simple commands. We'll
go from a single line of code, which makes a scatter plot from pre-loaded data, to a script of a
few lines that produces a scatter plot customized with colors, titles, and axes limits specified
by us.

Getting ready
All you need to do to get started is start R. You should have the R prompt on your screen
as shown in the following screenshot:

www.it-ebooks.info

http://cran.r-project.org/manuals.html
http://www.it-ebooks.info/

Chapter 1

9

How to do it...
Let's use one of R's inbuilt datasets called cars to look at the relationship between the speed
of cars and the distances taken to stop (recorded in the 1920s).

To make your first scatter plot, type the following command at the R prompt:

plot(cars$dist~cars$speed)

This should bring up a window with the following graph showing the relationship between the
distance travelled by cars plotted with their speeds:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

10

Now, let's tweak the graph to make it look better. Type the following code at the R prompt:

plot(cars$dist~cars$speed, # y~x
main="Relationship between car distance & speed", # Plot Title
xlab="Speed (miles per hour)", #X axis title
ylab="Distance travelled (miles)", #Y axis title
xlim=c(0,30), #Set x axis limits from 0 to 30
ylim=c(0,140), #Set y axis limits from 0 to 140
xaxs="i", #Set x axis style as internal
yaxs="i", #Set y axis style as internal
col="red", #Set the color of plotting symbol to red
pch=19) #Set the plotting symbol to filled dots

This should produce the following result:

How it works...
R comes preloaded with many datasets. In the example, we used one such dataset called
cars, which has two columns of data, with the names speed and dist. To see the data,
simply type cars at the R prompt and press Enter:

>cars
 speed dist
1 4 2
2 4 10
3 7 4
4 7 22
. . .
47 24 92

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

48 24 93
49 24 120
50 25 85
>

As the output from the R command line shows, the cars dataset has two columns and 50
rows of data.

The plot() command is the simplest way to make scatter plots (and other types of plots as
we'll see in a moment).

In the first example, we simply pass the x and y arguments that we want to plot in the form
plot(y~x) that is, we want to plot distance versus speed. This produces a simple scatter
plot. In the second example, we pass a few additional arguments that provide R with more
information on how we want the graph to look.

The main argument sets the plot title, xlab and ylab set the X and Y axes titles respectively,
xlim and ylim set the minimum and maximum values of the labels on the X and Y axes
respectively, xaxs and yaxs set the style of the axes, col and pch set the scatter plot
symbol color and type respectively. All of these arguments and more will be explained in
detail in Chapter 2, Beyond the Basics.

There's more...
Instead of the plot(y~x) notation used in the preceding examples, you can also use
plot(x,y). For more details on all the arguments the plot() command can take, see the
help documentation by typing ?plotor help(plot) at the R prompt, after plotting the first
dataset with plot().

If you want to plot another set of points on the same graph, say from another dataset or the
same data points but with another symbol on top, you can use the points() function:

points(cars$dist~cars$speed,pch=3)

A note on R's inbuilt datasets
In addition to the cars dataset used in the example, R has many more datasets, which come
as part of the base installation in a package called datasets. To see the complete list of
available datasets, call the data() function simply by running it at the R prompt:

data()

See also

Scatter plots are covered in a lot more detail in Chapter 3, Creating Scatter Plots.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

12

Creating line graphs
Line graphs are generally used for looking at trends in data over time, so the X variable is
usually time expressed as time of the day, date, month, year, and so on. In this recipe, we will
see how we can quickly plot such data using the same plot() function, which was used in
the previous recipe to make scatter plots.

Getting ready
First we need to load the dailysales.csv example data file. You can download this file
from the code download section of the book's companion website:

sales<-read.csv("dailysales.csv", header=TRUE)

As the file name suggests, it contains daily sales data of a product. It has two columns: a date
column and a sales column showing the number of units sold.

How to do it...
Here's the code to make your first line graph:

plot(sales$units~as.Date(sales$date,"%d/%m/%y"),
type="l", #Specify type of plot as l for line
main="Unit Sales in the month of January 2010",
xlab="Date",
ylab="Number of units sold",
col="blue")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

How it works...
We first read the data file using the read.csv() function. We passed two arguments to
the function: the name of the file we want to read (dailysales.csv in double quotes) and
with header=TRUE we specified that the first row contains column headings. We read the
contents of the file and saved it in an object called sales with the left arrow notation.

You must have noticed that the plotting code is quite similar to that for producing a scatter
plot. The main difference is that this time we passed the type argument. The type argument
tells the plot() function whether you want to plot points, lines, or other symbols. It can take
nine different values.

Please see the help section on plot() for more details. The default
value of type is "p" as in points.

If the type is not specified R assumes you want to plot points as it did in the scatter
plot example.

The most important part of the example is the way we read the date using the as.Date()
function. Reading dates in R is a bit tricky. R doesn't automatically recognize date formats.
The as.Date() function takes two arguments: the first is the variable which contains the
date values and the second is the format the date values are stored in. In the example, the
dates are in the form date/month/year or dd/mm/yyyy, which we specified as %d/%m/%y in
the function call. If the date was in mm/dd/yyyy format, we'd use %m/%d/%y.

The plot and axes titles and line color are set using the same arguments as for the scatter plot.

There's more...
If you want to plot another line on the same graph, say daily sales data of a second product,
you can use the lines() function:

lines(sales$units2~as.Date(sales$date,"%d/%m/%y"),
col`="red")

See also

Line graphs and time series charts are covered in depth in Chapter 4, Creating Line Graphs
and Time Series Plots.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

14

Creating bar charts
In this recipe, we will learn how to make bar plots, which are useful for visualizing summary
data across various categories, such as sales of products or results of elections.

Getting ready
First we need to load the citysales.csv example data file. You can download this file from
the code download section of the book's companion website:

sales<-read.csv("citysales.csv",header=TRUE)

How to do it...
Just like the plot() function we used to make scatter plots and line graphs in the earlier
recipes, the barplot() and dotchart() functions are part of the base graphics library
in R. This means that we don't need to install any additional packages or libraries to use
these functions.

We can make bar plots using the barplot() function as follows:

barplot(sales$ProductA,
names.arg= sales$City,
col="black")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

The default setting of orientation for bars is vertical. To change the bars to horizontal, use the
horiz argument (by default, it is set to FALSE):

barplot(sales$ProductA,
names.arg= sales$City,
horiz=TRUE,
col="black")

How it works...
The first argument of the barplot() function is either a vector or matrix of values which you
want to plot as bars, such as the sales data variables in the examples we have just seen. The
labels for the bars are specified by the names.arg argument, but we use this argument only
when plotting single bars. In the example with sales figures for multiple products, we didn't
specify names.arg. R automatically used the product names as the labels and we had to
instead specify the city names as the legend.

As with the other types of plots, the col argument is used to specify the color of the bars.
This is a common feature throughout R, that is col is used to set the color of the main feature
in any kind of graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

16

There's more...
Bar plots are often used to compare the values of groups of values across categories.
For example, we can plot the sales in different cities for more than one product using
the beside argument:

barplot(as.matrix(sales[,2:4]), beside=TRUE,
legend=sales$City,
col=heat.colors(5),
border="white")

You will notice that when plotting data for multiple products (columns), we used the square
bracket notation in the form sales[,2:4]. In R the square bracket notation is used to refer
to specific columns and rows of a dataset. For example, sales[2,3] refers to the value in
the second row and the third column.

So the notation is of the form sales[row,column]. If you want to refer to all the rows in a
certain column you can omit the row number. For example, if you want to refer to all the rows
in column two, you would use sales[,2]. Similarly, for all the columns of row three, you
would use sales[3,].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

So sales[,2:4] refers to all the data in columns two to four, which is the product sales data
as shown in the following table:

City ProductA ProductB ProductC
San Francisco 23 11 12
London 89 6 56
Tokyo 24 7 13
Berlin 36 34 44
Mumbai 3 78 14

The orientation of bars is set to vertical by default. It is controlled by the optional horiz
(for horizontal) argument. If we do not use this argument in our barplot() function call,
it is set to FALSE. To make the bars horizontal, we set horiz to TRUE.

The beside argument is used to specify whether we want the bars in a group of data to be
stacked or adjacent to each other. By default, beside is set to FALSE, which produces a
stacked bar graph. To make the bars adjacent, we set beside to TRUE.

To change the color of the border around the bars, we used the border argument. The
default border color is black. But if you wish to use another color, say white, you can set
it with border="white".

To make the same graph with horizontal bars we would type:

barplot(as.matrix(sales[,2:4]), beside=TRUE,
legend=sales$City,
col=heat.colors(5),
border="white",
horiz=TRUE)

See also

Bar charts will be explored in a lot more detail with some advanced recipes in Chapter 5,
Creating Bar, Dot, and Pie Charts.

Creating histograms and density plots
In this recipe, we will learn how to make histograms and density plots, which are useful to look
at the distribution of values in a dataset.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

18

How to do it...
The simplest way to demonstrate the use of a histogram is to show a normal distribution:

hist(rnorm(1000))

Another example of a histogram is one which shows a skewed distribution:

hist(islands)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

How it works...
The hist() function is also a function of R's base graphics library. It takes only one
compulsory argument, that is the variable whose distribution of values we wish to visualize.

In the first example, we passed the rnorm() function as the variable. rnorm(1000)
generates a vector of 1,000 random numbers with a normal distribution. As you can see
in the histogram, it's a bell-shaped curve.

In the second example, we passed the inbuilt islands dataset (which gives the areas of
the world's major landmasses) as the argument to hist(). As you can see from that
histogram, islands has a distribution skewed heavily towards the lower value range
of 0 to 2,000 square miles.

There's more...
As you may have noticed in the preceding examples, the default setting for histograms is to
display the frequency or number of occurrences of values in a particular range on the Y axis.
We can also display probabilities instead of frequencies by setting the prob (for probability)
argument to TRUE or the freq (for frequency) argument to FALSE.

Now let's make a density plot for the same function rnorm(). To do so, we need to use the
density() function and pass it as our first argument to plot() as follows:

plot(density(rnorm(1000)))

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

20

See also
We will cover more details such as setting the breaks, density, formatting of bars and other
advanced recipes in Chapter 6, Creating Histograms.

Creating box plots
In this recipe, we will learn how to make box plots, which are useful in comparing the spread
of values in different measurements.

Getting ready
First we need to load the metals.csv example data file, which contains measurements
of metal concentrations in London's air. You can download this file from the code download
section of the book's companion website:

metals<-read.csv("metals.csv",header=TRUE)

How to do it...
We can make a box plot to summarize the metal concentration data using the boxplot()
command as follows:

boxplot(metals,
xlab="Metals",
ylab="Atmospheric Concentration in ng per cubic metre",
main="Atmospheric Metal Concentrations in London")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

How it works...
The main argument a boxplot() function takes is a set of numeric values (in the form of
a vector or data frame). In our first example, we used a dataset containing numerical values
of air pollution data from London. The dark line inside the box for each metal represents the
median of values for that metal. The bottom and top edges of the box represent the first and
third quartiles respectively. Thus, the length of the box is equal to the interquartile range (IQR,
difference between first and third quartiles). The maximum length of a whisker is a multiple of
the IQR (default multiplier is approximately 1.5). The ends of the whiskers are at data points
closest to the maximum length of the whisker.

All the points lying beyond these whiskers are considered outliers.

As with most other plot types, the common arguments such as xlab, ylab, and main can be
used to set the titles for the X and Y axes and the graph itself respectively.

There's more...
We can also make another type of box plot where we can group the observations by
categories. For example, if we want to study the spread of copper concentrations by the
source of the measurements, we can use a formula to include the source. First we need to
read the copper_site.csv example data file, as follows:

copper<-read.csv("copper_site.csv",header=TRUE)

Then we can add the following code:

boxplot(copper$Cu~copper$Source,
xlab="Measurement Site",
ylab="Atmospheric Concentration of Copper in ng per cubic metre",
main="Atmospheric Copper Concentrations in London")

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

22

In this example, the boxplot() function takes a formula as an argument. This formula in the
form value~group (Cu~source) specifies a column of values and the group of categories it
should be summarized over.

See also

More detailed box plot recipes will be presented in Chapter 7, Creating Box and Whisker Plots.

Adjusting X and Y axes limits
In this recipe, we will learn how to adjust the X and Y limits of plots, which is useful in
adjusting a graph to suit one's presentation needs and adding additional data to the
same plot.

How to do it...
We will modify our first scatter plot example to demonstrate how to adjust axes limits:

plot(cars$dist~cars$speed,
xlim=c(0,30),
ylim=c(0,150))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

How it works...
In our original scatter plot in the first recipe of this chapter, the x axis limits were set to
just below 5 and up to 25 and the y axis limits were set from 0 to 120. In this example, we
set the x axis limit to 0 to 30 and y axis limits to 0 to 150 using the xlim and ylim
arguments respectively.

Both xlim and ylim take a vector of length 2 as valid values in the form
c(minimum,maximum)that is, xlim=c(0,30) means set the x axis minimum
limit to 0 and maximum limit to 30.

There's more...
You may have noticed that even after setting the x and y limit values, there is some gap left at
either edges. The two axes zeroes don't coincide. This is because R automatically adds some
additional space at both the edges of the axes, so that if there are any data points at the
extremes, they are not cut off by the axes. If you wish to set the axes limits to exact values,
in addition to specifying xlim and ylim, you must also set the xaxs and yaxs arguments
to "i":

plot(cars$dist~cars$speed,
xlim=c(0,30),
ylim=c(0,150),
xaxs="i",
yaxs="i")

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

24

Sometimes, we may wish to reverse a data axis, say to plot the data in descending order along
one axis. All we have to do is swap the minimum and maximum values in the vector argument
supplied as xlim or ylim. So, if we want the X axis speed values in the previous graph in
descending order we need to set xlim to c(30,0):

plot(cars$dist~cars$speed,
xlim=c(30,0),
ylim=c(0,150),
xaxs="i",
yaxs="i")

See also

There will be a few more recipes on adjusting the axes tick marks and labels in Chapter 2,
Beyond the Basics.

Creating heat maps
Heat maps are colorful images, which are very useful for summarizing a large amount of data
by highlighting hotspots or key trends in the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

How to do it...
There are a few different ways to make heat maps in R. The simplest is to use the heatmap()
function in the base library:

heatmap(as.matrix(mtcars),
Rowv=NA,
Colv=NA,
col = heat.colors(256),
scale="column",
margins=c(2,8),
main = "Car characteristics by Model")

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

26

How it works...
The example code has a lot of arguments, so it may look difficult at first sight. But if we
consider each argument in turn, we can understand how it works. The first argument to
the heatmap() function is the dataset. We are using the inbuilt dataset mtcars, which
holds data such as fuel efficiency (mpg), number of cylinders (cyl), weight (wt), and so
on for different models of cars. The data needs to be in a matrix format, so we use the
as.matrix() function. Rowv and Colv specify if and how dendrograms should be
displayed to the left and top of the heat map.

See help(dendrogram) and http://en.wikipedia.org/
wiki/Dendrogram for details on dendrograms.

In our example, we suppress them by setting the two arguments to NA, which is a logical
indicator of a missing value in R. The scale argument tells R in what direction the color
gradient should apply. We have set it to column, which means the scale for the gradient
will be calculated on a per-column basis.

There's more...
Heat maps are very useful for looking at correlations between variables in a large dataset.
For example, in bioinformatics, heat maps are often used to study the correlations between
groups of genes.

Let's look at an example with the genes.csv example data file. Let's first load the file:

genes<-read.csv("genes.csv",header=T)

Let's use the image() function to create a correlation heat map:

rownames(genes)<-colnames(genes)

image(x=1:ncol(genes),
y=1:nrow(genes),
z=t(as.matrix(genes)),
axes=FALSE,
xlab="",
ylab="" ,
main="Gene Correlation Matrix")

axis(1,at=1:ncol(genes),labels=colnames(genes),col="white",
las=2,cex.axis=0.8)
axis(2,at=1:nrow(genes),labels=rownames(genes),col="white",
las=1,cex.axis=0.8)

www.it-ebooks.info

http://en.wikipedia.org/wiki/Dendrogram
http://www.it-ebooks.info/

Chapter 1

27

We have used a few new commands and arguments in this example, especially for formatting
the axes. We will discuss these in detail starting in Chapter 2, Beyond the Basics and with
more examples in later chapters.

See also

Heat maps will be explained in a lot more detail with more examples in Chapter 8, Creating
Heat Maps.

Creating pairs plots
A pairs plot is a matrix of scatter plots which is a very handy visualization for quickly scanning
the correlations between many variables in a dataset.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

28

How to do it...
We will use the inbuilt iris dataset, which gives the measurements in centimeters of the
variables sepal length, sepal width, petal length and petal width, respectively, for 50 flowers
from each of three species of iris:

pairs(iris[,1:4])

How it works...
As you can see in the figure, the pairs() command makes a matrix of scatter plots, where
all the variables in the specified dataset are plotted against each other. The variable names,
displayed in the diagonal running across from the top left to the bottom right, are the key to
reading the graph. For example, the scatter plot in the first row and second column shows the
relationship between Sepal Length on the Y axis and Sepal Width on the X axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

There's more...
Here's a fun fact: we can produce the previous graph using the plot() function instead of
pairs() in exactly the same manner:

plot(iris[,1:4],
main="Relationships between characteristics of iris flowers",
pch=19,
col="blue",
cex=0.9)

So if you pass a data frame with more than two variables to the plot() function, it creates a
scatter plot matrix by default. We've also added a plot title and modified the plotting symbol
style, color and size using the pch, col and cex arguments respectively. We'll delve into the
details of these settings in Chapter 2, Beyond the Basics.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

30

See also

We'll cover some more interesting recipes in Chapter 3, Creating Scatter Plots, building upon
the things we learn in Chapter 2.

Creating multiple plot matrix layouts
In this recipe, we will learn how to present more than one graph in a single image. Pairs plots
are one example as we saw in the last recipe, but here we will learn how to include different
types of graphs in each cell of a graph matrix.

How to do it...
Let's say we want to make a 2x3 matrix of graphs, made of two rows and three columns of
graphs. We use the par() command as follows:

par(mfrow=c(2,3))
plot(rnorm(100),col="blue",main="Plot No.1")
plot(rnorm(100),col="blue",main="Plot No.2")
plot(rnorm(100),col="green",main="Plot No.3")
plot(rnorm(100),col="black",main="Plot No.4")
plot(rnorm(100),col="green",main="Plot No.5")
plot(rnorm(100),col="orange",main="Plot No.6")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

31

How it works...
The par() command is by far the most important function for customizing graphs in R. It is
used to set and query many graphical arguments (hence par), which control the layout and
appearance of graphs.

Please note that we need to issue the par() command before the actual graph commands.
When you first run the par() command, only a blank graphics window appears. The par()
command sets the argument for any subsequent graphs made. The mfrow argument is used
to specify how many rows and columns of graphs we wish to plot. The mfrow argument takes
values in the form of a vector of length two: c(nrow,ncol). The first number specifies the
number of rows and the second specifies the number of columns. In our previous example,
we wanted a matrix of two rows and three columns, so we set mfrow to c(2,3).

Note that there is another argument mfcol, similar to mfrow, which can also be used to
create multiple plot layouts. mfcol also takes a two value vector specifying the number of
rows and columns in the matrix. The difference is that mfcol draws subsequent figures by
columns, rather than by rows as mfrow does. So, if we used mfcol instead of mfrow in the
earlier example, we would get the following plot:

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

32

There's more...
Let's look at a practical example where a multiple plot layout would be useful. Let's read the
dailymarket.csv example file that contains data on the daily revenue, profits, and number
of customer visits for a shop:

market<-read.csv("dailymarket.csv",header=TRUE)

Now, let's plot all the three variables over time in a plot matrix with the graphs stacked over
one another:

par(mfrow=c(3,1))

plot(market$revenue~as.Date(market$date,"%d/%m/%y"),
type="l", #Specify type of plot as l for line
main="Revenue",
xlab="Date",
ylab="US Dollars",
col="blue")

plot(market$profits~as.Date(market$date,"%d/%m/%y"),
type="l", #Specify type of plot as l for line
main="Profits",
xlab="Date",
ylab="US Dollars",
col="red")

plot(market$customers~as.Date(market$date,"%d/%m/%y"),
type="l", #Specify type of plot as l for line
main="Customer visits",
xlab="Date",
ylab="Number of people",
col="black")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

The preceding graph is a good way to visualize variables with different value ranges over
the same time period. It helps in identifying where the trends match each other and where
they differ.

See also
We will explore more examples and uses of multiple plot layouts in later chapters.

Adding and formatting legends
In this recipe, we will learn how to add and format legends to graphs.

Getting ready
First we need to load the cityrain.csv example data file, which contains monthly rainfall
data for four major cities across the world. You can download this file from the code download
section of the book's companion website:

rain<-read.csv("cityrain.csv",header=TRUE)

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

34

How to do it...
In the bar plots recipe, we already saw that we can add a legend by passing the legend
argument to the barplot() function. Now we see how we can use the legend()
function to add and customize a legend for any type of graph.

Let's first draw a graph with multiple lines representing the rainfall in cities:

plot(rain$Tokyo,type="l",col="red",
ylim=c(0,300),
main="Monthly Rainfall in major cities",
xlab="Month of Year",
ylab="Rainfall (mm)",
lwd=2)
lines(rain$NewYork,type="l",col="blue",lwd=2)
lines(rain$London,type="l",col="green",lwd=2)
lines(rain$Berlin,type="l",col="orange",lwd=2)

Now let's add the legend to mark which line represents which city:

legend("topright",
legend=c("Tokyo","NewYork","London","Berlin"),
col=c("red","blue","green","orange"),
lty=1,lwd=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

35

How it works...
In the example code, we first created a graph with multiple lines using the plot() and
lines() commands to represent the monthly rainfall in Tokyo, New York, London, and Berlin
in four different colors. However, without a legend one would have no way of telling which line
represents which city. So we added a legend using the legend() function.

The first argument to the legend() function is the position of the legend, which we set to
topright. Other possible values are "topleft", "top", "left", "center", "right",
"bottomleft", "bottom", and "bottomright". Then we specify the legend labels by
setting the legend argument to a vector of length 4 containing the names of the four cities.
The col argument specifies the colors of the legend, which should match the colors of the
lines in exactly the same order. Finally, the line type and width inside the legend are specified
by lty and lwd respectively.

There's more...
The placement and look of the legend can be modified in several ways. As a simple example,
let's spread the legend across the top of the graph instead of the top right corner. So first, let's
redraw the same base plot:

plot(rain$Tokyo,type="l",col="red",
ylim=c(0,250),
main="Monthly Rainfall in major cities",
xlab="Month of Year",
ylab="Rainfall (mm)",
lwd=2)
lines(rain$NewYork,type="l",col="blue",lwd=2)
lines(rain$London,type="l",col="green",lwd=2)
lines(rain$Berlin,type="l",col="orange",lwd=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

36

Now, let's add a modified legend:

legend("top",
legend=c("Tokyo","NewYork","London","Berlin"),
ncol=4,
cex=0.8,
bty="n",
col=c("red","blue","green","orange"),
lty=1,lwd=2)

We changed the legend location from topright to top and added a few other arguments
to adjust the look. The ncol argument is used to specify the number of columns over which
the legend is displayed. The default value is 1 as we saw in the first example. In our second
example, we set ncol to 4 so that all the city names are displayed in one single row. The
argument bty specifies the type of box drawn around the legend. We removed it from the
graph by setting it to "n". We also modified the size of the legend labels by setting cex
to 0.8.

See also
There are plenty of examples of how you can add and customize legends in different
scenarios in later chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

37

Creating graphs with maps
In this recipe, we will learn how to plot data on maps.

Getting ready
In order to plot maps in R, we need to install the maps library. Here's how to do it:

install.packages("maps")

When you run this command, you will most likely be prompted by R to choose from a list of
locations from where you can download the library. For example, if you are based in the UK,
you can choose either the UK (Bristol) or UK (London) options.

Once the library is installed, we must load it using the library() command:

library(maps)

Note that we need to install any package using install.packages() only
once but need to load it using library() or require() every time we
restart a new session in R.

How to do it...
We can make a simple world map with just one command:

map()

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

38

Let's add color:

map('world', fill = TRUE,col=heat.colors(10))

How it works...
The maps library provides a way to project world data on to a low resolution map. It is also
possible to make detailed maps of the United States. For example, we can make a map
showing the state boundaries as follows:

map("state", interior = FALSE)
map("state", boundary = FALSE, col="red", add = TRUE)

The add argument is set to TRUE in the second call to map() to add details to the same
map created using the first call. It only works if a map has already been drawn on the current
graphic device.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

39

There's more...
The previous examples are just a basic introduction to the idea of geographical visualization
in R. In order to plot any useful data, we need to use a better maps library. GADM
(http://gadm.org) is a free spatial database of the location of the world's administrative
areas (or administrative boundaries). The site provides map information as native R objects
that can be plotted directly with the use of the sp library.

Let's take a look at a quick example. First we need to install and load the sp library, just like
we did with the maps library:

install.packages("sp")
library(sp)

GADM provides data for all the countries across the world. Let's load the data for Great
Britain. We can do so by directly reading the data from the GADM website:

load(url("http://gadm.org/data/rda/GBR_adm1.RData"))

This command loads the boundary data for the group of administrative regions forming Great
Britain. It is stored in memory as a data object named gadm. Now let's plot a map with the
loaded data:

spplot(gadm,"Shape_Area")

The graph shows the different parts of Great Britain, color coded by their surface areas. We
could just as easily display any other data such as population or crime rates.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

40

See also

We will cover more detailed and practical recipes with maps in Chapter 9, Creating Maps.

Saving and exporting graphs
In this recipe, we will learn how to save and export our graphs to various useful formats.

How to do it...
To save a graph as an image file format such as PNG, we can use the png() command:

png("scatterplot.png")
plot(rnorm(1000))
dev.off()

The preceding command will save the graph as scatterplot.png in the current working
directory. Similarly, if we wish to save the graph as JPEG, BMP or TIFF we can use the jpeg(),
bmp(), or tiff() commands respectively.

If you are working under Windows, you can also save a graph using the graphical user
interface. First make your graph, make sure the graph window is the active window by clicking
anywhere inside it and then click on File | Save as | Png or the format of your choice as
shown in the following screenshot:

When prompted to choose a name for your saved file, type a suitable name and click Save.
As you can see, you can choose from 7 different formats.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

41

How it works...
If you wish to use code to save and export your graphs, it is important to understand how
the code works. The first step in saving a graph is to open a graphics device suitable for the
format of your choice before you make the graph. For example, when you call the png()
function, you are telling R to start the PNG graphics device, such that the output of any
subsequent graph commands you run will be directed to that device. By default, the display
device on the screen is active. So any graph commands result in showing the graph on your
screen. But you will notice that when you choose a different graphics device such as png(),
the graphs don't show up on your screen. Finally, you must close the graphics device with the
dev.off() command to instruct R to save the graph you plotted in the specified format and
write it to disk with the specified filename. If you do not run dev.off(), the file will not
be saved.

There's more...
You can specify a number of arguments to adjust the graph as per your needs. The simplest
one that we've already used is the filename. You can also adjust the height and width settings
of the graph:

png("scatterplot.png",
height=600,
width=600)

The default units for height and width are pixels but you can also specify the units in inches,
cm or mm:

png("scatterplot.png",
height=4,
width=4,
units="in")

The resolution of the saved image can be specified in dots per inch (dpi) using the
res argument:

png("scatterplot.png",
res=600)

If you want your graphs saved in a vector format, you can also save them as a PDF file using
the pdf() function:

pdf("scatterplot.pdf")

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Graph Functions

42

Besides maintaining a high resolution of your graphs independent of size, PDFs are also
useful because you can save multiple graphs in the same PDF file.

See also
We will cover the details of saving and exporting graphs, especially for publication and
presentation purposes in Chapter 10.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Beyond the Basics:

Adjusting Key
Parameters

In this chapter, we will cover:

ff Setting colors of points, lines, and bars

ff Setting plot background colors

ff Setting colors for text elements: axis annotations, labels, plot titles, and legends

ff Choosing color combinations and palettes

ff Setting fonts for annotations and titles

ff Choosing plotting point symbol styles and sizes

ff Choosing line styles and width

ff Choosing box styles

ff Adjusting axis annotations and tick marks

ff Formatting log axes

ff Setting graph margins and dimensions

Introduction
In this chapter, we will learn about some of the simplest yet most important settings and
parameters of graphs in R base graphics. Learning how to adjust colors, sizes, margins, and
styles of various graph elements such as points, lines, bars, axes, and titles will give us the
ability to improve upon the basic graph commands we learnt in Chapter 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

44

In the previous chapter, we got a glimpse of the different types of graphs that can be made
in R using small snippets of code. Now, we will learn how to modify the fundamental building
blocks of those graphs to better suit our needs.

The R base library has very powerful graphical capabilities. While you can produce pretty
much any type of graph with a couple of lines of code, the default layout and look of the graph
is often very basic. Sometimes, you may run into problems such as axis labels and titles
getting chopped off at the edges or the legend size or position may mask part of your graph.
Sometimes, the default color combinations may not be suitable for presentation
or publication.

In this chapter we will go through the relevant names and accepted values of different
arguments and arguments to graph functions. We will take a closer look at the par()
function, which we briefly introduced in the previous chapter.

Reading and trying out all the recipes in this chapter is highly recommended as it will give you
a very good hands-on grasp of certain aspects of graph manipulation, which you are likely to
use a lot in any visual analysis in R.

Let's get started!

Setting colors of points, lines, and bars
In this recipe we will learn the simplest way to change the colors of points, lines, and bars in
scatter plots, line plots, histograms, and bar plots.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt.
You can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
The simplest way to change the color of any graph element is by using the col argument. For
example, the plot() function takes the col argument:

plot(rnorm(1000),
col="red")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

If we choose plot type as line, then the color is applied to the plotted line. Let's use the
dailysales.csv example dataset we used in Chapter 1. First, we need to load it:

Sales <- read.csv("dailysales.csv",header=TRUE)

plot(sales$units~as.Date(sales$date,"%d/%m/%y"),
type="l", #Specify type of plot as l for line
col="blue")

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

46

Similarly, the points() and lines() functions apply the col argument's value to the
plotted points and lines respectively.

barplot() and hist() also take the col argument and apply them to the bars. So the
following code would produce a bar plot with blue bars:

barplot(sales$ProductA~sales$City,
col="blue")

The col argument for boxplot() is applied to the color of the boxes plotted.

How it works...
The col argument automatically applies the specified color to the elements being plotted,
based on the plot type. So, if we do not specify a plot type or choose points, then the color
is applied to points. Similarly, if we choose plot type as line then the color is applied to the
plotted line and if we use the col argument in the barplot() or histogram() commands,
then the color is applied to the bars.

col accepts names of colors such as red, blue, and black. The colors() (or colours())
function lists all the built-in colors (more than 650) available in R. We can also specify colors
as hexadecimal codes such as #FF0000 (for red), #0000FF (for blue), and #000000 (for
black). If you have ever made any web pages¸ you would know that these hex codes are used
in HTML to represent colors.

col can also take numeric values. When it is set to a numeric value, the color corresponding
to that index in the current color palette is used. For example, in the default color palette the
first color is black and the second color is red. So col=1 and col=2 refers to black and red
respectively. Index 0 corresponds to the background color.

There's more...
In many settings, col can also take a vector of multiple colors, instead of a single color. This
is useful if you wish to use more than one color in a graph. For example, in Chapter 1 we
made a bar plot of sales data for three products across five cities. In that example, we did use
a vector of five colors to represent each of the five cities with the help of the heat.colors()
function. The heat.colors() function takes a number as an argument and returns a vector
of those many colors. So heat.colors(5) produces a vector of five colors.

Type the following at the R prompt:

heat.colors(5)

You should get the following output:

[1] "#FF0000FF" "#FF5500FF" "#FFAA00FF" "#FFFF00FF" "#FFFF80FF"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

Those are five colors in the hexadecimal format.

Another way of specifying a vector of colors is to construct one:

barplot(as.matrix(sales[,2:4]), beside=T,
legend=sales$City,
col=c("red","blue","green","orange","pink"),
border="white")

In the example, we set the value of col to c("red","blue","green","orange",
"pink"), which is a vector of five colors.

We have to take care to make a vector matching the length of the number of elements, in this
case bars we are plotting. If the two numbers don't match, R will 'recycle' values by repeating
colors from the beginning of the vector. For example, if we had fewer colors in the vector than
the number of elements, say if we had four colors in the previous plot, then R would apply
the four colors to the first four bars and then apply the first color to the fifth bar. This is called
recycling in R:

barplot(as.matrix(sales[,2:4]), beside=T,
legend=sales$City,
col=c("red","blue","green","orange"),
border="white")

In the example, both the bars for the first and last data rows (Seattle and Mumbai) would be
of the same color (red), making it difficult to distinguish one from the other.

One good way to ensure that you always have the correct number of colors is to find out the
length of the number of elements first and pass that as an argument to one of the color
palette functions. For example, if we did not know the number of cities in the example we have
just seen; we could do the following to make sure the number of colors matches the number
of bars plotted:

barplot(as.matrix(sales[,2:4]), beside=T,
legend=sales$City,
col=heat.colors(length(sales$City)),
border="white")

We used the length() function to find out the length or the number of elements in the
vector sales$City and passed that as the argument to heat.colors(). So, regardless
of the number of cities we will always have the right number of colors.

See also
In the next four recipes, we will see how to change the colors of other elements. The fourth
recipe is especially useful where we look at color combinations and palettes.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

48

Setting plot background colors
The default background color of all plots in R is white, which is usually the best choice as it is
least distracting for data analysis. However, sometimes we may wish to use another color. We
will see how to set background colors in this recipe.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt.
You can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
To set the plot background color to gray we use the bg argument in the par() command:

par(bg="gray")
plot(rnorm(100))

How it works...
The par() command's bg argument sets the background color for the entire plotting area
including the margins for any subsequent plots on the same device. Until the plotting device is
closed or a new device is initiated, the background color stays the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

There's more...
It is more likely that we want to set the background color only for the plot region (within the
axes) but there is no straightforward way to do this in R. We must draw a rectangle of the
desired color in the background and then make our graph on top of it:

plot(rnorm(1000),type="n")
x<-par("usr")
rect(x[1],x[3],x[2],x[4],col="lightgray ")
points(rnorm(1000))

First we draw the plot with type set to "n" so that the plotted elements are invisible. This
does not show the graph points or lines but sets the axes up, which we need for the next step.

par("usr") gets us the co-ordinates of the plot region in a vector of form c(xleft,
xright, ybottom, ytop). We then use the rect() function to draw a rectangle with a fill
color that we wish to use for the plot background. Note that rect() takes a set of arguments
representing the xleft, ybottom, xright, ytop co-ordinates. So we must pass the values
we obtained from par("usr") in the correct order. Then, finally we redraw the graph with the
correct type (points or lines).

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

50

Setting colors for text elements: axis
annotations, labels, plot titles, and legends

Axis annotations are the numerical or text values placed beside tick marks on an axis.
Axis labels are the names or titles of axes, which tell the reader what the values on a
particular axis represent. In this recipe, we will learn how to set the colors for these
elements and legends.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt.
You can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
Let's say we want to make the axis value annotations black, the labels of the axes gray, and
the plot title dark blue, you should do the following:

plot(rnorm(100),
main="Plot Title",
col.axis="blue",
col.lab="red",
col.main="darkblue")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

How it works...
Colors for axis annotations, labels, and plot titles can be set either using the par() command
before making the graph or in the graph command such as plot() itself. The arguments for
setting the colors for axis annotations, labels, and plot titles are col.axis, col.lab, and
col.main respectively.

They are similar to the col argument and take names of colors or hex codes as values, but do
not take a vector of more than one color.

There's more...
If we use the par() command, the difference is that par() will apply these settings to every
subsequent graph, until it is reset either by specifying the settings again or starting a new
graphics device:

par(col.axis="black",
col.lab="#444444",
col.main="darkblue")

plot(rnorm(100),main="plot")

The col.axis argument can also be passed to the axis() function, which is useful for
making a custom axis if you do not want to use the default axis. The col.lab argument does
not work with axis() and must be specified in par() or the main graph function such as
plot() or barplot().

The col.main argument can also be passed to the title() function, which is useful for
adding a custom plot title if you do not want to use the default title:

title("Sales Figures for 2010", col.main="blue")

Axis labels can also be specified with title():

title(xlab="Month",ylab="Sales",col.lab="red")

This is handy because you can specify two different colors for the X and Y axes:

title(xlab="X axis",col.lab="red")
title(ylab="Y axis",col.lab="blue")

When setting the axis titles with the title() command, we must set xlab and ylab to
empty strings "" in the original plot command to avoid overlapping titles.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

52

Choosing color combinations and palettes
We often need more than one color to represent various elements in graphs. Palettes are
combinations of colors which are a convenient way to use multiple colors without choosing
individual colors separately. R provides inbuilt color palettes as well as the ability to make
our own custom palettes. Using palettes is a good way to avoid repeatedly choosing or
setting colors in multiple locations, which can be a source of error and confusion. It helps in
separating the presentation settings of a graph from the construction.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt. You
can also choose to save the recipe as a script so that you can use it again later on. One new
library needs to be installed, which is also explained.

How to do it...
We can change the current palette by passing a character vector of colors to the palette()
function. For example:

palette(c("red","blue","green","orange"))

To use the colors in the current palette, we can refer to them by the index number. For
example, palette()[1] would be red.

How it works...
R has a default palette of colors which can be accessed by calling the palette() function.
If we run the palette() command just after starting R, we get the default palette:

palette()
[1] "black" "red" "green3" "blue" "cyan" "magenta"
"yellow"
[8] "gray"

To revert back to the default palette type:

palette("default")

When a vector of color names is passed to the palette() function, it sets the current
palette to those colors. We must enter valid color names otherwise we will get an invalid
color name error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

There's more...
Besides the default palette provided by the palette() function, R has many more built-
in palettes and additional palette libraries. One of the most commonly used palettes is the
heat.colors() palette, which provides a range of colors from red through yellow to white,
based on the number of colors specified by the argument n. For example, heat.colors(10)
produces a palette of 10 warm colors from red to white.

Other palettes are rainbow(), terrain.colors(), cm.colors(), and topo.colors
which take the number of colors as an argument.

RColorBrewer is a very good color palette package that creates nice looking color palettes
especially for thematic maps. It is an R implementation of the RColorBrewer palettes, which
provides three types of palettes: sequential, diverging, and qualitative. More information is
available at http://www.colorbrewer.org.

To use RColorBrewer, we need to install and load it:

install.packages("RColorBrewer")
library(RColorBrewer)

To see all the RColorBrewer palettes run the following command at the R prompt:

display.brewer.all()

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

54

The names of the palettes are displayed in the left-hand margin and the colors in each palette
are displayed in each row running to the right.

To use one of the palettes, let's say YlOrRd (which as the names suggests is a combination
of yellows and reds), we can use the brewer.pal() function:

brewer.pal(7,"YlOrRd")
[1] "#FFFFB2" "#FED976" "#FEB24C" "#FD8D3C" "#FC4E2A" "#E31A1C"
"#B10026"

The brewer.pal function takes two arguments: the number of colors we wish to choose and
the name of the palette. The minimum number of colors is three but the maximum varies from
palette to palette.

We can view the colors of an individual palette by using the display.brewer.pal()
command:

display.brewer.pal(7,"YlOrRd")

To use a specific color of the palette we can refer to it by its index number. So the first color in
the palette is brewer.pal(7,"YlOrRd")[1], the second is brewer.pal(7,"YlOrRd")
[2], and so on.

We can set the current palette to the previous one by using the palette() function:

palette(brewer.pal(7,"YlOrRd"))

Now we can refer to the individual colors as palette()[1], palette()[2], and so on. We
can also store the palette as a vector:

pal1<- brewer.pal(7,"YlOrRd")

See also
We will see the use of a lot of color palettes throughout the recipes in this book starting from
Chapter 3, Creating Scatter Plots.

Setting fonts for annotations and titles
For most data analysis we can just use the default fonts for titles. However, sometimes we
may want to choose different fonts for presentation and publication purposes. Selecting fonts
can be tricky as it depends on the operating system and the graphics device. We will see
some simple ways to choose fonts in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt. You
can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
The font family and face can be set with the par() command:

par(family="serif",font=2)

How it works...
A font is specified in two parts: a font family (such as Helvetica or Arial) and a font face
within that family (such as bold or italic).

The available font families vary by operating system and graphics devices. So R provides some
proxy values which are mapped on to the relevant available fonts irrespective of the system.
Standard values for family are "serif", "sans", and "mono".

The font argument takes numerical values: 1 corresponds to plain text (the default), 2 to bold
face, 3 to italic, and 4 to bold italic.

For example, par(family="serif",font=2) sets the font to a bold Times New Roman
on Windows. You can check the other font mappings by running the windowsFonts()
command at the R prompt.

The fonts for axis annotations, labels, and plot main title can be set separately using the
font.axis, font.lab, and font.main arguments respectively.

There's more...
The choice of fonts is very limited if we just use the proxy family names. However, we can use
a wide range of fonts if we are exporting our graphs in the PostScript or PDF formats. The
postscriptFonts() and pdfFonts() functions show all the available fonts for those
devices. To see the PDF fonts, run the following command:

names(pdfFonts())
 [1] "serif" "sans" "mono"
 [4] "AvantGarde" "Bookman" "Courier"
 [7] "Helvetica" "Helvetica-Narrow" "NewCenturySchoolbook"
[10] "Palatino" "Times" "URWGothic"
[13] "URWBookman" "NimbusMon" "NimbusSan"

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

56

[16] "URWHelvetica" "NimbusSanCond" "CenturySch"
[19] "URWPalladio" "NimbusRom" "URWTimes"
[22] "Japan1" "Japan1HeiMin" "Japan1GothicBBB"
[25] "Japan1Ryumin" "Korea1" "Korea1deb"
[28] "CNS1" "GB1"

To use one of these font families in a PDF, we can pass the family argument to the
pdf() function:

pdf(family="AvantGarde") pdf(paste(family="AvantGarde")

See also

In Chapter 10, Finalizing Graphs, we will see some more practical recipes on setting fonts for
publications and presentations.

Choosing plotting point symbol styles
and sizes

In this recipe, we will see how we can adjust the styling of plotting symbols, which is useful
and necessary when we plot more than one set of points representing different groups of
data on the same graph.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt. You
can also choose to save the recipe as a script so that you can use it again later on. We will
also use the cityrain.csv example data file that we used in the first chapter. Please read
the file into R as follows:

rain<-read.csv("cityrain.csv")

How to do it...
The plotting symbol and size can be set using the pch and cex arguments:

plot(rnorm(100),pch=19,cex=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

How it works...
The pch argument stands for plotting character (symbol). It can take numerical values (usually
between 0 and 25) as well as single character values. Each numerical value represents a
different symbol. For example, 1 represents circles, 2 represents triangles, 3 represents plus
signs, and so on. If we set the value of pch to a character such as "*" or "£" in inverted
commas, then the data points are drawn as that character instead of the default circles.

The size of the plotting symbol is controlled by the cex argument, which takes numerical
values starting at 0 giving the amount by which plotting symbols should be magnified relative
to the default. Note that cex takes relative values (the default is 1). So, the absolute size may
vary depending on the defaults of the graphic device in use. For example, the size of plotting
symbols with the same cex value may be different for a graph saved as a PNG file versus a
graph saved as a PDF.

There's more...
The most common use of pch and cex is when we don't want to use color to distinguish
between different groups of data points. This is often the case in scientific journals which do
not accept color images. For example, let's plot the city rainfall data we looked at in Chapter 1
as a set of points instead of lines:

plot(rain$Tokyo,
ylim=c(0,250),
main="Monthly Rainfall in major cities",
xlab="Month of Year",

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

58

ylab="Rainfall (mm)",
pch=1)

points(rain$NewYork,pch=2)
points(rain$London,pch=3)
points(rain$Berlin,pch=4)

legend("top",
legend=c("Tokyo","New York","London","Berlin"),
ncol=4,
cex=0.8,
bty="n",
pch=1:4)

See also
We will see more examples of symbol settings later in the book, especially in the next chapter
on scatter plots.

Choosing line styles and width
Similar to plotting point symbols, R provides simple ways to adjust the style of lines in graphs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt. You
can also choose to save the recipe as a script so that you can use it again later on. We will
again use the cityrain.csv data file that we read in the last recipe.

How to do it...
Line styles can be set by using the lty and lwd arguments (for line type and width
respectively) in the plot(), lines(), and par() commands. Let's take our rainfall
example and apply different line styles keeping the color the same:

plot(rain$Tokyo,
ylim=c(0,250),
main="Monthly Rainfall in major cities",
xlab="Month of Year",
ylab="Rainfall (mm)",
type="l",
lty=1,
lwd=2)

lines(rain$NewYork,lty=2,lwd=2)
lines(rain$London,lty=3,lwd=2)
lines(rain$Berlin,lty=4,lwd=2)

legend("top",
legend=c("Tokyo","New York","London","Berlin"),
ncol=4,
cex=0.8,
bty="n",
lty=1:4,
lwd=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

60

How it works...
Both line type and width can be set with numerical values as shown in the previous example.
Line type number values correspond to types of lines:

ff 0: blank

ff 1: solid (default)

ff 2: dashed

ff 3: dotted

ff 4: dotdash

ff 5: longdash

ff 6: twodash

We can also use the character strings instead of numbers, for example, lty="dashed"
instead of lty=2.

The line width argument lwd takes positive numerical values. The default value is 1. In the
example we used a value of 2, thus making the lines thicker than default.

See also

We will explore more examples of line styles in subsequent chapters, especially Chapter 4,
Creating Line Graphs and Time Series Charts in which we will see some advanced line
graph recipes.

Choosing box styles
The styles of various boxes drawn in a graph such as the one around the plotting region and
the legend can be adjusted in a similar way to the line styles we saw in the last recipe.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt. You
can also choose to save the recipe as a script so that you can use it again later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

61

How to do it...
Let's say we want to make an L-shaped box around a graph, such that the default top and right
borders are not drawn. We can do so using the bty argument in the par() command:

par(bty="l")
plot(rnorm(100))

How it works...
The bty argument stands for box type and takes single characters in inverted commas as
values. The resulting box resembles the corresponding upper case letter. For example, the
default value is o, thus giving a box with all four edges. Other possible values are l, 7, c, u,
and]. If we do not wish to draw a box at all, we can set bty to n.

Note that setting bty to n doesn't suppress the drawing of axes. If we wish
to suppress those too then we would also have to set xaxt and yaxt to
n. Alternatively, we can simply set the axes argument to FALSE in the
plot() function call.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

62

There's more...
Box styles can be controlled in a finer way using the box() command. In addition to the lty
and lwd arguments, we can also specify where the box should be drawn using the which
parameter, which can take values of plot, figure, inner, and outer.

Let's say we want to draw a graph with an L-shaped box for the plot area and a full box around
the figure including the axis annotations and titles, then we can do:

par(oma=c(1,1,1,1))
plot(rnorm(100),bty="l")
box(which="figure")

Note that we had to first set the outer margins by setting the oma argument with the par()
function. We will learn more about this argument later in this chapter. If we did not set the
outer margins, the box around the figure would be right at the edge of the plot and get cut off
because the default margins are set to zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

63

Adjusting axis annotations and tick marks
The default axis settings are often not adequate to deal with all kinds of data. For example,
we may wish to change the number of tick marks along an axis or change the orientation of
the annotations if they are too long to fit horizontally. In this recipe we will cover some settings
which can be used to customize axes as per our requirements.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt.
You can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
We can set the xaxp and yaxp arguments with the par() command to specify co-ordinates
of the extreme tick marks and the number of intervals between tick marks in the form
c(min,max,n).

plot(rnorm(100),xaxp=c(0,100,10))

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

64

How it works...
When xaxp or yaxp is not specified, R automatically calculates the number of tick marks and
their values. By default, R extends the axis limits by adding 4% at each end and then draws an
axis which fits within the extended range. This means that even if we set the axis limits using
xlim or ylim, the graph corners don't exactly correspond with those values. To make sure
they do, we need to change the axis style using the xaxs argument, which takes one of two
possible values: r (regular or default) and i (internal). We need to set xaxs to i.

A vector of the form c(x1, x2, n) giving the co-ordinates of the extreme tick marks and the
number of intervals between tick marks

There's more...
To change the orientation of axis value annotations, we need to set the las argument of the
par() command. It takes one of four possible numeric values:

ff 0: always parallel to the axis (default)

ff 1: always horizontal

ff 2: always perpendicular to the axis

ff 3: always vertical

We can also use the axis() command to make a custom axis by specifying a number of
arguments. The basic arguments are:

ff side which takes numeric values (1=below, 2=left, 3=above and 4=right)

ff at which takes a vector of co-ordinates where tick marks are to be drawn

ff labels which takes a vector of tick mark annotations

We can separately set the line width for the axis lines and the tick marks by passing the lwd
and lwd.ticks arguments respectively. Similarly colors can be set using the col and col.
ticks arguments.

See also
We will come across various examples of custom axes in the following chapters as we explore
more advanced recipes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

65

Formatting log axes
In scientific analysis, we often need to represent data on a logarithmic scale. In this recipe, we
will see how we can do this easily in R.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt. You
can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
The simplest way to make an axes logarithmic is to use the log argument in
the plot() command:

plot(10^c(1:5),log="y",type="b")

How it works...
The log argument takes character values specifying which axes should be logarithmic:
 x for X axis only, y for Y axis only, and xy or yx for both axes.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond the Basics: Adjusting Key Parameters

66

There's more...
We can also set scales to be logarithmic by setting the xlog and ylog arguments to TRUE
with the par() command. This can be handy if we wish to have the same setting for multiple
plots as par() applies the settings to all subsequent plots on the same device.

Note that R will not create the plot if our data contains zero or negative values.

Setting graph margins and dimensions
In this recipe we will learn how to adjust graph margins and dimensions.

Getting ready
All you need to try out this recipe is to run R and type the recipe at the command prompt.
You can also choose to save the recipe as a script so that you can use it again later on.

How to do it...
We can use the fin and pin arguments of the par() command to set the figure region and
plot dimensions:

par(fin=c(6,6),
pin=c(4,4))

We can use the mai and omi arguments to adjust the inner and outer margins respectively:

par(mai=c(1,1,1,1),
omi=c(0.1,0.1,0.1,0.1))

How it works...
All the previous arguments accept values in inches as a pair of width and height values. The
default values for fin and pin are approximately 7x7 and 5.75x5.15. We have to be careful
not to specify bigger values for pin than fin or we would get an error.

Adjusting fin and pin is one way of setting the figure margins containing the axis
annotations and labels. Another way is to use the mai or mar arguments. In the example,
we used mai which takes a vector value in inches, whereas mar takes a vector of numerical
values in terms of number of lines of margins. It is better to use mar or mai because they
adjust the figure margins irrespective of the figure or plot size.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

67

We can also set an outer margin which is set to zero by default. This margin is useful if we
wish to contain the entire graph including axis labels within a box as we saw in an earlier
recipe. Like figure margins, outer margins can be set in inches with omi or in number of lines
of text using oma.

R Graphics by Paul Murrell is an excellent reference with visual explanations of how margins
work in R. See the book homepage for more details: http://www.stat.auckland.
ac.nz/~paul/RGraphics/rgraphics.html.

This talk by Paul Murrell also contains figures from the book explaining the same concepts:
http://www.stat.auckland.ac.nz/~paul/Talks/Rgraphics.pdf.

See also
We will come across examples of figure margin settings in some of the recipes in the
following chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

3
Creating Scatter Plots

In this chapter, we will cover:

ff Grouping data points within a scatter plot

ff Highlighting grouped data points by size and symbol type

ff Labelling data points

ff Correlation matrix using pairs plot

ff Adding error bars

ff Using jitter to distinguish closely packed data points

ff Adding linear model lines

ff Adding non-linear model curves

ff Adding non-parametric model curves with lowess

ff Making three-dimensional scatter plots

ff Making Quantile-Quantile plots

ff Displaying data density on axes

ff Making scatter plots with smoothed density representation

Introduction
In this chapter, we will learn about scatter plots in depth by looking at some advanced recipes.
Scatter plots are one of the most commonly used type of graphs in data analysis. In the first
chapter we learnt how to make a basic scatter plot. Now we will see how we can make more
enhanced plots by adjusting various arguments and using some new functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

70

So far, we have mostly only used the base graphics functions such as plot(), but in this
chapter we have recipes that use other graph libraries such as lattice and ggplot2, which
offer more advanced control over graphs. It is possible to make these advanced graphs using
the base library too, but the additional libraries give us ways to achieve the same results with
less code and often produce better looking graphs with the least amount of effort.

A lot of new functions will be introduced in this chapter. It is good practice to look up the
help file whenever you encounter a new function. For example, to look up the help file for the
plot() function, you can type ?plot or help(plot) at the R command prompt.

As the recipes in this chapter are slightly more advanced than the earlier chapters, it may take
some practice with multiple datasets before you are comfortable with using all the functions.
Example datasets are used in each recipe, but it is highly recommended to also work with
your own datasets and modify the recipes to suit your own analysis.

Grouping data points within a scatter plot
A basic scatter plot has a set of points plotted at the intersection of their values along X and
Y axes. Sometimes, we may wish to further distinguish between these points based on
another value associated with the points. In this recipe we will see how we can group data
points using color.

Getting ready
To try out this recipe, start R and type the recipe at the command prompt. You can also
choose to save the recipe as a script so that you can use it again later on.

We will also need the lattice and ggplot2 packages. The lattice package is included
automatically in the base R installation, but we will need to install the ggplot2 package.
To do this, run the following command at the R prompt:

install.packages("ggplot2")

How to do it...
As a first example, let's use the xyplot() command of the lattice library:

library(lattice)

xyplot(mpg~disp,
data=mtcars,
groups=cyl,
auto.key=list(corner=c(1,1)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

How it works...
In the example, we used the xyplot() command to plot mpg versus disp from the
pre-loaded mtcars dataset. We will understand this better if we look at the actual dataset.
Type mtcars at the R prompt and hit Enter. Let's look at a sample of the data to see the
row names and first three columns of data:

mtcars[1:6,1:3]
 mpg cyl disp
Mazda RX4 21.0 6 160
Mazda RX4 Wag 21.0 6 160
Datsun 710 22.8 4 108
Hornet 4 Drive 21.4 6 258
Hornet Sportabout 18.7 8 360
Valiant 18.1 6 225

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

72

So we plotted mpg against disp, but we also used the groups argument to group the data
points by cyl. That tells xyplot() that we would like to highlight the data points by different
colors based on the number of cylinders (cyl) each car has. Finally, the auto.key argument
is set to add a legend so that we know what values of cyl each color represents. The
auto.key argument can take a list of values. The only one we have provided here is the
location given by the corner argument, which we set to c(1,1) representing the top right
corner. We can also simply set auto.key to TRUE, which will draw the legend in the top
margin outside the plotting area.

There's more...
The xyplot() function has slightly obscure arguments. If you look at the help file on
xyplot() (by running ?xyplot), you will see that there are a lot of arguments which can
be used to control many different aspects of the graph. A simpler alternative to xyplot() is
using the functions from the ggplot2 package. Let's draw the same plot using ggplot2:

library(ggplot2)
qplot(disp,mpg,data=mtcars,col= as.factor(cyl))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

First we load the ggplot2 library and then use the qplot() function to make the previous
graph. We passed disp and mpg as the x and y variables respectively (note we can't use the
y~x notation in qplot). To group by cyl, all we had to do was set the col argument to cyl.
This tells qplot that we want to group the points based on the values of cyl and represent
them by different colors. The legend is automatically drawn to the right.

Note that we set col to as.factor(cyl) and not just cyl. This is to make sure that cyl
is read as a factor (or categorical value). If we just use cyl, then the plot is still the same,
but the color scale and legend uses all the values between 4 and 8 as it takes cyl as a
numerical variable.

Thus, it is easier and more intuitive to produce a better looking graph with ggplot2.

See also
We will use ggplot2 to group data points by size and symbol instead of color
in the next recipe.

Highlighting grouped data points by size
and symbol type

Sometimes we may not want to use different colors to represent different groups of data
points. For example, some journals accept graphs only in grayscale. In this recipe, we will
see how we can highlight grouped data points by symbol size and type.

Getting ready
We will use the ggplot2 library, so let's load it by running the following command:

library(ggplot2)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

74

How to do it...
First, let's group points by symbol type. Once again we use the qplot() function:

qplot(disp,mpg,data=mtcars,shape=as.factor(cyl))

Next, let's group the points simply by the size of the plotting symbol:

qplot(disp,mpg,data=mtcars,size=as.factor(cyl))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

How it works...
Highlighting groups of points by symbol type and size works exactly like color using the
qplot() functions. Instead of the col argument, we used the shape and size arguments
and set them to the factor we want to group the points by (in this case cyl). We can also use
combinations of any of these arguments. For example, we could use color to represent cyl
and size to represent gear.

Labelling data points
In this recipe, we will learn how to label individual or multiple data points with text.

Getting ready
For this recipe, we don't need to load any additional libraries. We just need to type the recipe
at the R prompt or run it as a script.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

76

How to do it...
Let's say we want to highlight one data point in the cars scatter plot we used in the last few
recipes. We can label it using the text() command:

plot(mpg~disp, data=mtcars)
text(258,22,"Hornet")

How it works...
In the previous example, we first plotted the graph and then used the text() function to
overlay a label at a specific location. The text() function takes the x and y co-ordinates and
text of the label as arguments. We specified the location as (258,22) and the label text as
Hornet. This function is especially useful when we want to label outliers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

There's more...
We can also use the text() function to label all the data points in a graph, instead of
just one or two. Let's look at another example where we wish to plot the life expectancy
in countries versus their health expenditure. Instead of representing the data as points,
let's use the name of countries to represent the values. We will use the example dataset
HealthExpenditure.csv:

health<-read.csv("HealthExpenditure.csv",header=TRUE)
plot(health$Expenditure,health$Life_Expectancy,type="n")
text(health$Expenditure,health$Life_Expectancy,health$Country)

We first use plot() command to make a graph of life expectancy versus expenditure. Note
that we set type equal to "n", which means that only the graph layout and axes are drawn
but no data points are drawn. Then we use the text() function to place country names as
labels at the x-y locations of all the data points. Thus, text() accepts vectors as values for
(x, y) and labels to dynamically label all the data points with the corresponding country names.
In case the text labels overlap, we can use the jitter() function or remove some labels to
reduce the overlap.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

78

Correlation matrix using pairs plot
In this recipe, we will learn how to create a correlation matrix, which is a handy way of quickly
finding out which variables in a dataset are correlated with each other.

Getting ready
To try out this recipe, simply type it at the command prompt. You can also choose to save the
recipe as a script so that you can use it again later on.

How to do it...

We will use the iris flowers dataset that we first used in the pairs plot recipe in Chapter 1:

panel.cor <- function(x, y, ...)
{
 par(usr = c(0, 1, 0, 1))
 txt <- as.character(format(cor(x, y), digits=2))
 text(0.5, 0.5, txt, cex = 6* abs(cor(x, y)))
}

pairs(iris[1:4], upper.panel=panel.cor)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

How it works...
We have basically used the pairs() function to make the graph, but in addition to the
dataset we also set the upper.panel argument to panel.cor, which is a function we
define beforehand. The upper.panel argument refers to the squares in the top-right half of
the previous graph the diagonal going from the top-left to the bottom-right. Correspondingly,
there is also a lower.panel argument for the bottom-left half of the graph.

The panel.cor value is defined as a function using the following notation:

newfunction<-function(arg1, arg2, ...)
{
#function code here
}

The panel.cor function does a few different things. First it sets the individual panel block
axes limits to c(0,1,0,1) using the par() command. Then it calculates the correlation
co-efficient value between a pair of variables up to two decimal values and formats it as a text
string so that it can then be passed to the text() function which places it in the center of
each block. Also note that the size of the labels is set using the cex argument to a multiple
of the absolute value of the correlation co-efficient. Thus the size of the value label also
indicates how important the correlation is.

Panel functions are in fact one of the most powerful features of the lattice package. To learn
more about them and the package, please refer to the excellent book "Lattice: Multivariate
Data Visualization with R" by Deepayan Sarkar, who is also the author of the package. The
book website is at:
http://lmdvr.r-forge.r-project.org/figures/figures.html

Adding error bars
In most scientific data visualization, error bars are necessary to show the level of confidence
in the data. However, there is no pre-defined function in the base R library for drawing error
bars. In this recipe we will learn how to draw error bars in scatterplots.

Getting ready
All you need for the next recipe is to type it at the R prompt as we will use some base library
functions to define a new error bar function. You may also save the recipe code as a script so
that you can use it again later on.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

80

How to do it...
Let's draw vertical error bars with 5% errors on our cars scatterplot using
the arrows() function:

plot(mpg~disp,data=mtcars)

arrows(x0=mtcars$disp,
y0=mtcars$mpg*0.95,
x1=mtcars$disp,
y1=mtcars$mpg*1.05,
angle=90,
code=3,
length=0.04,
lwd=0.4)

To add horizontal error bars (also 5% in both directions) to the same graph, run the following
code after making the earlier graph:

arrows(x0=mtcars$disp*0.95,
y0=mtcars$mpg,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

x1=mtcars$disp*1.05,
y1=mtcars$mpg,
angle=90,
code=3,
length=0.04,
lwd=0.4)

How it works...
In the previous two examples we used the arrows() function to draw horizontal and vertical
error bars. arrows() is a base graphics function for drawing different kinds of arrows. It
provides various arguments to adjust the size, location, and shape of the arrows such that
they can be used as error bars.

The first four arguments define the location of the start and end points of the arrows. The first
two arguments x0 and y0 are co-ordinates of the starting points and the next two arguments
x1 and y1 are co-ordinates of the end points of the arrows.

For drawing vertical error bars, say with a 5% error both ways, we set both x0 and x1 to
the x location of the data points (in this case mtcars$disp) and we set y0 and y1 to
the y values of the data points plus and minus the error margin (1.05*mtcars$mpg and
0.95*mtcars$mpg respectively).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

82

Similarly, for drawing horizontal error bars we have the same y co-ordinate for the start and
end, but add and subtract the error margin from the x co-ordinates of the data points.

The angle argument is for setting the angle between the shaft of the arrow and the edge of
the arrowhead. The default value is 30 (which looks more like an arrow), but to use as an error
bar we set it to 90 (to flatten out the arrowhead in a way).

The code argument sets the type of arrow to be drawn. Setting it to 3 means drawing an
arrowhead at both ends.

The length and lwd arguments set the length of the arrowheads and the line width of the
arrow respectively.

There's more...
The Hmisc package has the errbar function, which can be used to draw vertical error bars.
The plotrix package has the plotCI function which can be used to draw error bars or
confidence intervals. If we do not wish to write our own error bars function using arrows(),
it's easier to use one of these packages.

Using jitter to distinguish closely packed
data points

Sometimes when working with large datasets, we may find that a lot of data points on a
scatter plot overlap each other. In this recipe we will learn how to distinguish between closely
packed data points by adding a small amount of noise with the jitter() function.

Getting ready
All you need for the next recipe is to type it at the R prompt as we will use some base library
functions to define a new error bar function. You may also save the recipe code as a script so
that you can use it again later on.

How to do it...
First let's make a graph which has a lot of overlapping points:

x <- rbinom(1000, 10, 0.25)
y <- rbinom(1000, 10, 0.25)
plot(x,y)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

Now, let's add some noise to the data points to see whether there are overlapping points:

plot(jitter(x), jitter(y))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

84

How it works...
In the first graph, we plotted a 1,000 random data points generated with the rbinom()
function. However, as you can see in the first graph, only a few data points are visible because
there are multiple data points in the exact same location. Then when we plotted the points
by applying the jitter() function to the x and y values we can see a lot more of the 1,000
points. We can also see that most of the data is in the range of x and y values of 2 to 4.

Adding linear model lines
In this recipe we will learn how to fit a linear model and plot the linear regression line on a
scatter plot.

Getting ready
All you need for the next recipe is to type it at the R prompt as we will only use some base
functions. You may also save the recipe code as a script so that you can use it again later on.

How to do it...
Once again, let's use the mtcars dataset and draw a linear fit line for mpg versus disp:

plot(mtcars$mpg~mtcars$disp)
lmfit<-lm(mtcars$mpg~mtcars$disp)
abline(lmfit)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

How it works...
We first draw the basic scatter plot of mpg versus disp. Then we fit a linear model to the data
using the lm() function, which takes a formula in the form y~x as its argument. Finally, we
pass the linear fit to the abline() function, which reads the intercept and slope saved in the
lmfit object to draw a line.

Adding non-linear model curves
In this recipe, we will see how to fit and draw a non-linear model curve to a dataset.

Getting ready
All you need for the next recipe is to type it at the R prompt as we will only use some base
functions. You may also save the recipe code as a script so that you can use it again later on.

How to do it...
Firstly plot an exponential plot:

x <- -(1:100)/10
y <- 100 + 10 * exp(x / 2) + rnorm(x)/10
nlmod <- nls(y ~ Const + A * exp(B * x), trace=TRUE)

plot(x,y)
lines(x, predict(nlmod), col="red")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

86

How it works...
We first plot y against x, where x is a variable defined using the sequence operator : and y
is an exponential function of x. Then we fit a non-linear model to the data using the nls()
function. We save the model fit as nlmod and finally draw the model predicted values by
passing x and predict(nlmod) to the lines() function.

Adding non-parametric model curves
with lowess

In this recipe, we will learn how to use lowess, a non-parametric model, and add the resulting
prediction curve to a scatter plot.

Getting ready
For this recipe, we don't need to load any additional libraries. We just need to type the recipe
at the R prompt or run it as a script.

How to do it...
First, let's make a simple scatter plot with the pre-loaded cars dataset and add a couple of
lowess lines to it:

plot(cars, main = "lowess(cars)")
lines(lowess(cars), col = "blue")
lines(lowess(cars, f=0.3), col = "orange")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

How it works...
Standard R sessions include the lowess() function. It is a smoother which uses locally
weighted polynomial regression. The first argument, in this instance, is a data frame called
cars giving the x and y variables (speed and dist). So we apply the lowess function to the
dataset cars and in turn pass that result to the lines() function. The result of lowess
is a list with components named x and y. The lines() function automatically detects that
and uses the appropriate values to draw a smooth line through the scatter plot. The second
smooth line has an additional argument f, which is known as the smoother span. This gives
the proportion of points in the plot which influence the smoothening at each value. Larger
values give more smoothness. The default value is approximately 0.67, so when we changed
it to 0.3 we get a less smooth fit.

Making three-dimensional scatter plots
In this recipe we will learn how to make three-dimensional scatter plots which can be very
useful when we want to explore the relationships between more than two variables at a time.

Getting ready
We need to install and load the scatterplot3d package in order to run this recipe:

install.packages("scatterplot3d")
library(scatterplot3d)

How to do it...
Let's make the simplest default 3D-scatter plot with our mtcars dataset:

scatterplot3d(x=mtcars$wt,
 y=mtcars$disp,
 z=mtcars$mpg)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

88

How it works...
That was easy! The scatterplot3d() functions much like the basic plot() function. In
the previous example all we had to provide were wt, disp, and mpg from the mtcars dataset
as the x, y, and z arguments respectively.

There's more...
Just like plot() and other graph functions, scatterplot3d() accepts a number of
additional arguments using which we can configure the graph in many ways. Let's try some of
these additional settings.

Let's add a title to the graph, change the plotting symbol and the angle of viewing, add
highlighting, and add vertical drop lines to the x-y plane:

scatterplot3d(mtcars$wt,mtcars$disp,mtcars$mpg,
pch=16, highlight.3d=TRUE, angle=20,
xlab="Weight",ylab="Displacement",zlab="Fuel Economy (mpg)",
type="h",
main="Relationships between car specifications")

As you can see, we changed some of the graph settings using arguments we have already
used before in the plot() function. These include the axis titles, graph title, and symbol
type. In addition, we added some color highlighting by setting the highlight.3d argument
to TRUE, which draws the points in different colors related to the y co-ordinates (disp). The
angle argument is used to set the angle between the x and y axes, which controls the point
from which we view the data. Finally, setting type to h adds the vertical lines to the x-y plane,
which makes reading the graph easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

For more advanced three-dimensional data visualization in R, please have a look at the
rggobi package, which allows interactive analysis with 3D plots. The package can be
installed like any other R package:

install.packages("rggobi")

Please see the package website for more details at http://www.ggobi.org/rggobi/.

How to make Quantile-Quantile plots
In this recipe, we will see how to make Quantile-Quantile (Q-Q) plots, which are useful for
comparing two probability distributions.

Getting ready
For this recipe, we don't need to load any additional libraries. We just need to type
the recipe at the R prompt or run it as a script.

How to do it...
Let's see how the distribution of mpg in the mtcars dataset compares with a normal
distribution using the qnorm() function:

qqnorm(mtcars$mpg)
qqline(mtcars$mpg)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

90

How it works...
In the example, we used the qqnorm() function to create a normal Q-Q plot of mpg values.
We added a straight line with the qqline() function. The closer the dots to this line the
closer the distribution to a normal one.

There's more...
Another way of making a Q-Q plot is by calling the plot() function on a model fit. For
example, let's plot the following linear model fit:

lmfit<-lm(mtcars$mpg~mtcars$disp)
par(mfrow=c(2,2))
plot(lmfit)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

The second plot is a Q-Q plot comparing the model fit to a normal distribution.

Displaying data density on axes
In this recipe, we will learn to show the density of data points on a scatter plot in the margin of
the X or Y axes.

Getting ready
For this recipe, we don't need to load any additional libraries.

How to do it...
We will use the rug() function in the base graphics library. As a simple example to illustrate
the use of this function, let's see the data density of a normal distribution:

x<-rnorm(1000)
plot(density(x))
rug(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

92

How it works...
As can be seen from the example, the rug() function adds a set of lines just above the X
axis. A line or tick mark is placed wherever there is a point at that particular X location. So, the
more closely packed together the lines are, the higher the data density around those X values
is. The example is obvious as we know that in a normal distribution most values are around
the mean value (in this case zero).

The rug() function in its simplest form only takes one numeric vector as its argument. Note
that it draws on top of an existing plot.

There's more...
Let's take another example and explore some of the additional arguments that can be passed
to rug(). We will use the example metals.csv dataset:

metals<-read.csv("metals.csv")
plot(Ba~Cu,data=metals,xlim=c(0,100))
rug(metals$Cu)
rug(metals$Ba,side=2,col="red",ticksize=0.02)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

We first read the metals.csv file and plot barium (Ba) concentrations against copper (Cu)
concentrations. Next, we added a rug of Cu values on the X axis using the default settings.
Then we added another rug for Ba values on the Y axis by setting the side argument to 2.
The side argument takes four values:

ff 1: bottom axis (default)

ff 2: left

ff 3: top

ff 4: right

We also set the color of the tick marks to red using the col argument. Finally, we adjusted
the size of the tick marks using the ticksize argument which reads numeric values as a
fraction of the width of the plotting area. Positive values draw inward ticks and negative values
draw ticks on the outside.

Making scatter plots with smoothed density
representation

Smoothed density scatter plots are a good way of visualizing large datasets. In this recipe, we
will learn how to make them using the smoothScatter() function.

Getting ready
For this recipe, we don't need to load any additional libraries. We just need to type the recipe
at the R prompt or run it as a script.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Scatter Plots

94

How to do it...
We will use the smoothScatter() function which is part of the base graphics library.
We will use an example from the help file which can be accessed from the R prompt with
the help command:

n <- 10000
x <- matrix(rnorm(n), ncol=2)
y <- matrix(rnorm(n, mean=3, sd=1.5), ncol=2)
smoothScatter(x,y)

How it works...
The smoothScatter() function produces a smoothed color density representation of the
scatter plot, obtained through a kernel density estimate. We passed the x and y variables
which represented the data to be plotted. The gradient of the blue color shows the density of
the data points, with most points in the center of the graph. The dots in the outer light blue
circles are outliers.

There's more...
We can pass a number of arguments to smoothScatter() to adjust the smoothing,
for example nbin for specifying the number of equally spaced grid points for the density
estimation, and nrpoints to specify how many points to show as dots. In addition, we can
also pass standard arguments such as xlab, ylab, pch, cex, and so on to modify axis and
plotting symbol characteristics.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Creating Line Graphs

and Time Series
Charts

In this chapter, we will cover:

ff Adding customized legends for multiple line graphs

ff Using margin labels instead of legends for multiple line graphs

ff Adding horizontal and vertical grid lines

ff Adding marker lines at specific X and Y values

ff Creating sparklines

ff Plotting functions of a variable in a dataset

ff Formatting time series data for plotting

ff Plotting date and time on the X axis

ff Annotating axis labels in different human readable time formats

ff Adding vertical markers to indicate specific time events

ff Plotting data with varying time averaging periods

ff Creating stock charts

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

96

Introduction
In Chapter 1, Basic Graph Functions and Chapter 2, Beyond the Basics: Adjusting Key
Parameters, we learnt some basics of how to make line graphs and customize them by setting
certain arguments as per our needs. In this chapter, we will learn some more intermediate
to advanced recipes for customizing line graphs even further. We will look at ways to improve
and speed up line graphs with multiple lines representing more than one variable.

One of the most used form of line graphs is time trends or time series, where the X variable is
some measure of time such as year, month, week, day, hour, and so on. Reading, formatting,
and plotting dates can be quite tricky in R. In this chapter, we will see how to deal with dates
and process them to make time series charts with custom annotations, grid lines, uncertainty
bounds, and markers.

We will also learn to make some interesting and popular types of time series charts such as
sparklines and stock charts.

As the recipes in this chapter are slightly more advanced than the earlier chapters, it may take
some practice with multiple datasets before you are comfortable with using all the functions.
Example datasets are used in each recipe, but it is highly recommended to also work with
your own datasets and modify the recipes to suit your own analysis.

Adding customized legends for multiple
line graphs

Line graphs with more than one line, representing more than one variable, are quite common
in any kind of data analysis. In this recipe we will learn how to create and customize legends
for such graphs.

Getting ready
We will use the base graphics library for this recipe, so all you need to do is run the recipe at
the R prompt. It is good practice to save your code as a script to use again later.

How to do it...

Once again we will use the cityrain.csv example dataset that we used in Chapter 1 and
Chapter 2.

rain<-read.csv("cityrain.csv")
plot(rain$Tokyo,type="b",lwd=2,
xaxt="n",ylim=c(0,300),col="black",
xlab="Month",ylab="Rainfall (mm)",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

main="Monthly Rainfall in major cities")
axis(1,at=1:length(rain$Month),labels=rain$Month)
lines(rain$Berlin,col="red",type="b",lwd=2)
lines(rain$NewYork,col="orange",type="b",lwd=2)
lines(rain$London,col="purple",type="b",lwd=2)

legend("topright",legend=c("Tokyo","Berlin","New York","London"),
lty=1,lwd=2,pch=21,col=c("black","red","orange","purple"),
ncol=2,bty="n",cex=0.8,
text.col=c("black","red","orange","purple"),
inset=0.01)

How it works...
We used the legend() function, which we have already come across in earlier chapters. It
is quite a flexible function and allows us to adjust the placement and styling of the legend in
many ways.

The first argument we passed to legend() specifies the position of the legend within the
plot region. We used "topright"; other possible values are "bottomright", "bottom",
"bottomleft", "left", "topleft", "top", "right", and "center". We can also
specify the location of legend with x and y co-ordinates as we will soon see.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

98

The other important arguments specific to lines are lwd and lty which specify the line width
and type drawn in the legend box respectively. It is important to keep these the same as the
corresponding values in the plot() and lines() commands. We also set pch to 21 to
replicate the type="b" argument in the plot() command. cex and text.col set the size
and colors of the legend text. Note that we set the text colors to the same colors as the lines
they represent. Setting bty (box type) to "n" ensures no box is drawn around the legend. This
is good practice as it keeps the look of the graph clean. ncol sets the number of columns
over which the legend labels are spread and inset sets the inset distance from the margins
as a fraction of the plot region.

There's more...
Let's experiment by changing some of the arguments discussed:

legend(1,300,legend=c("Tokyo","Berlin","New York","London"),
lty=1,lwd=2,pch=21,col=c("black","red","orange","purple"),
horiz=TRUE,bty="n",bg="yellow",cex=1,
text.col=c("black","red","orange","purple"))

This time we used x and y co-ordinates instead of a keyword to position the legend.
We also set the horiz argument to TRUE. As the name suggests, horiz makes the
legend labels horizontal instead of the default vertical. Specifying horiz overrides the
ncol argument. Finally, we made the legend text bigger by setting cex to 1 and did not
use the inset argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

An alternative way of creating the previous plot without having to call plot() and lines()
multiple times is to use the matplot() function. To see details on how to use this function,
please see the help file by running ?matplot or help(matplot) at the R prompt.

See also
Have a look at the next recipe, which shows a way to label lines directly instead
of using a legend.

Using margin labels instead of legends
for multiple line graphs

While legends are the most commonly used method of providing a key to read multiple
variable graphs, they are often not the easiest to read. Labelling lines directly is one way
of getting around that problem.

Getting ready
We will use the base graphics library for this recipe, so all you need to do is run the recipe
at the R prompt. It is good practice to save your code as a script to use again later.

How to do it...
Let's use the gdp.txt example dataset to look at the trends in the annual GDP
of five countries:

gdp<-read.table("gdp_long.txt",header=T)

library(RColorBrewer)
pal<-brewer.pal(5,"Set1")

par(mar=par()$mar+c(0,0,0,2),bty="l")

plot(Canada~Year,data=gdp,type="l",lwd=2,lty=1,ylim=c(30,60),
col=pal[1],main="Percentage change in GDP",ylab="")

mtext(side=4,at=gdp$Canada[length(gdp$Canada)],text="Canada",
col=pal[1],line=0.3,las=2)

lines(gdp$France~gdp$Year,col=pal[2],lwd=2)

mtext(side=4,at=gdp$France[length(gdp$France)],text="France",

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

100

col=pal[2],line=0.3,las=2)

lines(gdp$Germany~gdp$Year,col=pal[3],lwd=2)

mtext(side=4,at=gdp$Germany[length(gdp$Germany)],text="Germany",
col=pal[3],line=0.3,las=2)

lines(gdp$Britain~gdp$Year,col=pal[4],lwd=2)

mtext(side=4,at=gdp$Britain[length(gdp$Britain)],text="Britain",
col=pal[4],line=0.3,las=2)

lines(gdp$USA~gdp$Year,col=pal[5],lwd=2)

mtext(side=4,at=gdp$USA[length(gdp$USA)]-2,
text="USA",col=pal[5],line=0.3,las=2)

How it works...
We first read the gdp.txt data file using the read.table() function. Next we
loaded the RColorBrewer color palette library and set our color palette pal to "Set1"
(with five colors).

Before drawing the graph, we used the par() command to add extra space to the right
margin, so that we have enough space for the labels. Depending on the size of the text labels
you may have to experiment with this margin until you get it right. Finally, we set the box type
(bty) to an L-shape ("l") so that there is no line on the right margin. We can also set it to "c"
if we want to keep the top line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

We used the mtext() function to label each of the lines individually in the right margin. The
first argument we passed to the function is the side where we want the label to be placed.
Sides (margins) are numbered starting from 1 for the bottom side and going round in a
clockwise direction so that 2 is left, 3 is top, and 4 is right.

The at argument was used to specify the Y co-ordinate of the label. This is a bit tricky because
we have to make sure we place the label as close to the corresponding line as possible. So, here
we have used the last value of each line. For example, gdp$France[length(gdp$France)
picks the last value in the France vector by using its length as the index. Note that we had to
adjust the value for USA by subtracting 2 from its last value so that it doesn't overlap the label
for Canada.

We used the text argument to set the text of the labels as country names. We set the col
argument to the appropriate element of the pal vector by using a number index. The line
argument sets an offset in terms of margin lines, starting at 0 counting outwards. Finally,
setting las to 2 rotates the labels to be perpendicular to the axis, instead of the default
value of 1 which makes them parallel to the axis.

There's more...
Sometimes, simply using the last value of a set of values may not work because the value
may be missing. In that case we can use the second last value or visually choose a value that
places the label closest to the line. Also, the size of the plot window and the proximity of the
final values may cause overlapping of labels. So, we may need to iterate a few times before we
get the placement right. We can write functions to automate this process but it is still good to
visually inspect the outcome.

Adding horizontal and vertical grid lines
In this recipe we will learn how to add and customize grid lines to graphs.

Getting ready
We will use the base graphics for this recipe, so all you need to do is run the recipe at the R
prompt. It is good practice to save your code as a script to use again later.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

102

How to do it...
Let's use the city rainfall example again to see how we can add grid lines to that graph:

rain<-read.csv("cityrain.csv")
plot(rain$Tokyo,type="b",lwd=2,
xaxt="n",ylim=c(0,300),col="black",
xlab="Month",ylab="Rainfall (mm)",
main="Monthly Rainfall in Tokyo")
axis(1,at=1:length(rain$Month),labels=rain$Month)

grid()

How it works...
It's as simple as that! Adding a simple default grid just needs calling the grid() function
without passing any arguments. grid() automatically computes the number of cells in the
grid and aligns with the tick marks on the default axes. It uses the abline() function
(which we will see again in the next recipe) to draw the grid lines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

There's more...
We can specify the location of the grid lines using the nx and ny arguments, corresponding
to vertical and horizontal grid lines respectively. By default, these two arguments are set
to NULL, which results in the default grid lines in both X and Y directions. If we do not wish
to draw grid lines in a particular direction, we can set nx or ny to NA. If nx is set to NA, no
vertical grid lines are drawn and if ny is set to NA, no horizontal grid lines are drawn.

The default grid lines are very thin and light colored, they can barely be seen. We can
customize the styling of the grid lines using the lwd, lty, and col arguments.

grid(nx=NA, ny=8,
lwd=1,lty=2,col="blue")

See also
In the next recipe we will learn to use the abline() function, which we can use to draw lines
at any specific X and Y locations.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

104

Adding marker lines at specific
X and Y values

Sometimes we may only want to draw one or a few lines to indicate specific cut-off or
threshold values. In this recipe, we will learn how to do that using the abline() function.

Getting ready
We will use the base graphics library for this recipe, so all you need to do is run the recipe at
the R prompt. It is good practice to save your code as a script to use again later.

How to do it...
Let's draw a vertical line at the month of September in the rainfall graph for Tokyo:

rain <- read.csv("cityrain.csv")
plot(rain$Tokyo,type="b",lwd=2,
xaxt="n",ylim=c(0,300),col="black",
xlab="Month",ylab="Rainfall (mm)",
main="Monthly Rainfall in Tokyo")
axis(1,at=1:length(rain$Month),labels=rain$Month)

abline(v=9)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

How it works...
To draw marker lines with abline() at specific X or Y locations, we have to set the v (as in
vertical) or h (as in horizontal) arguments respectively. In the example, we set v=9 (the index
of the month September in the Month vector).

There's more...
Now let's add a red dotted horizontal line to the graph to denote a high rainfall cutoff
of 150 mm:

abline(h=150,col="red",lty=2)

Creating sparklines
Sparklines are small and simple line graphs, useful for summarizing trend data in a small
space. The word "sparklines" was coined by Prof. Edward Tufte. In this recipe we will learn how
to make sparklines using a basic plot() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

106

Getting ready
We will use the base graphics library for this recipe, so all you need to do is run the recipe at
the R prompt. It is good practice to save your code as a script to use again later.

How to do it...
Let's represent our city rainfall data in the form of sparklines:

rain <- read.csv("cityrain.csv")

par(mfrow=c(4,1),mar=c(5,7,4,2),omi=c(0.2,2,0.2,2))

for(i in 2:5)
{
 plot(rain[,i],ann=FALSE,axes=FALSE,type="l",
 col="gray",lwd=2)

 mtext(side=2,at=mean(rain[,i]),names(rain[i]),
 las=2,col="black")

 mtext(side=4,at=mean(rain[,i]),mean(rain[i]),
 las=2,col="black")

 points(which.min(rain[,i]),min(rain[,i]),pch=19,col="blue")
 points(which.max(rain[,i]),max(rain[,i]),pch=19,col="red")
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

How it works...
The key feature of sparklines is to show the trend in the data with just one line without any
axis annotations. In the example, we have shown the trend with a gray line. The minimum
and maximum values for each line is represented by blue and red dots respectively, while the
mean value is displayed on the right margin.

Since sparklines have to be very small graphics, we first set the margins such that the plot
area is small and the outer margins are large. We did this by setting the outer margins in
inches using the omi argument of the par() function. Depending on the dimensions of the
plot, sometimes R may produce an error saying that the figure margins are too large and not
draw the graph. In that case, we need to try lower values for the margins. Note we also set up
a 4x1 layout with the mfrow argument.

Next we set up a for loop to draw a sparkline for each of the four cities. We drew the line with
the plot() command, setting both annotations (ann) and axes to false. Then we used the
mtext() function to place the name of the city and the mean value of rainfall to the left and
right of the line respectively. Finally, we plotted the minimum and maximum values using the
points() command. Note we use the which.min() and which.max() functions to get
the indices of the minimum and maximum values respectively and used them as the x value
for the points() function calls.

Plotting functions of a variable in a dataset
Sometimes we may wish to visualize the effect of applying a mathematical function to a set of
values, instead of the original variable itself. In this recipe, we will see a simple method to plot
functions of variables.

Getting ready
We will use the base graphics library for this recipe, so all you need to do is run the recipe at
the R prompt. It is good practice to save your code as a script to use again later.

How to do it...
Let's say we want to plot the difference in rainfall between Tokyo and London. We can do that
just by passing the correct expression to the plot() function:

rain <- read.csv("cityrain.csv")

plot(rain$Berlin-rain$London,type="l",lwd=2,
xaxt="n",col="blue",
xlab="Month",ylab="Difference in Rainfall (mm)",
main="Difference in Rainfall between Berlin and London (Berlin-

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

108

London)")

axis(1,at=1:length(rain$Month),labels=rain$Month)

abline(h=0,col="red")

How it works...
So, plotting a function of a variable is as simple as passing an expression to the plot()
function. In the example, the function consisted of two variables in the dataset. We can
also plot transformations applied to any one variable.

There's more...
As another simple example, let's see how we can plot a polynomial function of a set
of numbers:

x<-1:100
y<-x^3-6*x^2+5*x+10
plot(y~x,type="l",main=expression(f(x)==x^3-6*x^2+5*x+10))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

In this example we defined y as a polynomial function of a vector of the numbers 1 to 100
and then plotted it using the plot() function. Note that we used the expression()
function to format the title of the graph. By using expression() we could get the power
values as superscripts.

Formatting time series data for plotting
Time series or trend charts are the most common form of line graphs. There are a lot of ways
in R to plot such data, however it is important to first format the data in a suitable format that
R can understand. In this recipe, we will look at some ways of formatting time series data
using the base and some additional packages.

Getting ready
In addition to the basic R functions, we will also be using the zoo package in this recipe. So
first we need to install it:

install.packages("zoo")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

110

How to do it...
Let's use the dailysales.csv example dataset and format its date column:

sales<-read.csv("dailysales.csv")

d1<-as.Date(sales$date,"%d/%m/%y")

d2<-strptime(sales$date,"%d/%m/%y")

data.class(d1)
[1] "Date"

data.class(d2)
[1] "POSIXt"

How it works...
We have seen two different functions to convert a character vector into dates. If we did not
convert the date column, R would not automatically recognize the values in the column as
dates. Instead, the column would be treated as a character vector or a factor.

The as.Date() function takes at least two arguments: the character vector to be converted
to dates and the format to which we want it converted. It returns an object of the Date class,
represented as the number of days since 1970-01-01, with negative values for earlier dates.
The values in the date column are in a DD/MM/YYYY format (you can verify this by typing
sales$date at the R prompt). So, we specify the format argument as "%d/%m/%y". Please
note that this order is important. If we instead use "%m/%d/%y", then our days will be read as
months and vice-versa. The quotes around the value are also necessary.

The strptime() function is another way to convert character vectors into dates. However,
strptime() returns a different kind of object of class POSIXlt, which is a named list of
vectors representing the different components of a date and time, such as year, month, day,
hour, seconds, minutes, and a few more.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

111

POSIXlt is one of the two basic classes of date/times in R. The other class POSIXct
represents the (signed) number of seconds since the beginning of 1970 (in the UTC time
zone) as a numeric vector. POSIXct is more convenient for including in data frames, and
POSIXlt is closer to human readable forms. A virtual class POSIXt inherits from both of the
classes. That's why when we ran the data.class() function on d2 earlier, we get POSIXt
as the result.

strptime() also takes a character vector to be converted and the format as arguments.

There's more...
The zoo package is handy for dealing with time series data. The zoo() function takes an
argument x, which can be a numeric vector, matrix, or factor. It also takes an order.by
argument which has to be an index vector with unique entries by which the observations
in x are ordered:

library(zoo)

d3<-zoo(sales$units,as.Date(sales$date,"%d/%m/%y"))

data.class(d3)
[1] "zoo"

See the help on DateTimeClasses to find out more details about the ways dates can be
represented in R.

Plotting date and time on the X axis
In this recipe, we will learn how to plot formatted date or time values on the X axis.

Getting ready
For the first example, we only need to use the base graphics function plot().

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

112

How to do it...
We will use the dailysales.csv example dataset to plot the number of units of a product
sold daily in a month:

sales<-read.csv("dailysales.csv")
plot(sales$units~as.Date(sales$date,"%d/%m/%y"),type="l",
xlab="Date",ylab="Units Sold")

How it works...
Once we have formatted the series of dates using as.Date(), we can simply pass it to the
plot() function as the x variable in either the plot(x,y) or plot(y~x) format.

We can also use strptime() instead of using as.Date(). However, we cannot pass the
object returned by strptime() to plot() in the plot(y~x) format. We must use the
plot(x,y) format as follows:

plot(strptime(sales$date,"%d/%m/%Y"),sales$units,type="l",
xlab="Date",ylab="Units Sold")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

There's more...
We can plot the example using the zoo() function as follows (assuming zoo
is already installed):

library(zoo)
plot(zoo(sales$units,as.Date(sales$date,"%d/%m/%y")))

Note that we don't need to specify x and y separately when plotting using zoo; we can just
pass the object returned by zoo() to plot(). We also need not specify the type as "l".

Let's look at another example which has full date and time values on the X axis, instead of just
dates. We will use the openair.csv example dataset for this example:

air<-read.csv("openair.csv")

plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"),type="l",
xlab="Time", ylab="Concentration (ppb)",
main="Time trend of Oxides of Nitrogen")

The same graph can be made using zoo as follows:

plot(zoo(air$nox,as.Date(air$date,"%d/%m/%Y %H:%M")),
xlab="Time", ylab="Concentration (ppb)",
main="Time trend of Oxides of Nitrogen")

Annotating axis labels in different human
readable time formats

In this recipe, we will learn how to choose the formatting of time axis labels, instead of just
using the defaults.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

114

Getting ready
We will only use the basic R functions for this recipe. Make sure you are at the R prompt and
load the openair.csv dataset:

air<-read.csv("openair.csv")

How to do it...
Let's redraw our original example of plotting air pollution data from the last recipe, but with
labels for each month and year pairing:

plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"),type="l",
xaxt="n",
xlab="Time", ylab="Concentration (ppb)",
main="Time trend of Oxides of Nitrogen")

xlabels<-strptime(air$date, format = "%d/%m/%Y %H:%M")
axis.Date(1, at=xlabels[xlabels$mday==1], format="%b-%Y")

How it works...
In our original example of plotting air pollution data in the last recipe, we only formatted
the date/time vector to pass as an x argument to plot(), but the axis labels were chosen
automatically by R as the years 1998, 2000, 2002, and 2004. In this example, we drew a
custom axis with labels for each month and year pairing.

We first created an object xlabels of class POSIXlt by using the strptime() function.
Then we used the axis.Date() function to add the X axis. axis.Date() is similar to the
axis() function and takes the side and at arguments. In addition, it also takes the format
argument, which we can use to specify the format of the labels. We specified the at argument
as a subset of xlabels for only the first day of each month by setting mday=1. The format
value "%b-%Y" means abbreviated month name with full year.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

There's more...
See the help on strptime() to see all the possible formatting options.

Adding vertical markers to indicate
specific time events

We may wish to indicate specific points of importance or measurements in a time series,
where there is a significant event or change in the data. In this recipe, we will learn how
to add vertical markers using the abline() function.

Getting ready
We will only use the basic R functions for this recipe. Make sure you are at the R prompt and
load the openair.csv dataset:

air<-read.csv("openair.csv")

How to do it...
Let's take our air pollution time series example again and draw a red vertical line on
Christmas day – 25/12/2003:

plot(air$nox~as.Date(air$date,"%d/%m/%Y %H:%M"),type="l",
xlab="Time", ylab="Concentration (ppb)",
main="Time trend of Oxides of Nitrogen")

abline(v=as.Date("25/12/2003","%d/%m/%Y"))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

116

How it works...
As we have seen before in the recipe introducing abline(), we drew a vertical line in the
example by setting the v argument to the date we want to mark. We specified 25/12/2003 as
the x co-ordinate by using the as.Date() function. Note that the original time series plotted
also contains the timestamp in addition to the dates. Since we didn't specify a time, the line
was plotted at the start of the specified date 25/12/2003 00:00.

There's more...
Let's look at another example, where we want to draw a vertical marker line on Christmas day
of every year:

markers<-seq(from=as.Date("25/12/1998","%d/%m/%Y"),
to=as.Date("25/12/2004","%d/%m/%Y"),
by="year")

abline(v=markers,col="red")

We created a sequence of the Christmas dates for each year using the seq() function,
which takes from, to, and by arguments. Then we passed this vector to the abline()
function as v.

One important thing to note is that by default R does not deal with gaps in a time series.
There can be missing values denoted by NA and as you can see in the previous examples,
the graphs show gaps in those places. However, if any dates or time intervals are missing
from the actual dataset, then R draws a line connecting the data points before and after
the gap instead of leaving it blank. In order to remove this connecting line, we must fill in
the missing time intervals in the gap and set the y values to NA.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

Plotting data with varying time
averaging periods

In this recipe, we will learn how we can plot the same time series data by averaging it over
different time periods using the aggregate() function.

Getting ready
We will only use the basic R functions for this recipe. Make sure you load the
openair.csv dataset:

air<-read.csv("openair.csv")

How to do it...
Let's plot the air pollution time series with weekly and daily averages instead of hourly values:

air$date = as.POSIXct(strptime(air$date, format = "%d/%m/%Y %H:%M",
"GMT"))
means <- aggregate(air["nox"], format(air["date"],"%Y-%U"),mean,
na.rm = TRUE)
means$date <- seq(air$date[1], air$date[nrow(air)],
length = nrow(means))
plot(means$date, means$nox, type = "l")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

118

means <- aggregate(air["nox"], format(air["date"],"%Y-%j"),mean,
na.rm = TRUE)
means$date <- seq(air$date[1], air$date[nrow(air)],
length = nrow(means))
plot(means$date, means$nox, type = "l",
xlab="Time", ylab="Concentration (ppb)",
main="Daily Average Concentrations of Oxides of Nitrogen")

How it works...
The key function in these examples is the aggregate() function. Its first argument is
R object x, which has to be aggregated, in this case air["nox"]. The next argument is
the list of grouping elements over which x has to be aggregated. This is the part where we
specify the time period over which to average the values. In the first example we set it to
format(air["date"],"%Y-%U"), which extracts all the weeks out of the date column
using the format() function. The third argument is FUN or the name of the function to apply
to the selected values, in our case mean. Finally, we set na.rm to TRUE, thus telling R to
ignore missing values denoted by NA.

Once we have the mean values saved in a data frame, we add a date field to this new vector
using the seq() function and then plot the means against the date using plot().

In the second example, we use format(air["date"],"%Y-%j") to calculate daily means.

Creating stock charts
Given R's powerful analysis and graphical capabilities, it is no surprise that R is very popular
in the world of finance. In this recipe, we will learn how to plot data from the stock market
using some special libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

119

Getting ready
We need the tseries and quantmod packages to run the following recipes. Let's install and
load these two packages:

install.packages("quantmod")
install.packages("tseries")
library(quantmod)
library(tseries)

How to do it...
Let's first see an example using the tseries library function get.hist.quotes(). We will
compare stock prices of three technology companies:

aapl<-get.hist.quote(instrument = "aapl", quote = c("Cl", "Vol"))

goog <- get.hist.quote(instrument = "goog", quote = c("Cl", "Vol"))

msft <- get.hist.quote(instrument = "msft", quote = c("Cl", "Vol"))

plot(msft$Close,main = "Stock Price Comparison",
ylim=c(0,800), col="red", type="l", lwd=0.5,
pch=19,cex=0.6, xlab="Date" ,ylab="Stock Price (USD)")

lines(goog$Close,col="blue",lwd=0.5)
lines(aapl$Close,col="gray",lwd=0.5)

legend("top",horiz=T,legend=c("Microsoft","Google","Apple"),
col=c("red","blue","gray"),lty=1,bty="n")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Line Graphs and Time Series Charts

120

How it works...
The get.hist.quote() function retrieves historical financial data from one of two
providers (yahoo (for Yahoo) or oanda (for OANDA), yahoo being the default). We passed the
instrument and quote arguments to this function which specify the name of the stock and
the measure of stock data we want. In our example, we used the function three times to pull
the closing price and volume for Microsoft (msft), Google (goog), and Apple (aapl). We then
plotted the three stock prices on a line graph using the plot() and lines() functions.

There's more...
Now let's make some charts using the quantmod package. This package provides inbuilt
graphics functions to visualize the stock data:

getSymbols("AAPL",src="yahoo")
barChart(AAPL)

First we obtained stock data for Apple using the getSymbols() function by specifying the
stock name and source. Again, the default source is Yahoo. The stock data is stored in an R
object with the same name as the stock symbol (AAPL for Apple, GOOG for Google, and so on).
Then we passed this object to the barChart() function to produce the previous
graph above. Of course, it is more than just a bar chart.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

A similar chart in a different color scheme can be drawn as follows:

candleChart(AAPL,theme="white")

For more detailed information about the quantmod package, visit its website at:
http://www.quantmod.com

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Creating Bar, Dot, and

Pie Charts

In this chapter, we will cover:

ff Creating bar charts with more than one factor variable

ff Creating stacked bar charts

ff Adjusting the orientation of bars—horizontal and vertical

ff Adjusting bar widths, spacing, colors, and borders

ff Displaying values on top of or next to the bars

ff Placing labels inside bars

ff Creating bar charts with vertical error bars

ff Modifying dot charts by grouping variables

ff Making better readable pie charts with clockwise-ordered slices

ff Labelling a pie chart with percentage values for each slice

ff Adding a legend to a pie chart

Introduction
In this chapter, we will look in some detail at bar charts, dot charts, and pie charts. Bar charts
are used commonly both in reporting business data and also in scientific analysis. We will
see how we can enhance the basic bar charts in R by adjusting some parameters in the base
graphics library. There are a few different packages which can be used to make bar charts
(most notably lattice and ggplot2). But in this chapter, we will see how we can create
many useful variations of bar graphs only by using the base library functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

124

We will also look at a few recipes on pie charts—easily the most criticized type of chart in the
scientific community, but also one of the most popular in the business world. While it is true
that pie charts often obscure the data and are hard to read, the recipes in this chapter offer
some ways to make pie charts more readable.

Some of the parameters are obscure and sometimes it may not be absolutely clear as to what
values an argument can take. It is best to experiment as you go along and try out the recipes.
You may not understand a function or its arguments fully, until you have tried to graph a few
of your own datasets. If you get stuck at any point, first look at the help file of the relevant
function. If you are still stuck after having read the help files, then you may search the R
mailing list (http://www.r-project.org/mail.html) and forums (http://r.789695.
n4.nabble.com/ and http://stackoverflow.com/questions/tagged/r). Often,
the problems one comes across are common and may have already been addressed by
the R community in response to someone else's question.

Creating bar charts with more than one
factor variable

In this first recipe, we will learn how to make bar charts for data with more than one category.
Such bar charts are commonly used for comparing values of the same measure across
different categories.

Getting ready
We will be using the base library barplot() function, but we will also use the
RColorBrewer package to choose a good color palette. So let's first install and
load that package:

install.packages("RColorBrewer") #if not already installed
library(RColorBrewer)

How to do it...
Let's use the citysales.csv example dataset that we used in the first chapter once again:

citysales<-read.csv("citysales.csv")

barplot(as.matrix(citysales[,2:4]), beside=TRUE,
legend.text=citysales$City,
args.legend=list(bty="n",horiz=TRUE),
col=brewer.pal(5,"Set1"),
border="white",ylim=c(0,100),
ylab="Sales Revenue (1,000's of USD)",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

125

main="Sales Figures")

box(bty="l")

How it works...
The key argument for drawing bar charts with more than one category is the beside
argument, which must be set to TRUE. The first argument is the input data, which must be in
the form of a matrix. The columns of the matrix are the categories (in this case ProductA,
ProductB, and ProductC), while the rows are the set of values for each category. If we do
not set the beside argument to TRUE, we will get a stacked bar chart (as we will see later in
this chapter).

Most of the other arguments of the barplot() function work the same way as they do for
plot(). The args.legend argument takes a list of arguments and passes them on to the
legend() function. We can instead also call the legend() function separately after the
barplot() call.

See also
In the next recipe, we will learn how to make stacked bar charts.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

126

Creating stacked bar charts
Stacked bar charts are another form of bar charts used to compare values across categories.
As the name implies, the bars for each category are stacked on top of each other instead of
being placed next to each other.

Getting ready
We will use the same dataset and color scheme as the last recipe, so please ensure you have
the RColorBrewer package installed and loaded:

install.packages("RColorBrewer")
library(RColorBrewer)

How to do it...
Let's draw a stacked bar chart of sales figures across the five cities:

citysales<-read.csv("citysales.csv")

barplot(as.matrix(citysales[,2:4]),
legend.text=citysales$City,
args.legend=list(bty="n",horiz=TRUE),
col=brewer.pal(5,"Set1"),border="white",
ylim=c(0,200),ylab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

127

How it works...
If you compare the code for this example and the last recipe, you will see that the main
difference is that we did not use the beside argument. By default, it is set to FALSE,
which results in a stacked bar chart. We extended the top y axis limit from 100 up to 200.

There's more...
Another common use of stacked charts is to compare relative proportion of values across
categories. Let's use the example dataset citysalesperc.csv, which contains the
percentage values of sales data by city for each of the three products A, B, and C:

citysalesperc<-read.csv("citysalesperc.csv")

par(mar=c(5,4,4,8),xpd=T)

barplot(as.matrix(citysalesperc[,2:4]),
col=brewer.pal(5,"Set1"),border="white",
ylab="Sales Revenue (1,000's of USD)",
main="Percentage Sales Figures")

legend("right",legend=citysalesperc$City,bty="n",
inset=c(-0.3,0),fill=brewer.pal(5,"Set1"))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

128

In the graph, the Y axis shows the percentage of sales of a product in a city. It is a good way to
quickly visually compare the relative proportion of product sales in cities. The code we used
for the main graph is the same as the previous example. One difference is that we drew the
legend separately using the legend() command. Note that we drew the legend outside the
plot region by setting the x part of inset to a negative value. We also had to create a larger
margin to the right using the mar argument in the par() function and also setting xpd to
TRUE to allow the legend to be drawn outside the plot region.

Adjusting the orientation of bars—horizontal
and vertical

In this recipe, we will learn how to adjust the orientation of bars to horizontal or vertical.

Getting ready
We will use the same dataset we used in the last few recipes (citysales.csv) and the
RColorBrewer color palette package.

How to do it...
Let's make a bar chart with horizontal bars:

barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE,
legend.text=citysales$City, args.legend=list(bty="n"),
col=brewer.pal(5,"Set1"),border="white",
xlim=c(0,100), xlab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

129

How it works...
In the example, we set the horiz argument to TRUE, which makes the bars horizontal. By
default horiz is set to FALSE, making the bars vertical. While it's really easy to make the
bars horizontal, we must remember that the axes are reversed when we do that. So, in the
example, we had to set the limits for the X axis (xlim instead of ylim) and set xlab (instead
of ylab) to "Sales Revenue". We also removed the horiz=TRUE argument from the
legend arguments list because that would have plotted some of the legend labels on top of
the ProductC bars. Removing the horiz argument puts the legend back into its default top
right position.

There's more...
Let's draw the stacked bar chart from the last recipe with horizontal bars:

par(mar=c(5,4,4,8),xpd=T)

barplot(as.matrix(citysalesperc[,2:4]), horiz=TRUE,
col=brewer.pal(5,"Set1"),border="white",
xlab="Percentage of Sales",
main="Perecentage Sales Figures")

legend("right",legend=citysalesperc$City,bty="n",
inset=c(-0.3,0),fill=brewer.pal(5,"Set1"))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

130

Again, we had to simply set the horiz argument to TRUE and adjust the margins to
accommodate the legend to the right outside the plot region.

Adjusting bar widths, spacing, colors,
and borders

In this recipe, we will learn how to adjust the styling of bars by setting their width, the space
between them, colors, and borders.

Getting ready
We will continue using the citysales.csv example dataset in this recipe. Make sure you
have loaded it into R and type the recipe at the R prompt. You may also want to save the
recipe as a script so that you can easily run it again later.

How to do it...
Let's adjust all the arguments at once to make the same graph as in the first recipe but with
different visual settings:

barplot(as.matrix(citysales[,2:4]), beside=TRUE,
legend.text=citysales$City, args.legend=list(bty="n",horiz=T),
col=c("#E5562A","#491A5B","#8C6CA8","#BD1B8A","#7CB6E4"),
border=FALSE,space=c(0,5),
ylim=c(0,100),ylab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

131

How it works...
Firstly, we changed the colors of the bars by setting the col argument to a vector of five
colors we formed by hand, instead of using a RColorBrewer palette. If we do not set the col
argument, R automatically uses shades from the grayscale.

Next, we set the border argument to FALSE. This tells R not to draw borders around each
individual bar. By default black borders are drawn around bars, but they usually don't look very
good. So, we set border to "white" in the earlier recipes of this chapter.

Finally, we set the space argument to c(0,5), a vector of two numbers, to set the space
between bars within each category and between the groups of bars representing each
category respectively. We left no space between bars within a category and increased the
space between categories.

Adjusting the space between bars automatically adjusts the width of the bars too. There is
also a width argument, which we can use to set the width when plotting data for a single
category, but the width argument is ignored when plotting for multiple categories. So, it's
best to use space instead.

There's more...
The following is an example showing the previous graph with the default settings for color,
spacing, and borders:

barplot(as.matrix(citysales[,2:4]), beside=T,
legend.text=citysales$City,args.legend=list(bty="n",horiz=T),
ylim=c(0,100),ylab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

132

Displaying values on top of or next to
the bars

Sometimes it is useful to have the exact values displayed on a bar chart to enable quick and
accurate reading. There is no built-in function in R to do this. In this recipe, we will learn how
to do this by writing some custom code.

Getting ready
Once again we will use the citysales.csv dataset and build upon the graph from the first
recipe in this chapter.

How to do it...
Let's make the graph with vertical bars and display the sales values just on top of the bars:

x<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,
legend.text=citysales$City, args.legend=list(bty="n",horiz=TRUE),
col=brewer.pal(5,"Set1"),border="white",
ylim=c(0,100),ylab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

y<-as.matrix(citysales[,2:4])

text(x,y+2,labels=as.character(y))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

133

How it works...
In the example, we have used the text() function to label the bars with the corresponding
values. To do so, we constructed two vectors x and y with the X and Y co-ordinates of the
labels. We first created the barplot and saved it as an R object called x. When the result of
the barplot() function call is assigned to an object, a vector containing the X co-ordinates
of the center of each of the bars is returned and saved in that object. You can verify this by
typing x at the R prompt and hitting Enter.

For the y vector, we created a matrix of the sales value columns. Finally, we passed the x
and y values to text() as co-ordinates and set the labels argument to y values transformed
into characters using the as.character() function. Note that we added 2 to each y value
so that the labels are placed slightly above the bar. We may have to add a different value
depending on the scale of the graph.

There's more...
We can place the value labels next to the bars in a horizontal bar chart simply by swapping
the x and y vectors in the text() function call:

y<-barplot(as.matrix(citysales[,2:4]), beside=TRUE,horiz=TRUE,
legend.text=citysales$City,args.legend=list(bty="n"),
col=brewer.pal(5,"Set1"),border="white",
xlim=c(0,100),xlab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

x<-as.matrix(citysales[,2:4])

text(x+2,y,labels=as.character(x))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

134

See also
In the next recipe, we will learn how to place text labels inside bars.

Placing labels inside bars
Sometimes we may wish to label bars by placing text inside the bars instead of using a legend.
In this recipe, we will learn how to do that based on code similar to the previous recipe.

Getting ready
We will use the cityrain.csv example dataset. We don't need to load any additional
packages for this recipe.

How to do it...
We will plot the rainfall in the month of January in four cities as a horizontal bar chart:

rain<-read.csv("cityrain.csv")

y<-barplot(as.matrix(rain[1,-1]),horiz=T,col="white",
yaxt="n",main=" Rainfall in January",xlab="Rainfall (mm)")

x<-0.5*rain[1,-1]
text(x,y,colnames(rain[-1]))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

135

How it works...
The example is very similar to the one in the previous recipe. The only difference is that now
we are plotting one set of bars, not groups of bars. Because we want to place the labels inside
the bars, we turned off the Y axis labels by setting yaxt="n". Otherwise, the city names
would appear along the Y axis to the left of the bars. We retrieve the Y axis co-ordinates of
the bars by setting y to the barplot function call. We created the vector x so as to place the
labels in the middle of each of the bars by multiplying the rainfall values by 0.5. Note that
these X co-ordinates represent the center of each label, not its start. Finally, we pass the
x and y co-ordinates and city names to text() to label the bars.

There's more...
As we have seen in the example and the previous recipe, once we retrieve the x or y
co-ordinates of the center of bars, we can place labels in any position relative to those
co-ordinates.

Creating bar charts with vertical error bars
Bar charts with error bars are commonly used in analysing and reporting results of scientific
experiments. In this recipe, we will learn how to add error bars to a bar chart in a similar way
to the recipe for scatter plots in Chapter 3.

Getting ready
We will continue using the citysales.csv example dataset in this recipe. Make sure you
have loaded it into R and type the recipe at the R prompt. You may also want to save the
recipe as a script so that you can easily run it again later.

How to do it...
One change we will make in this recipe is that we will use the transpose of the citysales
dataset (turns rows into columns and columns into rows). So, first let's create the transpose
as a new dataset:

sales<-t(as.matrix(citysales[,-1]))
colnames(sales)<-citysales[,1]

Now, let's make a bar plot with 5% error bars showing the sales of the three products across
the five cities as categories:

x<-barplot(sales,beside=T,legend.text=rownames(sales),
args.legend=list(bty="n",horiz=T),
col=brewer.pal(3,"Set2"),border="white",ylim=c(0,100),

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

136

ylab="Sales Revenue (1,000's of USD)",
main="Sales Figures")

arrows(x0=x,y0=sales*0.95,
x1=x,y1=sales*1.05,
angle=90,
code=3,
length=0.04,
lwd=0.4)

How it works...
We first created the bar chart with the transposed data, so that the sales data are
represented as groups of three products for each of the cities. We saved the X co-ordinates of
these bars as a vector x. Then we used the arrows() function, just like we used it in Chapter
3 for making error bars on scatter plots. The first four arguments are the X and Y co-ordinate
pairs of the start and end points of the error bars. The X co-ordinates x0 and x1 are both set
equal to x and the Y co-ordinates are sales values 5% above and below the original values.
The angle and code set the type of arrow and flatten the arrow head relative to the length of
the arrow; length and lwd set the length and line width of the arrows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

137

There's more...
The code for drawing the error bars can be saved as a function and used with any barplot.
This can be especially useful when comparing experimental values with control values, trying
to look for a significant effect:

errorbars<-function(x,y,upper,lower=upper,length=0.04,lwd=0.4,...) {
arrows(x0=x,y0=y+upper,
x1=x,y1=y-lower,
angle=90,
code=3,
length=length,
lwd=lwd)
}

Now, error bars can be added to the previous graph' and delete 'can be drawn simply
by calling:

errorbars(x,sales,0.05*sales)

In practice, scaled estimated standard deviation values or other formal estimates of error
would be used for drawing error bars instead of a blanket percentage error as shown here.

Modifying dot charts by grouping variables
In this recipe, we will learn how to make dot charts with grouped variables. Dot charts are
often preferred to bar charts because they are less cluttered and convey the same information
more clearly with less ink.

Getting ready
We will continue using the citysales.csv example dataset in this recipe. Make sure you
have loaded it into R and type the recipe at the R prompt. You may also want to save the
recipe as a script so that you can easily run it again later. We will need the reshape package
to change the structure of the dataset. So let's make sure we have it installed and loaded:

install.packages("reshape")
library(reshape)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

138

How to do it...
We will first apply the melt() function to the citysales dataset to convert it to long form
and then use the dotchart() function:

sales<-melt(citysales)

sales$color[sales[,2]=="ProductA"] <- "red"
sales$color[sales[,2]=="ProductB"] <- "blue"
sales$color[sales[,2]=="ProductC"] <- "violet"

dotchart(sales[,3],labels=sales$City,groups=sales[,2],
col=sales$color,pch=19,
main="Sales Figures",
xlab="Sales Revenue (1,000's of USD)")

How it works...
We first converted the data into long form by applying the melt() function from the reshape
library. The following is what the new dataset looks like:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

139

City Variable Value
Mumbai ProductA 3
London ProductB 6
Tokyo ProductB 7
Seattle ProductB 11
Seattle ProductC 12
Tokyo ProductC 13
Mumbai ProductC 14
Seattle ProductA 23
Tokyo ProductA 24
Berlin ProductB 34
Berlin ProductA 36
Berlin ProductC 44
London ProductC 56
Mumbai ProductB 78
London ProductA 89

Then we add a column called color, which holds a different value of color for each product
(red, blue, and violet).

Finally we call the dotchart() function with the values column as the first argument. We set
the labels argument to the city names and group the points by the second column (product).
The color is set to the color column using the col argument. This results in a dot chart with
the data points grouped and colored by products on the Y axis.

Making better readable pie charts with
clockwise-ordered slices

Pie charts are very popular in business data reporting. However, they are not preferred by
scientists and often criticized for being hard to read and obscuring data. In this recipe,
we will learn how to make better pie charts by ordering the slices by size.

Getting ready
In this recipe, we will use the browsers.txt example dataset, which contains data about
the usage percentage share of different internet browsers.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

140

How to do it...
First we will load the browsers.txt dataset and then use the pie() function to draw
a pie chart:

browsers<-read.table("browsers.txt",header=TRUE)
browsers<-browsers[order(browsers[,2]),]

pie(browsers[,2],
labels=browsers[,1],
clockwise=TRUE,
radius=1,
col=brewer.pal(7,"Set1"),
border="white",
main="Percentage Share of Internet Browser usage")

How it works...
The important thing about the graph is that the slices are ordered in ascending order of their
sizes. We have done this because one of the main criticisms of pie charts is that when there
are many slices and they are in a random order, it is not easy (often impossible) to tell whether
one slice is bigger than another. By ordering the slices by size in a clockwise direction, we can
directly compare the slices.

We ordered the dataset by using the order() function, which returns the index of its
argument in ascending order. So if we just type order(browsers[,2]) at the R prompt
we get:

[1] 7 6 5 3 2 1 4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

141

That's a vector of the index of the share values in ascending order in the original dataset. For
example, Firefox which has the largest share is in the fourth row, so the last number in the
vector is 4. We then use the index to reassign the browser dataset in the ascending order of
share by using the square bracket notation.

Then we pass the share values in the second column as the first argument to the pie()
function of the base R graphics library. We set labels to the first column, the names of
browsers (note IE stands for Internet Explorer). We also set the clockwise argument to
TRUE. By default slices are drawn counterclockwise.

See also
In the next two recipes, we will see how we can further enhance pie charts with percentage
value labels.

Labelling a pie chart with percentage
values for each slice

In this recipe, we will learn how to add the percentage values in addition to the names of
slices, thus making them more readable.

Getting ready
Once again in this recipe, we will use the browsers.txt example dataset, which contains
data about the usage percentage share of different internet browsers.

How to do it...
First we will load the browsers.txt dataset and then use the pie() function to draw
a pie chart:

browsers<-read.table("browsers.txt",header=TRUE)
browsers<-browsers[order(browsers[,2]),]

pielabels <- sprintf("%s = %3.1f%s", browsers[,1],
100*browsers[,2]/sum(browsers[,2]), "%")

pie(browsers[,2],
labels=pielabels,
clockwise=TRUE,
radius=1,

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

142

col=brewer.pal(7,"Set1"),
border="white",
cex=0.8,
main="Percentage Share of Internet Browser usage")

How it works...
In the example, instead of using just the browser names as labels, we first created a vector
of labels which concatenated the browser names and percentage share values. We used
the sprintf() function that returns a character vector containing a formatted combination
of text and variable values. The first argument to sprintf() is the full character string in
double quotes, where the % notation is used to fill in values dynamically and thus create
a vector of strings for each slice. %s refers to a character string (browsers[,1] which is
the second argument). %3.1 refers to a three digit value with one significant decimal place
(the percentage share value calculated as the third argument). The second %s refers to the
character "%" itself, which is the last argument.

We make the pie chart using the same pie() function call as in the last recipe, except that
we set labels to the newly constructed vector pielabels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

143

There's more...
We can adjust the size of the chart and the text labels by using the radius and cex
arguments respectively.

See also
In the next recipe we will see how to add a legend to a pie chart.

Adding a legend to a pie chart
Sometimes we may wish to use a legend to annotate a pie chart instead of using labels.
In this recipe we will learn how to do that using the legend() function.

Getting ready
Once again in this recipe, we will use the browsers.txt example dataset, which contains
data about the usage percentage share of different internet browsers.

How to do it...
First we will load the browsers.txt dataset and then use the pie() function to draw
a pie chart:

browsers<-read.table("browsers.txt",header=TRUE)
browsers<-browsers[order(browsers[,2]),]

pielabels <- sprintf("%s = %3.1f%s", browsers[,1],
100*browsers[,2]/sum(browsers[,2]), "%")

pie(browsers[,2],
labels=NA,
clockwise=TRUE,
col=brewer.pal(7,"Set1"),
border="white",
radius=0.7,
cex=0.8,
main="Percentage Share of Internet Browser usage")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Bar, Dot, and Pie Charts

144

legend("bottomright",legend=pielabels,bty="n",
fill=brewer.pal(7,"Set1"))

How it works...
Once again we ordered the browser dataset, created a vector of labels and made the pie
chart with the pie() function call, just like in the previous recipe. However, we set labels
to NA this time as we want to create a legend instead of labeling the slices directly.

We added a legend to the bottom-right corner by calling the legend() function. We passed
the pielabels vector as the legend argument and set the fill argument to the same
RColorBrewer color palette we used for the pie slices.

There's more...
Depending on the number of slices and the desired size of the chart, we can experiment with
placing the legend in different places. In this case, we have a lot of slice labels, otherwise we
could place the legend in one single row on top of the chart by setting x to "top" and horiz
to TRUE.

www.it-ebooks.info

http://www.it-ebooks.info/

6
Creating Histograms

In this chapter, we will cover:

ff Visualizing distributions as count frequencies or probability densities

ff Setting bin size and number of breaks

ff Adjusting histogram styles: bar colors, borders, and axes

ff Overlaying density line over a histogram

ff Multiple histograms along the diagonal of a pairs plot

ff Histograms in the margins of line and scatter plots

Introduction
In this chapter, we will look in some detail at histograms, which are a very useful form of
visualization to quickly see the distribution of values of a variable. They are usually one
of the first graphs looked at to see whether a variable follows a normal distribution or
has a skewed distribution.

We will see how we can enhance the basic histogram in R by adjusting some parameters in
the base graphics library. We will learn how to change certain settings to control the format
in which the histogram is plotted (frequency or probability of values) and also how the values
are grouped into bins. We will also look at the usual parameters for changing the styling
of histogram bars, such as color, width, and border. In addition, we will also look at some
advanced recipes combining histograms with other types of graphs.

As with the previous chapters, it is best to try out each recipe first with the example shown
here and then with your own datasets so that you can fully understand each line of code.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Histograms

146

Visualizing distributions as count
frequencies or probability densities

Histograms can represent the distribution of values either as frequency (the absolute number
of times values fall within specific ranges) or as probability density (the proportion of the values
that fall within specific ranges). In this recipe, we will learn how to choose one or the other.

Getting ready
We are only using base graphics functions for this recipe. So, just open up the R prompt and
type the following code. We will use the airpollution.csv example dataset for this recipe.
So let's first load it:

air<-read.csv("airpollution.csv")

How to do it...
We will use the base graphics function hist() to make our histogram, first showing
frequency and then probability density of Nitrogen Oxide concentrations:

hist(air$Nitrogen.Oxides,
xlab="Nitrogen Oxide Concentrations",
main="Distribution of Nitrogen Oxide Concentrations")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

147

Now, let's make the same histogram but with probability instead of frequency:

hist(air$Nitrogen.Oxides, freq=FALSE,
xlab="Nitrogen Oxide Concentrations",
main="Distribution of Nitrogen Oxide Concentrations")

How it works...
The first example showing the frequency counts of different value ranges of Nitrogen Oxides
simply uses a call to the hist() function in the base graphics library. The variable is
passed as the first argument and by default the histogram plotted shows frequency. In the
second example, we passed an extra argument freq and set it to FALSE, which results in a
histogram showing probability densities. This suggests that by default freq is set to TRUE.
The help section on hist() (?hist) states that freq defaults to TRUE if and only breaks
are equidistant and probability is not specified.

There's more...
An alternative to using the freq argument is the prob argument, which as the name
suggests takes the opposite value to freq. So, by default, it is set to FALSE and if we
want to show probability densities then we need to set prob to TRUE.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Histograms

148

Setting bin size and number of breaks
As we saw in the previous recipe, the hist() function automatically computes the number
or breaks and size of bins in which to group the values of the variable. In this recipe, we will
learn how we can control that and specify exactly how many bins we want or where to have
breaks between bars.

Getting ready
Once again, we will use the airpollution.csv example dataset, so make sure you have
loaded it:

air<-read.csv("airpollution.csv")

How to do it...
First, let's see how to specify the number of breaks. Let's make 20 breaks in the Nitrogen
Oxides histogram instead of the default 11:

hist(air$Nitrogen.Oxides,
breaks=20,xlab="Nitrogen Oxide Concentrations",
main="Distribution of Nitrogen Oxide Concentrations")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

149

How it works...
We used the breaks argument to specify the number of bars for the histogram. We set
breaks to 20, however the graph shows more than 20 bars because R uses the value
specified only as a suggestion and computes the best way to bin the data with breaks
as close to the value specified as possible.

There's more...
We can also specify the exact values at which we want the breaks to occur. In this case, R
does use the value we specify. Once again we use the breaks argument but this time we
have to set it to a numerical vector containing the values at which we want the breaks. The
breaks vector must cover the full range of values of the X variable.

Let's say we want breaks at every 100 units of concentration:

hist(air$Nitrogen.Oxides,
breaks=c(0,100,200,300,400,500,600),
xlab="Nitrogen Oxide Concentrations",
main="Distribution of Nitrogen Oxide Concentrations")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Histograms

150

So, as you may have noticed, the breaks argument can take different types of values: a
single value suggesting the number of breaks or a vector specifying exact bin breaks. In
addition, breaks can also take a function which computes the number of bins.

Finally, breaks can also take a character string as value naming an algorithm to calculate
the number of bins. By default, it is set to "Sturges". Other names for which algorithms are
supplied are "Scott" and "FD" or "Freedman-Diaconis".

Adjusting histogram styles: bar colors,
borders, and axes

The default styling of histograms does not look great and may not be suitable for publications.
In this recipe, we will learn how to improve the look by setting bar colors, borders, and
adjusting the axes.

Getting ready
Once again we will use the airpollution.csv example. So let's make sure it is loaded by
running the following command at the R prompt:

air<-read.csv("airpollution.csv")

How to do it...
Let's visualize the probability distribution of Respirable Particle Concentrations with black
bars and white borders:

hist(air$Respirable.Particles,
prob=TRUE,col="black",border="white",
xlab="Respirable Particle Concentrations",
main="Distribution of Respirable Particle Concentrations")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

151

How it works...
By now you may have guessed how to do that yourself. We used the col and border
arguments to set the bar and border colors to black and white respectively.

There's more...
You may have noticed that in all of the previous examples the X axis is detached from the
base of the bars. This gives the graphs a bit of an unclean look. Also notice that the Y axis
labels are rotated vertically, which makes them harder to read. Let's improve the graph by
fixing these two visual settings:

par(yaxs="i",las=1)
hist(air$Respirable.Particles,
prob=TRUE,col="black",border="white",
xlab="Respirable Particle Concentrations",
main="Distribution of Respirable Particle Concentrations")
box(bty="l")
grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray")

So we used a couple of extra function calls to change the look of the graph. First we called
the par() function and set yaxs to "i" so that the Y axis joins the X axis instead of having
a detached X axis. We also set las equal to 1 to make all the axis labels horizontal, thus
making it easier to read the Y axis labels. Then we ran the hist() function call as before and
called box() with type equal to "l" to make an L-shaped box running along the axes. Finally,
we added horizontal grid lines using the grid() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Histograms

152

Overlaying density line over a histogram
In this recipe we will learn how to superimpose a kernel density line on top of a histogram.

Getting ready
We will continue using the airpollution.csv example dataset. You can simply type the
recipe code at the R prompt. If you wish to use the code later, you should save it as a script
file. First, let's load the data file:

air<-read.csv("airpollution.csv")

How to do it...
Let's overlay a line showing the kernel density of Respirable Particle Concentrations on top of
a probability distribution histogram:

par(yaxs="i",las=1)
hist(air$Respirable.Particles,
prob=TRUE,col="black",border="white",
xlab="Respirable Particle Concentrations",
main="Distribution of Respirable Particle Concentrations")
box(bty="l")

lines(density(air$Respirable.Particles,na.rm=T),col="red",lwd=4)
grid(nx=NA,ny=NULL,lty=1,lwd=1,col="gray")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

153

How it works...
The code for the histogram itself is exactly the same as in the previous recipe. After making
the hist() function call, we used the lines() function to plot the density line on top. We
passed the result of the density() function call to the lines() function. The default kernel
used is gaussian, although other values can be specified. Please have a look at the help file
for density() for more details (run ?density at the R prompt).

To make the line prominent, we set its type to solid (lty=1), color to red (col="red"), and
width to 4 (lwd=4).

Multiple histograms along the diagonal
of a pairs plot

In this recipe, we will look at some slightly advanced code to embed histograms inside another
kind of graph. We learnt how to make pairs plots (a matrix of scatter plots) in Chapters 1 and
Chapter 3. In those pairs plots, the diagonal cells running from the top-left to the bottom-right
showed the names of the variables, while the other cells showed the relationship between
any two pairs of variables. It would be useful if we could also see the probability distribution of
each variable in the same plot. Here, we will learn how to do that by adding histograms inside
the diagonal cells.

Getting ready
We will use the inbuilt iris flowers dataset of R. So we need not load any other datasets. We
can simply type the given code at the R prompt.

How to do it...
So let's make an enhanced pairs plot showing the relationship between different
measurements of the iris flower species and how each measurement's values are
spread across the range:

panel.hist <- function(x, ...)
 {
 par(usr = c(par("usr")[1:2], 0, 1.5))
 hist(x, prob=TRUE,add=TRUE,col="black",border="white")
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Histograms

154

plot(iris[,1:4],
main="Relationships between characteristics of iris flowers",
pch=19,col="blue",cex=0.9,
diag.panel=panel.hist)

How it works...
We first defined the panel.hist() function which handles how the histograms are
drawn. It is called by the plot() function later when the argument diag.panel is set
to panel.hist.

The panel.hist() function only has two simple lines of code. First, we call the par()
function to set the X and Y limits using the usr argument. To reiterate what we learnt in Chapter
2, the usr arguments takes values in the form of a vector c(xmin,xmax,ymin,ymax) giving
the minimum and maximum values on the X and Y axes respectively. In the code, we keep the
X axis limits the same as already set up by the plot() function call. We need to change the Y
axis limits for each diagonal cell because they are set by plot() to be the same as the X axis
limits. We need the Y axis limits in terms of the kernel density of each variable, so we set them
to 0 and 1.5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

155

Then we make the hist() function call with the style arguments of our choice and one key
argument add (set to TRUE), which makes sure the histograms are added to the existing
pairs plot and not drawn as new plots. Any panel function should not start a new plot or it will
terminate the pairs plot. So, we can't use the hist() function without setting add to TRUE.

Histograms in the margins of line
and scatter plots

In this recipe, we will learn how to draw histograms in the top and right margins of a bivariate
scatter plot.

Getting ready
We will use the airpollution.csv example dataset for this recipe. So, let's make sure
it is loaded:

air<-read.csv("airpollution.csv")

How to do it...
Let's make a scatter plot showing the relationship between Concentrations of Respirable
Particles and Nitrogen Oxides with histograms of both the variables in the margins:

#Set up the layout first
layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), widths=c(3,1),
heights=c(1,3), TRUE)

#Make Scatterplot
par(mar=c(5.1,4.1,0.1,0))
plot(air$Respirable.Particles~air$Nitrogen.Oxides,
pch=19,col="black",
xlim=c(0,600),ylim=c(0,80),
xlab="Nitrogen Oxides Concentrations",
ylab="Respirable Particle Concentrations")

#Plot histogram of X variable in the top row
par(mar=c(0,4.1,3,0))
hist(air$Nitrogen.Oxides,
breaks=seq(0,600,100),ann=FALSE,axes=FALSE,
col="black",border="white")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Histograms

156

#Plot histogram of Y variable to the right of the scatterplot
yhist <- hist(air$Respirable.Particles,
breaks=seq(0,80,10),plot=FALSE)

par(mar=c(5.1,0,0.1,1))
barplot(yhist$density,
horiz=TRUE,space=0,axes=FALSE,
col="black",border="white")

How it works...
The given example is a bit more complex than the recipes we have seen so far. However, if
we look at each line of code one-by-one we can understand it quite easily.

First we used the layout() function to divide the graph into separate regions for the scatter
plot and the two histograms. We could also use the par() function with the mfrow argument
instead, but layout() gives us finer control over the height and width of each cell of the
graph. When we use par() with mfrow or mfcol to create a matrix layout, all cells are
automatically created of equal heights and widths.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

157

The first argument to the layout() function is a matrix specifying the number of rows and
columns the graphics device should be divided into and the location of each figure. Run just
the matrix command from the code at the R prompt to see the resultant matrix:

matrix(c(2,0,1,3),2,2,byrow=TRUE)
 [,1] [,2]
[1,] 2 0
[2,] 1 3

The matrix values shown here mean that the first figure should be drawn in the second row and
first column (scatter plot), the second figure in the first row and first column (histogram of X
variable), and the third figure in the second row and second column (histogram of Y variable).

The other arguments to layout() are widths and heights which specify the widths and
heights of the columns and rows respectively as a vector. The last argument is set to TRUE
so that a unit column-width is the same physical measurement on the device as a unit
row-height.

We have chosen this particular layout so that the scatter plot occupies most of the area
of the graph and the histograms are plotted in a smaller area as they are only giving
supplementary information.

Once the layout is created, we draw the plots one by one in the order that we set up the layout
matrix. So, first we made the scatter plot giving specific X and Y axis limits, so that we can use
the same limits to plot the histograms with the correct breaks.

Then we made the histogram of Nitrogen Oxides in the top margin just above the scatter plot.
We first used the par() function with the mar argument to set the margins so as not to leave
any margin at the bottom and matching the margins on the left and right to those of the scatter
plot. We specified the breaks exactly as a vector of values between the X and Y limits of the
scatter plot by using the seq() function. The axes and annotations are suppressed by setting
the axes and ann arguments to FALSE, thus giving the histogram a clean minimal look.

Next, we added the rotated histogram of Respirable Particle Concentrations to the right of
the scatter plot. We had to do this differently from the first histogram because the hist()
function does not have an inbuilt way to draw the bars horizontally. As we have seen in
earlier chapters, the barplot() function does have such a capability. So, we first created
a histogram object but suppressed its plotting by setting the plot to FALSE. Then we passed
the density values from that object to the barplot() function to plot them horizontally by
setting the horiz argument to TRUE. Just like the X axis histogram, we set the breaks of
the Y histogram equal to a sequence matching the Y limits of the scatter plot. Then we set
the margins so that the bottom and top margins match those of the scatter plot and the left
margin is zero. Then we called the barplot() function to draw the horizontal bars. Note that
we set the space argument equal to zero, otherwise the bars are drawn with gaps between
them by default.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
Creating Box and

Whisker Plots

In this chapter, we will cover:

ff Creating box plots with narrow boxes for a small number of variables
ff Grouping over a variable
ff Varying box widths by number of observations
ff Creating box plots with notches
ff Including or excluding outliers
ff Creating horizontal box plots
ff Changing box styling
ff Adjusting the extent of plot whiskers outside the box
ff Showing the number of observations
ff Splitting a variable at arbitrary values into subsets

Introduction
In this chapter, we will look in some depth at box and whisker plots, which are a great form of
visualization to summarize large amounts of data by showing Tukey's five-number summary:
minimum, lower-hinge, median, upper-hinge, and maximum. Box plots are a good way to spot
outliers and compare the key statistics for different variables or groups.

We will learn various stylistic and structural variations on how to adjust box plots in R (using
the basic boxplot() command). In addition to changing the look of our box plots, we
will also learn how to add additional useful information to them. We will start by looking at
some basic arguments to change individual aspects of a box plot and slowly move to more
advanced recipes involving the use of multiple function calls and arguments to create more
complex types of box plots.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

160

 As with the previous chapters, it is best to try out each recipe first with the example shown
here and then with your own datasets so that you can fully understand each line of code.

Creating box plots with narrow boxes
for a small number of variables

R automatically adjusts the widths of boxes in a box plot according to the number of variables.
This works fine when we have a relatively large number of variables (more than four), but you
may find that for a small number of variables the default boxes are too wide. In this recipe, we
will learn how to make the boxes narrower.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the following code. We will use the airpollution.csv example dataset for this
recipe. So let's first load it:

air<-read.csv("airpollution.csv")

How to do it...
We want to make a box plot summarizing the two columns in our dataset: Respirable
Particles and Nitrogen Oxides. If we simply use the boxplot command we get a box
plot with very wide boxes:

boxplot(air,las=1)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

161

Let's improve the look of the graph by making the boxes narrower:

boxplot(air,boxwex=0.2,las=1)

How it works...
So we changed the width of the boxes by passing the boxwex argument to the boxplot()
command. We set boxwex to a value of 0.2. The value depends on the number of variables
we are plotting, but it should usually be less than 1.

Note that we also passed the las argument with a value of 1 to make the Y axis labels
horizontal. By default, they are parallel to the Y axis, thus making them difficult to read. Since
we want this setting in all our graphs, we can set it globally by calling the par() function:

par(las=1)

Note that we must not close the graphics device if we want to retain the
setting. If we do close the device, we will need to set las to 1 again either
using the par() function call or within each boxplot() function call.
From now on, it is assumed that we will set las to 1 globally.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

162

There's more...
Note that when we specify a width using boxwex the same value is applied to all the boxes in
the plot. There is another argument, width, which can be used to set the relative widths of
boxes. The width argument takes values in the form of a vector containing a value for each
box. For example, if we wanted the box for Respirable Particles twice as wide as Nitrogen
Oxides, we would run:

boxplot(air,width=c(1,2))

See also
Setting arbitrarily different widths for boxes using the width argument is not a good idea,
unless the difference in widths conveys another important fact about the data. We will see
one such example later in the chapter.

Grouping over a variable
In this recipe we will see how we can summarize data for a variable with respect to another
variable in the dataset. We will learn to group over a variable such that a separate box plot is
created for each group.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the following code. We will use the metals.csv example dataset for this recipe. So
let's first load it:

metals<-read.csv("metals.csv")

How to do it...
Let's make a box plot showing copper (Cu) concentrations grouped over measurement sites:

boxplot(Cu~Source,data=metals,
main="Summary of Copper (Cu) concentrations by Site")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

163

How it works...
The previous box plot works by using the formula notation y~group, where y is the variable
whose values are depicted as separated box plots for each value of group.

There's more...
Grouping over a variable works well only when the group variable has a limited number of
values, such as when it is a category (or factor in terms of an R data type) such as Source
in this example. Grouping over another numerical variable with lots of unique values (say
Manganese (Mn) concentrations) would result in a graph with too many box plots and not tell
us much about the data.

We can also group over more than one category. If we wanted to group over the Source and
another variable Expt, the experiment number, we could run:

boxplot(Cu~Source*Expt,data=metals,
main="Summary of Copper (Cu) concentrations by Site")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

164

See also
We will use grouped box plots as examples in the next few recipes.

Varying box widths by number
of observations

In this recipe, we will learn how to vary box widths in proportion to the number of observations
for each variable.

Getting ready
Just like the previous recipe, we will continue to use the metals.csv example dataset for
this recipe. So let's first load it:

metals<-read.csv("metals.csv")

How to do it...
Let's build a box plot with boxes of width proportional to the number of observations
in the dataset:

boxplot(Cu ~ Source, data = metals,varwidth=TRUE,
main="Summary of Copper concentrations by Site")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

165

How it works...
In the example, we set the varwidth argument to TRUE, which makes the width of the boxes
proportional to the square roots of the number of observations in the groups.

We can see that the box for Site4 is the narrowest, since it has the least number of
observations in the dataset. Differences in the other boxes' widths may not be so obvious,
but this setting is useful when we are dealing with larger datasets. By default, varwidth is
set to FALSE.

Creating box plots with notches
In this recipe, we will learn how to make box plots with notches, which are useful in comparing
the medians of different groups.

Getting ready
We will continue to use the metals.csv example dataset for this recipe. So let's first load it:

metals<-read.csv("metals.csv")

How to do it...
We shall now see how to make a box plot with notches:

boxplot(Cu ~ Source, data = metals,
varwidth=TRUE,notch=TRUE,	
main="Summary of Copper concentrations by Site")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

166

How it works...
In the example, we set the notch argument to TRUE to create notches on each side of the
boxes. If the notches of two plots do not overlap, then the medians are significantly different
at the 5% level, which suggests that the median concentrations at the four sites as shown are
not statistically different from each other.

There's more...
We can set the notch.frac argument to a value between 0 and 1 to adjust the fraction of
the box width that the notches should use. The default value is 0.5 and a value of 1 gives
notches using the entire width of the box, effectively producing a box plot without notches.

Including or excluding outliers
In this recipe, we will learn how to remove outliers from a box plot. This is usually not a
good idea because highlighting outliers is one of the benefits of using box plots. However,
sometimes extreme outliers can distort the scale and obscure the other aspects of a box plot,
so it is helpful to exclude them in those cases.

Getting ready
Let's continue using the metals.csv example dataset. So let's first make sure it's loaded:

metals<-read.csv("metals.csv")

How to do it...
Once again, we will use the base graphics boxplot() function with a specific argument to
make our metal concentrations box plot without outliers:

boxplot(metals[,-1],outline=FALSE,
main="Summary of metal concentrations by Site \n
(without outliers)")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

167

How it works...
We used the outline argument in the boxplot() function call to suppress the drawing of
outliers. By default, outline is set to TRUE. To exclude outliers, we set it to FALSE.

See also
In the recipe Adjusting the extent of plot whiskers outside the box, later in the chapter, we will
learn how to extend the whiskers of a box plot, which is another way of eliminating outliers by
changing the definition of the cut-off value for an outlier.

Creating horizontal box plots
In this recipe, we will see how to make box plots with horizontal boxes instead of the default
vertical ones.

Getting ready
We will continue using the base graphics library functions, so we need not load any additional
package. We just need to run the recipe code at the R prompt. We can also save the code as a
script to use it later. Here, we will use the metals.csv example dataset again:

metals<-read.csv("metals.csv")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

168

How to do it...
Let's draw the metals concentration box plot with horizontal bars:

boxplot(metals[,-1],
horizontal=TRUE,las=1,
main="Summary of metal concentrations by Site")

How it works...
We simply had to set the horizontal argument in the boxplot() command to TRUE to
make the boxes horizontal. By default, it is set to FALSE.

Note that unlike barplots, the argument name is
horizontal and not just horiz.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

169

Changing box styling
So far, we have used the default styling for our box plots. In this recipe, we will learn how to
change the colors, widths, and styles of various elements of a box plot.

Getting ready
We will continue using the base graphics library functions, so we need not load any additional
library or package. We just need to run the recipe code at the R prompt. We can also save the
code as a script to use it later. Here, we will use the metals.csv example dataset again:

metals<-read.csv("metals.csv")

How to do it...
We can build a box plot with custom colors, widths, and styles in the following way:

boxplot(metals[,-1],
border = "white",col = "black",boxwex = 0.3,
medlwd=1, whiskcol="black",staplecol="black",
outcol="red",cex=0.3,outpch=19,
main="Summary of metal concentrations by Site")

grid(nx=NA,ny=NULL,col="gray",lty="dashed")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

170

How it works...
We have used a few different arguments in the example to change the styling of the box plot.
The first two are col and border, which set the box color and border color respectively. Note
that the border argument also sets the color for the median line, unless it is specified using
the medcol argument.

In the example, in addition to using boxwex for adjusting box widths, we used medlwd to set
the width of the median line. We set the color of the whiskers and staple using whiskcol
and staplecol respectively. The color and symbol type of the outlier points were set using
outcol and outpch respectively. The size of the points was set using the cex argument.

There's more...
We can set the color, size, and styling for each of the components. If you type ?bxp at the R
prompt, you can see the help section for the bxp() function which is called by boxplot() to
do the actual drawing. The following is a summary:

Argument to boxplot() Corresponding setting
boxlty, boxlwd, boxcol, boxfill Box outline type, width, color, and fill color

medlty, medlwd, medpch, medcex,
medcol, medbg

Median line type, line width, point character, point
size expansion, color, and background color

whisklty, whisklwd, whiskcol Whisker line type, width, and color
staplelty, staplelwd, staplewex,
staplecol

Staple line type, width, line width expansion, and
color

outlty, outlwd, outwex, outpch,
outcex, outcol, outbg

Outlier line type, line width, line width expansion,
point character, point size expansion, color, and
background color

Adjusting the extent of plot whiskers
outside the box

Sometimes, we may wish to change the definition of outliers in our dataset by changing the
extent of the whiskers. In this recipe, we will learn how to adjust the extent of whiskers in a
box plot by passing a simple argument.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

171

Getting ready
We will continue using the base graphics library functions, so we need not load any additional
library or package. We just need to run the recipe code at the R prompt. We can also save the
code as a script to use it later. Here, we will use the metals.csv example dataset again:

metals<-read.csv("metals.csv")

How to do it...
Let's draw the metal concentrations box plot with the whiskers closer to the box than the
default one in the last recipe:

boxplot(metals[,-1],
range=1,border = "white",col = "black",
boxwex = 0.3,medlwd=1,whiskcol="black",
staplecol="black",outcol="red",cex=0.3,outpch=19,
main="Summary of metal concentrations by Site \n
(range=1) ")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

172

How it works...
We passed the range argument with a value of 1 to the boxplot() function in order to
reduce the extent of the whiskers. The default value of range is 1.5—it only takes positive
values. The whiskers extend to the most extreme data point which is no more than range
times the interquartile range from the box.

There's more...
If we want to extend the whiskers to the data extremes, we can either set range to a high
enough value, such that range times the interquartile range from the box is more than the
most extreme data point. Alternatively, we can simply set range to zero:

boxplot(metals[,-1],
range=0,border = "white",col = "black",
boxwex = 0.3,medlwd=1,whiskcol="black",
staplecol="black",outcol="red",cex=0.3,outpch=19,
main="Summary of metal concentrations by Site \n (range=0)")

Showing the number of observations
It is often useful to know the number of observations for each variable or group when
comparing them on a box plot. We did this earlier with the varwidth argument which makes
the widths of boxes proportional to the square root of the number of observations. In this
recipe, we will learn how to display the number of observations on a box plot.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

173

Getting ready
We will continue using the base graphics library functions, so we need not load any additional
library or package. We just need to run the recipe code at the R prompt. We can also save the
code as a script to use it later. Here, we will use the metals.csv example dataset again:

metals<-read.csv("metals.csv")

How to do it...
Once again, let's use the metal concentrations box plot and display the number of
observations for each metal below its label on the X axis:

b<-boxplot(metals[,-1],
xaxt="n",border = "white",col = "black",
boxwex = 0.3,medlwd=1,whiskcol="black",
staplecol="black",outcol="red",cex=0.3,outpch=19,
main="Summary of metal concentrations by Site")

axis(side=1,at=1:length(b$names),
labels=paste(b$names,"\n(n=",b$n,")",sep=""),
mgp=c(3,2,0))

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

174

How it works...
In the example, we first made the same stylized box plot as we did two recipes ago, but we
suppressed drawing the default X axis by setting xaxt to "n". We then used the axis()
command to create our custom axis with the metal names and number of observations
as labels.

We set side to 1 to denote the X axis. Note that we saved the object returned by the
boxplot() function as b, which is a list containing useful information about the box plot.
You can test this by typing b at the R prompt and hitting Enter (after you've run the boxplot
command). We combined the names and n (number of observations) components of b using
paste() to construct the labels argument. The at argument was set to integer values
starting from 1 to the number of metals. Finally, we also used the mgp argument to set the
margin line for the axis labels to 2, instead of the default 1, so that the extra line with number
of observations doesn't make the labels overlap with the tick marks (you can see this if you
omit mgp).

There's more...
Another way of displaying the number of observations on a box plot is to use the
boxplot.n() function from the gplots package. First let's make sure the
gplots package is installed and loaded:

install.packages("gplots")
library(gplots)

boxplot.n(metals[,-1],
border = "white",col = "black",boxwex = 0.3,
medlwd=1,whiskcol="black",staplecol="black",
outcol="red",cex=0.3,outpch=19,
main="Summary of metal concentrations by Site")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

175

The problem with using this function is that the number labels are cut off by the axis. One way
to get around this problem is to place the labels at the top of the plot region by setting the top
argument to TRUE in the boxplot.n() function call.

Splitting a variable at arbitrary values
into subsets

In this recipe, we will learn how to split a variable at arbitrary intervals of our choice to
compare the box plots of values within each interval.

Getting ready
We will continue using the base graphics library functions, so we need not load any additional
library or package. We just need to run the recipe code at the R prompt. We can also save the
code as a script to use it later. Here, we will use the metals.csv example dataset again:

metals<-read.csv("metals.csv")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

176

How to do it...
Let's make a box plot of copper (Cu) concentrations split at values 0, 40 and 80:

cuts<-c(0,40,80)
Y<-split(x=metals$Cu, f=findInterval(metals$Cu, cuts))

boxplot(Y,xaxt="n",
border = "white",col = "black",boxwex = 0.3,
medlwd=1,whiskcol="black",staplecol="black",
outcol="red",cex=0.3,outpch=19,
main="Summary of Copper concentrations",
xlab="Concentration ranges",las=1)

axis(1,at=1:length(clabels),
labels=c("Below 0","0 to 40","40 to 80","Above 80"),
lwd=0,lwd.ticks=1,col="gray")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

177

How it works...
We used a combination of a few different R functions to create the example graph shown.
First, we defined a vector called cuts with values at which we wanted to cut our vector of
concentrations. Then we used the split() function to split the copper concentrations vector
into a list of concentration vectors at specified intervals (you can verify this by typing Y at the
R prompt and hitting Enter). Note that we used the findInterval() function to create
a vector of labels (factors) corresponding to the interval each value in metals$Cu lies in,
and set the f argument of the split() function. Then we used the boxplot() function to
create the basic box plot with the new Y vector and suppressed the default X axis. We then
used the axis() function to draw the X axis with our custom labels.

There's more...
Let's turn the previous example into a function to which we can simply pass a variable and the
intervals at which we wish to cut it, and it will draw the box plot accordingly:

boxplot.cuts<-function(y,cuts,...) {

 Y<-split(metals$Cu, f=findInterval(y, cuts))

 b<-boxplot(Y,xaxt="n",
 border = "white",col = "black",boxwex = 0.3,
 medlwd=1,whiskcol="black",staplecol="black",
 outcol="red",cex=0.3,outpch=19,
 main="Summary of Copper concentrations",
 xlab="Concentration ranges",las=1,...)

 clabels<-paste("Below",cuts[1])

 for(k in 1:(length(cuts)-1)) {
 clabels<-c(clabels, paste(as.character(cuts[k]),
 "to", as.character(cuts[k+1])))
 }

 clabels<-c(clabels,
 paste("Above",as.character(cuts[length(cuts)])))

 axis(1,at=1:length(clabels),
 labels=clabels,lwd=0,lwd.ticks=1,col="gray")

}

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Box and Whisker Plots

178

... is used to symbolize extra arguments to be added
if required.

Now that we have defined the function, we can simply call it as follows:

boxplot.cuts(metals$Cu,c(0,30,60))

Another way to plot a subset of data in a box plot is by using the subset argument. For
example, if we want to plot copper concentrations grouped by source above a certain
threshold value (say 40), we can use:

boxplot(Cu~Source,data=metals,subset=Cu>40)

Note that we included an extra argument ... to the definition of boxplot.cuts() in
addition to y and cuts. This allows us to pass in any extra arguments which we don't
explicitly use in the call to boxplot() inside the definition of our function. For example,
if we can pass ylab as an argument to boxplot.cuts() even though it is not explicitly
defined as an argument.

If you find this example too cumbersome (especially with the labels), following is an
alternative definition of boxplot.cuts() which uses the cut() function and its
automatic label creation:

boxplot.cuts<-function(y,cuts) {

 f=cut(y, c(min(y[!is.na(y)]),cuts,max(y[!is.na(y)])),
 ordered_results=TRUE);
 Y<-split(y, f=f)

 b<-boxplot(Y,xaxt="n",
 border = "white",col = "black",boxwex = 0.3,
 medlwd=1,whiskcol="black",staplecol="black",
 outcol="red",cex=0.3,outpch=19,
 main="Summary of Copper concentrations",
 xlab="Concentration ranges",las=1)

 clabels = as.character(levels(f))
 axis(1,at=1:length(clabels),
 labels=clabels,lwd=0,lwd.ticks=1,col="gray")

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

179

To create a box plot similar to the example shown earlier, we can run:

boxplot.cuts(metals$Cu,c(0,40,80))

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

8
Creating Heat Maps

and Contour Plots

In this chapter, we will cover:

ff Creating heat maps of single Z variable with scale

ff Creating correlation heat maps

ff Summarizing multivariate data in a heat map

ff Creating contour plots

ff Creating filled contour plots

ff Creating three-dimensional surface plots

ff Visualizing time series as calendar heat maps

Introduction
In this chapter, we will learn how to make various types of heat maps and contour plots.
By heat maps, we mean color coded grid images, useful for visualizing correlations, trends
and multivariate data. We will see how contour plots can be used to show topographical
information in various two-dimensional and three-dimensional ways.

The recipes in this chapter are a bit longer and more advanced than the ones in previous
chapters. However, the code is clearly explained step by step, so that you can understand
how it works.

As with the previous chapters, it is best to try out each recipe first with the example shown
here and then with your own datasets so that you can fully understand each line of code.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

182

Creating heat maps of single Z variable
with scale

In this recipe we will learn how to make a heat map showing the variation in values of one
variable (z) along the X and Y axes as a grid of colors, and display a scale alongside.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the following code. We will use the sales.csv example dataset for this recipe. So
let's first load it:

sales<-read.csv("sales.csv")

We will use the RColorBrewer package for some good color palettes. So let's make sure it's
installed and loaded:

install.packages("RColorBrewer")
library(RColorBrewer)

How to do it...
The sales dataset has monthly sales data for four cities. Let's make a heat map with the
months along the X axis and the cities on the Y axis:

rownames(sales)<-sales[,1]
sales<-sales[,-1]
data_matrix<-data.matrix(sales)

pal=brewer.pal(7,"YlOrRd")

breaks<-seq(3000,12000,1500)

#Create layout with 1 row and 2 columns (for the heatmap and scale);
the heatmap column is 8 times as wide as the scale column

layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(8,1),
heights=c(1,1))

#Set margins for the heatmap
par(mar = c(5,10,4,2),oma=c(0.2,0.2,0.2,0.2),mex=0.5)

image(x=1:nrow(data_matrix),y=1:ncol(data_matrix),

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

183

z=data_matrix,axes=FALSE,xlab="Month",
ylab="",col=pal[1:(length(breaks)-1)],
breaks=breaks,main="Sales Heat Map")

axis(1,at=1:nrow(data_matrix),labels=rownames(data_matrix),
col="white",las=1)

axis(2,at=1:ncol(data_matrix),labels=colnames(data_matrix),
col="white",las=1)

abline(h=c(1:ncol(data_matrix))+0.5,
v=c(1:nrow(data_matrix))+0.5, col="white",lwd=2,xpd=FALSE)

breaks2<-breaks[-length(breaks)]

Color Scale
par(mar = c(5,1,4,7))
If you get a figure margins error while running the above code,
enlarge the plot device or adjust the margins so that the graph and
scale fit within the device.

image(x=1, y=0:length(breaks2),z=t(matrix(breaks2))*1.001,
col=pal[1:length(breaks)-1],axes=FALSE,breaks=breaks,
xlab="", ylab="",xaxt="n")

axis(4,at=0:(length(breaks2)-1), labels=breaks2, col="white",
las=1)

abline(h=c(1:length(breaks2)),col="white",lwd=2,xpd=F)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

184

How it works...
We used a lot of steps and different function calls to create the heat map. Let's go through
them one by one to understand how it all works.

Basically, we used the image() function in the base graphics library to create the heat map
and its color scale. There is also a heatmap() function and a heatmap.2() function in the
gplots package. However, we used image() because it is more flexible for our purpose.

First, we had to format the data in the correct format for image(), which requires that
the z parameter be in the form of a matrix. The first column of the sales dataset contains
the month names, which we assigned as the rownames. Then we removed the month
column from the dataset and cast it as a matrix called data_matrix, containing only
numerical values.

We defined breaks as a sequence of values from 3000 up to 12000 with steps of 1500.
These values are used to map the sales values to the color scale, where each color denotes
values within a certain range. We used the RColorBrewer palette YlOrRd which contains
seven warm colors.

We created a graph layout with one row and two columns using the layout() function. The
left column for the heat map is eight times as wide as the right column for the color scale and
their heights are equal.

We used the image() function to create the heat map. The main argument is z which we
set to data_matrix. The x and y arguments take the index of the rows and columns of the
matrix respectively. We set the breaks argument to the breaks vector we created earlier and
set the col argument to our palette, but with the number of colors one less than the number
of breaks. This is a requirement of the image() function.

Note that we suppressed the drawing of the default axes. We used the axis() command to
draw the X and Y axes with row and column names respectively as the labels. The abline()
function call is used to draw the white lines separating each block of color on the heat map (a
bit like gridlines). These lines make the graph look nicer and a bit easier to read.

Finally, we drew the color scale by issuing another image() function call. We first created
a subset of breaks, called breaks2, without the last element of breaks. We passed
a transpose of a matrix of breaks2 as the z argument to image(). Note that we also
multiplied it by 1.001, to create a set of values just above each break so that they are colored
appropriately. We used the same breaks and col arguments as the heat map. We added a
Y axis on side 4 to mark the break values and also used abline() to draw white horizontal
lines to separate the breaks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

185

There's more...
The preceding code may seem a bit too complicated at first, but if you go through each
statement and function call carefully, you will notice that it is just a big block of code with the
same building blocks that we have used in earlier recipes. The best way to really understand
the recipe and to modify it for your own needs is to change, add, or remove arguments from
each function call and see the resulting effects.

See also
In the next few recipes, we will continue using the image() function to make some more
types of heat maps.

Creating correlation heat maps
In this recipe, we will learn how to make a correlation heat map from a matrix of
correlation coefficients.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the following code. We will use the genes.csv example dataset for this recipe. So
let's first load it:

genes<-read.csv("genes.csv")

How to do it...
Let's make a heat map showing the correlation between genes in a matrix:

rownames(genes)<-genes[,1]
data_matrix<-data.matrix(genes[,-1])

pal=heat.colors(5)

breaks<-seq(0,1,0.2)

layout(matrix(data=c(1,2), nrow=1, ncol=2), widths=c(8,1),
heights=c(1,1))

par(mar = c(3,7,12,2),oma=c(0.2,0.2,0.2,0.2),mex=0.5)

image(x=1:nrow(data_matrix),y=1:ncol(data_matrix),
z=data_matrix,xlab="",ylab="",breaks=breaks,
col=pal,axes=FALSE)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

186

text(x=1:nrow(data_matrix)+0.75, y=par("usr")[4] + 1.25,
srt = 45, adj = 1, labels = rownames(data_matrix),
xpd = TRUE)

axis(2,at=1:ncol(data_matrix),labels=colnames(data_matrix),
col="white",las=1)

abline(h=c(1:ncol(data_matrix))+0.5,v=c(1:nrow(data_matrix))+0.5,
col="white",lwd=2,xpd=F)

title("Correlation between genes",line=8,adj=0)

breaks2<-breaks[-length(breaks)]

Color Scale
par(mar = c(25,1,25,7))
image(x=1, y=0:length(breaks2),z=t(matrix(breaks2))*1.001,
col=pal[1:length(breaks)-1],axes=FALSE,
breaks=breaks,xlab="",ylab="",
xaxt="n")

axis(4,at=0:(length(breaks2)),labels=breaks,col="white",las=1)
abline(h=c(1:length(breaks2)),col="white",lwd=2,xpd=F)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

187

How it works...
Just like in the previous recipe, first we format the data using the first column values as row
names and cast the dataframe as a matrix. We created a palette of five colors using the
heat.colors() function and defined a sequence of breaks 0, 0.2, 0.4,...1.0.

Then we created a layout with one row and two columns (one for the heat map and the other
for the color scale). We created the heat map using the image() command in a similar way
to the previous recipe passing the data matrix as the value of the z argument.

We added custom X axis labels using the text() function, instead of the axis() function
to rotate the axis labels. We also placed the labels in the top margin instead of the bottom
margin as usual to improve the readability of the graph. This way it resembles a gene
correlation matrix of numbers more closely, where the names of the genes are shown on the
top and left. To create the rotated labels, we set the srt argument to 45, thus setting the
angle of rotation to 45 degrees.

Finally, we added a color scale to the right of the heat map.

There's more...
We can use a more contrasting color scale to differentiate between the correlation values. For
example, to highlight the diagonal values of 1 more clearly, we can substitute the last color in
our palette with white.

If you get a figure margins error while running the code, enlarge the plot
device or adjust the margins so that the graph and scale fit within the device.

Summarizing multivariate data in a heat map
In the preceding couple of recipes, we have looked at representing a matrix of data along two
axes on a heat map. In this recipe, we will learn how to summarize multivariate data using a
heat map.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the following code. We will use the nba.csv example dataset for this recipe. So let's
first load it:

nba <- read.csv("nba.csv")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

188

This example dataset showing some statistics on the top scorers in NBA basketball games
has been taken from a blog post on FlowingData (see http://flowingdata.com/
2010/01/21/how-to-make-a-heatmap-a-quick-and-easy-solution/ for
details). The original data is from the databaseBasketball.com website (http://
databasebasketball.com/). We will use our own code to create a similar heat map
showing player statistics.

We will use the RColorBrewer library for a nice color palette, so let's load it:

library(RColorBrewer)

How to do it...
We are going to summarize a number of NBA player statistics in the same heat map using the
image() function:

rownames(nba)<-nba[,1]

data_matrix<-t(scale(data.matrix(nba[,-1])))

pal=brewer.pal(6,"Blues")

statnames<-c("Games Played", "Minutes Played", "Total Points",
"Field Goals Made", "Field Goals Attempted",
"Field Goal Percentage", "Free Throws Made",
"Free Throws Attempted", "Free Throw Percentage",
"Three Pointers Made", "Three Pointers Attempted",
"Three Point Percentage", "Offensive Rebounds",
"Defensive Rebounds", "Total Rebounds", "Assists", "Steals",
"Blocks", "Turnovers", "Fouls")

par(mar = c(3,14,19,2),oma=c(0.2,0.2,0.2,0.2),mex=0.5)

#Heat map
image(x=1:nrow(data_matrix),y=1:ncol(data_matrix),
z=data_matrix,xlab="",ylab="",col=pal,axes=FALSE)

#X axis labels
text(1:nrow(data_matrix), par("usr")[4] + 1,
srt = 45, adj = 0,labels = statnames,
xpd = TRUE, cex=0.85)

#Y axis labels
axis(side=2,at=1:ncol(data_matrix),
labels=colnames(data_matrix),
col="white",las=1, cex.axis=0.85)

#White separating lines
abline(h=c(1:ncol(data_matrix))+0.5,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

189

v=c(1:nrow(data_matrix))+0.5,
col="white",lwd=1,xpd=F)

#Graph Title
text(par("usr")[1]+5, par("usr")[4] + 12,
"NBA per game performance of top 50corers",
xpd=TRUE,font=2,cex=1.5)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

190

How it works...
Once again, in a way similar to the preceding couple of recipes, we first formatted the dataset
with the appropriate row names (in this case names of players) and cast it as a matrix. We did
one additional thing—we scaled the values in the matrix using the scale() function, which
centers and scales each column so that we can denote the relative values of each column on
the same color scale.

We chose a blue color palette from the RColorBrewer library. We also created a vector with
the descriptive names of the player statistics to use as labels for the X axis.

The code for the heat map itself and the axis labels is very similar to the previous recipe. We
used the image() function with data_matrix as z and suppressed the default axes. Then
we used text() and axis() for adding the X and Y axis labels. We also used the text()
function to add the graph title (instead of the title() function) in order to left-align it with
the Y axis labels instead of the heat map.

There's more...
As shown in the FlowingData blog post, we can order the data in the matrix as per the values
in any one column. By default, the data is in ascending order of total points scored by each
player (as can be seen from the light to dark blue progression in the Total Points column). To
order the players based on their scores from highest to lowest, we need to run the following
code after reading the CSV file:

nba <- nba[order(nba$PTS),]

See the help on the order() function by running ?order or help(order)
at the R prompt.

Then we can run the rest of the code to make the following graph:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

191

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

192

Creating contour plots
In this recipe we will learn how to make contour plots to visualize topographical data, such as
the terrain near a mountain or a volcano.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the code we are about to see. We will use the inbuilt volcano dataset, so we need
not load anything.

How to do it...
Let's first make a default contour plot using the volcano dataset:

contour(x=10*1:nrow(volcano), y=10*1:ncol(volcano), z=volcano,
xlab="Metres West",ylab="Metres North",
main="Topography of Maunga Whau Volcano")

How it works...
We used the base graphics library function contour() to make the graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

193

The arguments x and y specify the locations of the grid at which the height values (z) are
specified. The volcano dataset contains topographic information on a 10X10 m grid, so we set
the x and y grid arguments to 10 times the index numbers of rows and columns respectively.

The contour data z is provided by the volcano dataset in a matrix form.

The graph shows the height of the region in the form of contour lines, which outline all areas
with the same height. The height for each contour line is shown in gray.

There's more...
Now let's improve the graph by making the Y axis labels horizontal and adding some colors to
the plot area and contour lines:

par(las=1)

plot(0,0,xlim=c(0,10*nrow(volcano)),ylim=c(0,10*ncol(volcano)),
type="n",xlab="Metres West",
ylab="Metres North",main="Topography of Maunga Whau Volcano")

u<-par("usr")

rect(u[1],u[3],u[2],u[4],col="lightgreen")

contour(x=10*1:nrow(volcano),y=10*1:ncol(volcano),
volcano,col="red",add=TRUE)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

194

See also
In the next recipe, we will learn how to make filled contour plots, which use solid color to make
the graph even easier to read.

Creating filled contour plots
In this recipe, we will learn how to make a contour plot with the areas between the contours
filled in solid color.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the code we are about to see. We will use the inbuilt volcano dataset, so we need
not load anything.

How to do it...
Let's make a filled contour plot showing the terrain data of the Maunga Whau volcano in R's
inbuilt volcano dataset:

filled.contour(x = 10*1:nrow(volcano),y = 10*1:ncol(volcano),
z = volcano, color.palette = terrain.colors,
plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North",ylab = "Meters West"),
plot.axes = {axis(1, seq(100, 800, by = 100))
 axis(2, seq(100, 600, by = 100))},
key.title = title(main="Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

195

How it works...
If you type ?filled.contour you will see that the preceding example is taken from that
help file (see the second example at the end of the help file). The filled.contour()
function creates a contour plot with the areas between the contour lines filled with solid
colors. In this case, we chose the terrain.colors() function to use a color palette
suitable for showing geographical elevations. We set the color.palette argument to
terrain.colors and the filled.contour() function automatically calculates the
number of color levels.

The basic arguments are the same as those for contour(), namely, x and y that specify
the locations of the grid at which the height values (z) are specified. The contour data z is
provided by the volcano dataset in a matrix form.

The filled.contour() function is slightly different from other basic graph functions
because it automatically creates a layout with the contour plot and key. We can't suppress
or customize the styling of the key to a great extent. Also, some of the standard graph
parameters have to be passed to other functions. For example, the axis labels xlab and ylab
have to be passed as arguments to the title() function which is passed as the value for the
plot.title argument. We cannot directly pass xlab and ylab to filled.contour().

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

196

We also have to add our custom axes by setting the plot.axes argument to a list of function
calls to the axis() function. Unlike other functions, we cannot simply set axes to FALSE and
call axis() after drawing the graph because of the internal use of layout() in filled.
contour(). If we add axes after calling filled.contour(), the X axis will extend beyond
the contour plot up to the key.

Finally, we set the title and tick labels of the key using the key.title and key.axes
arguments respectively. Once again, we had to set these arguments to function calls to
title() and axis() respectively instead of directly specifying the values.

There's more...
We can adjust the level of detail and smoothness between the contours by increasing their
number using the nlevels argument:

filled.contour(x = 10*1:nrow(volcano),
y = 10*1:ncol(volcano), z = volcano,
color.palette = terrain.colors,
plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North",ylab = "Meters West"),nlevels=100,
plot.axes = {axis(1, seq(100, 800, by = 100))
 axis(2, seq(100, 600, by = 100))},
key.title = title(main="Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

197

Note that there are a lot more contours now and the plot looks a lot smoother. The default
value of nlevels is 20, so we increased it by 5 times. The key doesn't look very nice because
of too many black lines between each tick mark; however, as pointed out earlier, we cannot
control that without changing the definition of the filled.contour() function itself.

See also
In the next recipe, we will learn how to make a three-dimensional version of a filled contour plot.

Creating three-dimensional surface plots
In this recipe, we will use a special library to make a three-dimensional (3D) surface plot for
the volcano dataset. The resulting plot will also be interactive so that we can rotate the
visualization using a mouse to look at it from different angles.

Getting ready
For this recipe, we will use the rgl package, so we must first install and load it:

install.packages("rgl")
library(rgl)

We will only use the inbuilt volcano dataset, so we need not load any other dataset.

How to do it...
Let's make a simple three-dimensional surface plot showing the terrain of the Maunga
Whau volcano:

z <- 2 * volcano
x <- 10 * (1:nrow(z))
y <- 10 * (1:ncol(z))

zlim <- range(z)
zlen <- zlim[2] - zlim[1] + 1

colorlut <- terrain.colors(zlen)
col <- colorlut[z-zlim[1]+1]

rgl.open()
rgl.surface(x, y, z, color=col, back="lines")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

198

The 3D surface will look like following:

How it works...
RGL is a 3D real-time rendering device driver system for R. We used the rgl.surface()
function to create the preceding visualization. Please see the help section (by running ?rgl.
surface at the R prompt) to see the original example at the bottom of the help file, on which
the example is based.

We basically used the volcano dataset that we used in the previous couple of recipes and
created a three-dimensional representation of the volcano's topography instead of the two-
dimensional contour representation.

We set up the x, y, and z arguments in a similar way to the contour examples, except that
we multiplied the volcano height data in z by 2 to exaggerate the terrain which helped us
appreciate the library's 3D capabilities better.

Then we defined a matrix of colors for each point in z such that each height value has
a unique color from the terrain.colors() function. We saved the mapped color data
in col (if you type col at the R prompt and hit Return (or Enter), you will see that it contains
5,307 colors).

Then we opened a new RGL device with the rgl.open() command. This brings up a blank
window with a gray background. Finally, we called the rgl.surface() function with the
x, y, z, and color arguments. We also set the back argument to "lines", which resulted
in a wire-framed polygon underneath the visualization.

Once rgl.surface() is run, we can rotate the visualization using our mouse in any
direction. This lets us look at the volcano from any angle. If we look underneath, we can also
see the wire-frame. The images show snapshots of the volcano from four different angles.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

199

There's more...
The example is a very basic demonstration of the rgl package's functionality.

There are a number of other functions and settings we can use to create a lot more complex
visualizations customized to our needs. For example, the back argument can be set to other
values to create a filled, point, or hidden polygon. We can also set the transparency
(or opacity) of the visualization using the alpha argument. Arguments controlling the
appearance of the visualization are sent to the rgl.material() function which sets
the material properties.

Please read the related help sections (?rgl, ?rgl.surface, ?rgl.material) to get a
more in-depth understanding of this library.

Visualizing time series as calendar
heat maps

In this recipe, we will learn how to make intuitive heat maps in a calendar format to
summarize time series data.

Getting ready
In this recipe, we will use a custom function called calendarHeat() written by Paul Bleicher
(released as open source under the GPL license). So let's first load the source code of the
function (available from the downloads area of the book's website):

source("calendarHeat.R")

We are going to use the google.csv example dataset, which contains stock price data for
Google (ticker GOOG). Let's load it:

stock.data <- read.csv("google.csv")

calendarHeat() also make use of the chron library, which has to be installed and loaded
using the following:

install.packages("chron")
library("chron")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

200

How to do it...
Let's visualize the adjusted closing price of the Google stock in a calendar heat map:

calendarHeat(dates=stock.data$Date,
values=stock.data$Adj.Close,
varname="Google Adjusted Close")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

201

How it works...
We used the calendarHeat() function, which uses the grid, lattice, and chron
libraries, to make the heat map. The main arguments are dates and values, which we set
to the Date and Adj.Close columns of our dataset respectively. We also used the varname
argument to set the title of the heat map.

There are several other arguments which can be passed to calendarHeat(). For example,
we can specify the format our input dates are in using the date.form argument. The default
format is YYYY-MM-DD, which matches our original dataset. However, if the dates were in
another format, say MM-DD-YY, we could set date.form to "%m-%d-%y".

The number of colors in the color scale are controlled by the ncolors argument, which has a
default value of 99. The color scheme is specified by the color argument, which takes some
predefined palette names as values. The default is r2g (red to green), and other options
are r2b (red to blue) and w2b (white to blue). We can add more options simply by adding a
definition for a new color palette as a vector of colors.

There's more...
Another useful package which provides a calendar heat map functionality is the openair
package, which has been primarily created for air pollution data analysis. Let's make a
pollution heat map using this package.

First, we need to install and load it:

install.packages("openair")
library(openair)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

202

To make our first air pollution calendar heat map, we can simply run:

calendarPlot(mydata)

The graph shows some Nitrogen Oxides (NOx) concentration data from London in 2003 in the
form of a heat map overlaid on a regular calendar.

We only had to pass one argument mydata to the calendar.plot() function, which uses
the package's default mydata dataset. Run head(mydata) at the R prompt to see what the
data looks like and all the columns in the dataset. The first column contains GMT date and time
values in a long format (YYYY-MM-DD HH:MM:SS). If we want to use the calendar.plot()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

203

function, as it is for visualizing other types of temporal data, we can do so as long as the date
column is in the same format and we specify the variable to be plotted using the pollutant
argument. The default value of pollutant is "nox", which is the name of the column that
contains the NOx values.

Let's say, we want to plot daily sales data instead. Let's use the rnorm() function to create
some fake data and add it as a column to the mydata dataset:

mydata$sales<-rnorm(length(mydata$nox),mean=1000,sd=1500)

The code added a sales column to mydata, with random values following a normal
distribution with a mean of 1000 and standard deviation of 1500. Now, let's use calendar.
plot() to make a heat map for this sales data.

calendarPlot(mydata,pollutant="sales",main="Daily Sales in 2003")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Heat Maps and Contour Plots

204

In the example, we set the pollutant argument to the newly created sales column
(note that we have to pass it as a string in quotes). We also set the plot title using the main
argument. The calendar.plot() function uses the lattice library to generate the heat
maps. Please see the help file (?calendar.plot) to see other arguments you can use.

www.it-ebooks.info

http://www.it-ebooks.info/

9
Creating Maps

In this chapter, we will cover:

ff Plotting global data by countries on a world map

ff Creating graphs with regional maps

ff Plotting data on Google maps

ff Creating and reading KML data

ff Working with ESRI shapefiles

Introduction
In this chapter, we will take a more in-depth look at visualizing data on geographical maps,
building on top of our brief introduction in Chapter 1.

Overlaying datasets from different parts of the world on maps is a very good way of
summarizing data in its correct geographical context. A lot of data is being made freely
available. For example, the World Bank and World Health Organization (WHO) publish lots
of socio-economic and health-related data, which can be plotted on maps. Google Maps
provides a good API, which can be directly connected to from R as we will see in this chapter.

We will also learn how to work with Geographical Information Systems (GIS) data
formats in R.

As with the previous chapters, it is best to try out each recipe first with the example shown
here and then with your own datasets so that you can fully understand each line of code.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

206

Plotting global data by countries on a
world map

In this recipe we will learn how to plot country-wise data on a world map.

Getting ready
We will use a few different additional packages for this recipe. We need the maps package for
the actual drawing of the maps, the WDI package to get world bank data by countries, and the
RColorBrewer package for color schemes. So let's make sure these packages are installed
and loaded:

install.packages("maps")
library(maps)
install.packages("WDI")
library(WDI)
install.packages("RColorBrewer")
library(RColorBrewer)

How to do it...
There are a lot of different data we can pull in using the world bank API provided by the WDI
package. In this example, let's plot some CO2 emissions data:

colors = brewer.pal(7,"PuRd")
wgdp<-WDIsearch("gdp")
w<-WDI(country="all", indicator=wgdp[4,1], start=2005, end=2005)

w[63,1] <- "USA"

x<-map(plot=FALSE)

x$measure<-array(NA,dim=length(x$names))

for(i in 1:length(w$country)) {
 for(j in 1:length(x$names)) {
 if(grepl(w$country[i],x$names[j],ignore.case=T))
 x$measure[j]<-w[i,3]
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

207

sd <- data.frame(col=colors,
values <- seq(min(x$measure[!is.na(x$measure)]),
max(x$measure[!is.na(x$measure)]) *1.0001,
length.out=7))

sc<-array("#FFFFFF",dim=length(x$names))

for (i in 1:length(x$measure))
 if(!is.na(x$measure[i]))
 sc[i]=as.character(sd$col[findInterval(x$measure[i],
 sd$values)])

#2-column layout with color scale to the right of the map
layout(matrix(data=c(2,1), nrow=1, ncol=2), widths=c(8,1),
heights=c(8,1))

Color Scale first
breaks<-sd$values

par(mar = c(20,1,20,7),oma=c(0.2,0.2,0.2,0.2),mex=0.5)

image(x=1, y=0:length(breaks),z=t(matrix(breaks))*1.001,
col=colors[1:length(breaks)-1],axes=FALSE
breaks=breaks,xlab="",ylab="",xaxt="n")

axis(side=4,at=0:(length(breaks)-1),
labels=round(breaks),col="white",las=1)

abline(h=c(1:length(breaks)),col="white",lwd=2,xpd=F)

#Map
map(col=sc,fill=TRUE,lty="blank")
If you get a figure margins error while running the above code,
enlarge the plot device or adjust the margins so that the graph and
scale fit within the device.

map(add=TRUE,col="gray",fill=FALSE)
title("CO2 emissions (kg per 2000 US$ of GDP)")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

208

The map plot of CO2 emissions looks like the following:

How it works...
We used the maps package in combination with world bank data from the WDI package above
to plot CO2 emissions data per 2.000 US$ of GDP for various countries across the world.

First we chose an RColorBrewer color scheme and saved it as a vector called colors. We
then pulled a list of GDP-related variables using the WDIsearch() function. If you type wgdp
at the R prompt and hit Enter, you will see a list of codes and descriptions of each of these
variables. For the previous example, we chose the fourth variable (wgdp[4,1]), which gives
CO2 emissions (kg per 2.000 US$ of GDP), and passed it to the WDI() function to get data
for all countries for the year 2005 by setting the country argument to "all" and start and
end to 2005.

Next, we created a map object x simply by calling the map() function and setting plot to
FALSE, so that the map is not drawn yet. We did this so that we can map the data we pulled
from WDI to the country polygons contained in the map object.

First we added a new array called measure to x, with NA as default values and length
matching the number of country names in x. If you type x$names at the R prompt and hit
Enter, you will see the whole list of country names. Similarly, w$country contains the names
of the countries for which the WDI package has data. Note that the map object has a lot more
names because it contains regional information at a finer detail than just countries. So, we
must first match the names of countries in the two datasets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

209

For the example, we use a simple search function grepl(), which looks for the WDI country
names in the map object x and assigns the corresponding CO2 emissions values from w to
x$measure. This is a very approximate solution and misses on countries where the names in
the two datasets are not the same. For example, the United States is named USA in the WDI
dataset. To match all the countries exactly, we need to manually check the important ones we
are interested in. In the example, the United States was corrected manually.

Next we created a data frame called sd to define a color scheme with intervals based on a
sequence from the minimum to the maximum values in x$measure. We use sd to assign a
color for each of the values in x$measure by creating a vector called sc. First we create sc
with default values of white, so that any missing values are depicted without any color. Then
we used the findInterval() function to assign a color to each value of x$measure.

Finally, we have all the ingredients for making the map. We first used the layout() function
to create a 1X2 layout just like we did for heat maps in the previous chapter.

We need to plot the color scale first here because if we plot the map first, the scale cannot
be plotted on the same layout and results in a new plot with just the scale. We reversed this
plotting order by setting the data argument in layout() to c(2,1) instead of c(1,2).

The color scale is drawn in exactly the same way as in the previous chapter for heat maps,
using the image() function. To draw the map itself, we used the map() function. We set the
col argument to the vector sc which contains colors corresponding to each polygon on the
map. We set fill to TRUE and lty to "blank", so that we get the polygons filled with the
specified colors and no blank borders around them. Instead, we add gray borders by calling
the map() function with add set to TRUE, col set to gray and fill set to FALSE. Finally,
we added a plot title using the title() function.

There's more...
The example shows just one variable for one year visualized on a map. The world bank
package gives 73 different metrics related to GDP alone (as can be seen in the wgdp
variable). See the help section for the WDI package for more details about other data
available (?WDI and ?WDIsearch). If you have any other data by country from another
source, you can use that with the map() function in the example as long as the country
names can be matched to the names of regions in the map object.

See also
In the next recipe, we will learn how to plot regional data on individual country maps instead
of on a world map.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

210

Creating graphs with regional maps
In this recipe we will learn how to plot data on regional maps within individual countries
rather than the whole world map. We will look at examples based on the United States
and European countries.

Getting ready
Just like the previous recipe, we will make use of the maps package for drawing the map and
the RColorBrewer package for choosing color schemes. So, let's make sure they are loaded:

library(maps)
library(RColorBrewer)

We will use the inbuilt USArrests example dataset, which contains crime statistics, in
arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states
in 1973.

How to do it...
Let's plot the arrests rate for murders in US states in 1973. The default graphics device size
may not be big enough for the map, so if you get an error about figure margins, please enlarge
the graphics device:

x<-map("state",plot=FALSE)

for(i in 1:length(rownames(USArrests))) {
 for(j in 1:length(x$names)) {
 if(grepl(rownames(USArrests)[i],x$names[j],ignore.case=T))
 x$measure[j]<-as.double(USArrests$Murder[i])
 }
}

colors <- brewer.pal(7,"Reds")

sd <- data.frame(col=colors,
values=seq(min(x$measure[!is.na(x$measure)]),
max(x$measure[!is.na(x$measure)])*1.0001,
length.out=7))

breaks<-sd$values

matchcol<-function(y) {
 as.character(sd$col[findInterval(y,sd$values)])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

211

}

layout(matrix(data=c(2,1), nrow=1, ncol=2),
widths=c(8,1), heights=c(8,1))

Color Scale first
par(mar = c(20,1,20,7),oma=c(0.2,0.2,0.2,0.2),mex=0.5)
image(x=1, y=0:length(breaks),z=t(matrix(breaks))*1.001,
col=colors[1:length(breaks)-1],axes=FALSE,breaks=breaks,
xlab="", ylab="", xaxt="n")
axis(4,at=0:(length(breaks)-1),
labels=round(breaks),col="white",las=1)
abline(h=c(1:length(breaks)),col="white",lwd=2,xpd=F)

#Map
map("state", boundary = FALSE,col=matchcol(x$measure),
fill=TRUE,lty="blank")

map("state", col="white",add = TRUE)

title("Murder Rates by US State in 1973 \n
(arrests per 100,000 residents)", line=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

212

How it works...
The example is similar to the previous recipe in its overall structure, but it differs mainly in the
fact that we plotted data for one country's states. We used the USArrests dataset, which is
inbuilt in R and contains various crime figures by state for the United States.

Just like the previous recipe we first mapped the values of the chosen statistic (murder rates
in this case) to the corresponding region names (in this case states) in the map object created
using the map() function. We chose a red color scheme from RColorBrewer.

Instead of creating a vector of colors for each of the values plotted, we defined a function
matchcol() which takes a value as an argument and uses the findInterval() function
to return a color value from the data frame sd which contains the breaks and corresponding
colors from the chosen palette.

We then created a two column layout and drew the color scale first in the right column. Then
we plotted the map with fill set to TRUE and col set to a function call to matchcol()
with x$measure as the argument. We set the boundary to FALSE, to draw white boundaries
instead of the default black ones. We did so by calling map() again with col set to white
and add set to TRUE. Finally, we used the title() function to add a map title.

There's more...
Mapping data by states is just one of the options in the maps package for the United States.
We can also map data by counties and regions defined as groups of specific states. For
example, we can draw a county map of New York with:

map("county", "new york")

Or we can draw a map with three states with:

map("state", region = c("california", "oregon", "nevada"))

Now let's look at another example, this time from a European country:

map('italy', fill = TRUE, col = brewer.pal(7,"Set1"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

213

The preceding example uses the inbuilt dataset for Italy in the maps package. We used the
colors just to differentiate the various territorial units from each other; the colors do not
represent any numerical quantity. The maps package does not have geographical data for
other countries. But there is one good source for world-wide geographical data: the GADM
database of Global Administrative Areas. One can freely download data for countries across
the world in R's native RData format for non-commercial use from the website
http://gadm.org.

The GADM data can be used in combination with the sp package to plot regional data on
maps. Let's look at an example of rainfall in France. First let's make sure the sp package is
installed and loaded:

install.packages("sp")
library(sp)

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

214

Now let's create some pseudo rainfall data for the French administrative regions and plot it on
a map of France:

load(url("http://gadm.org/data/rda/FRA_adm1.RData"))

gadm$rainfall<-rnorm(length(gadm$NAME_1),mean=50,sd=15)

spplot(gadm,"rainfall",
col.regions = rev(terrain.colors(gadm$rainfall)),
main="Rainfall (simulated) in French administrative regions")

First we loaded the geographical boundary data for France by calling the load() function
with a url of the location of the dataset on the GADM website. In this case, the dataset
loaded was FRA_adm1.RData. This function call stores the data in an object called gadm
(you can verify this by typing gadm at the R prompt and hitting Enter). Next, we appended a
vector of pseudo rainfall data to gadm by calling the rnorm() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

215

Finally, we used the spplot() function from the sp package to plot the data. The first
argument to spplot() is the object gadm itself and the second argument is the name of the
variable we wish to plot on the map. We set the fill color of the regions using col.region;
this is slightly different from the map() function because the sp package is based on the
lattice library. We used a color scheme based on the terrain.colors() function, but
reversed it with rev() so that low to high rainfall is represented by gray through brown
to green.

Plotting data on Google maps
In this recipe, we will learn how to plot data on top of Google map images using a special
package that connects to Google's Static Maps API.

Getting ready
First we need to install the RgoogleMaps package and a related package rgdal:

install.packages("rgdal")

library(rgdal)

install.packages("RgoogleMaps")

library(RgoogleMaps)

We will use the londonair.csv example dataset for this recipe. This dataset contains
annual average concentrations of particulate matter in London's atmosphere measured at 12
different air quality monitoring sites across the city (data source: London air website
http://www.londonair.org.uk). So let's load that too:

air<-read.csv("londonair.csv")

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

216

How to do it...
Let's pull a Google map of London city and plot the pollution data as points on top of it:

london<-GetMap(center=c(51.51,-0.116),
zoom =10, destfile = "London.png",maptype = "mobile")

PlotOnStaticMap(london,lat = air$lat, lon = air$lon,
cex=2,pch=19,col=as.character(air$color))

Now let's make the same graph with a satellite image map instead of the roadmap:

london<-GetMap(center=c(51.51,-0.116),zoom =13,
destfile = "London_satellite.png",maptype = "satellite")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

217

PlotOnStaticMap(london,lat = air$lat, lon = air$lon,
cex=2,pch=19,col=as.character(air$color))

How it works...
In the examples, we first used the GetMap() function from the RgoogleMaps package to pull
a map of London from the Google Static Maps API (see http://code.google.com/apis/
maps/documentation/staticmaps/ for more details about the API). We then used the
PlotOnStaticMap() function to overlay our air pollution data points on the map.

The first and most important argument to the GetMap() function is the center argument,
which takes a vector of two values specifying the latitude and longitude of the location to be
used as the center of the map. The zoom level is specified by the zoom argument, which has a
default value of 12. The higher the value of zoom, the more detailed and zoomed in the view.
In the example, we set zoom to 10 so as to capture a wide area of London.

We also specified the destfile argument to save the retrieved map as London.png. The
default value of destfile is MyTile.png. You can check whether the map is retrieved by
looking for the PNG file in your working folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

218

Finally, we also set the maptype argument, which can take one of a number of different
values such as "roadmap", "mobile", "satellite", "terrain", "hybrid",
"mapmaker-roadmap", and "mapmaker-hybrid". The default map type is terrain.
We set maptype to mobile in the first example and satellite in the second example.

If you look at the output of the GetMap() function call at the R prompt you will notice that it
shows a URL such as:

[1] http://maps.google.com/staticmap?center=51.51,-0.116&zoom=10&size=
640x640&maptype=mobile&format=png32&key=&sensor=true

Basically, the GetMap() function creates an HTTP GET request URL with parameters based
on the arguments supplied. To test this, copy the provided URL and paste it into the address
bar of a web browser. You should get the image of the specified map.

We saved the object returned by the GetMap() function call as london, which we then
passed as the first argument to the PlotOnStaticMap() function. As the name suggests,
this function plots data on top of map objects. The air pollution dataset londonair.csv that
we loaded earlier contains monitoring site data including site code, name, latitude, longitude,
particle concentration (PM10), and a color based on the concentration value. We passed
these values to the PlotOnStaticMap() function. We set the lat and lon arguments to
the lat and lon columns in the air data frame respectively. We set the col argument to the
color column in air.

There's more...
We can overlay more data points or lines successively on top of a map by setting an additional
argument add to TRUE. By default, add is set to FALSE which creates a new map with
the specified data points or lines. To draw lines instead of points, we need to set the FUN
(meaning function) argument to lines. By default, FUN is set to points.

The following is another example pulling in a hybrid map of New York:

GetMap(center=c(40.714728,-73.99867), zoom =14,
destfile = "Manhattan.png", maptype = "hybrid");

Another maps library, which is becoming increasingly popular, is Open Street Map
(http://www.openstreetmap.org/). It's a free and open source editable library,
unlike Google's proprietary maps API. The following is an example based on the
GetMap.OSM() function which uses the Open Street Map server:

GetMap.OSM(lonR= c(-74.67102, -74.63943),
latR = c(40.33804,40.3556),scale = 7500,
destfile = "PrincetonOSM.png")

GetMap.OSM() takes the ranges of longitude and latitude as two two-valued vectors lonR
and latR respectively. The scale argument is analogous to the zoom argument for the
Google API. The larger this value, the more detailed the resulting map.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

219

See also
In the next recipe we will learn how to interact with Google's KML language for expressing
geographic data.

Creating and reading KML data
In this recipe, we will learn how to read and write geographic data in Google's Keyhole Markup
Language (KML) format, which can be used to visualize geographic data with Google Earth
and Google Maps.

Getting ready
We will use the rgdal package in this recipe. So let's make sure it's installed and load it:

install.packages("rgdal")
library(rgdal)

How to do it...
We will use data from the cities shapefile that's installed as part of the rgdal package.
First we will write a KML file and then read it:

cities <- readOGR(system.file("vectors",
package = "rgdal")[1],"cities")

writeOGR(cities, "cities.kml", "cities", driver="KML")

df <- readOGR("cities.kml", "cities")

How it works...
In the preceding example, we first used the readOGR() function to read the cities
shapefile dataset. The first argument is the folder (directory) where the data shapefile
is and the second argument is the name of the shapefile (without the .shp extension).
We stored the object returned by the readOGR() function as cities, which is of class
SpatialPointsDataFrame.

To create a KML file, we used the writeOGR() function. We passed the cities object as
the first argument. The second argument specifies the name of the output KML file, the third
argument specifies the shapefile layer name (without extension), and the fourth argument is
the driver (in this case KML).

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Maps

220

To read the KML file back into R, we used the readOGR() function with only two arguments.
The first argument specifies the KML data file to be read and the second argument specifies
the name of the layer.

See also
In the next recipe, we will learn how to work with ESRI shapefiles.

Working with ESRI shapefiles
In this recipe we will learn how to read and write geographic data in the form of shapefiles
(.shp), using Geographical Information Systems (GIS) software created by ESRI and some
other similar software.

Getting ready
We are going to use the maptools package for this recipe. So let's install and load it first:

install.packages("maptools")
library(maptools)

How to do it...
We are going to read an example shapefile provided with the maptools package and plot it:

sfdata <- readShapeSpatial(system.file("shapes/sids.shp",
package="maptools")[1], proj4string=CRS("+proj=longlat"))

plot(sfdata, col="orange", border="white", axes=TRUE)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

221

To write out the data as another shapefile we can do:

writeSpatialShape(sfdata,"xxpoly")

How it works...
We used the readShapeSpatial() function of the maptools package to read in a
shapefile. This function takes a shapefile name as an argument and reads the data into a
SpatialPolygonsDataFrame object. The first argument in the example is the path to the
example shapefile sids.shp which is provided as part of the maptools package installation.
The second argument proj4string specifies the projection type as longlat so that the
spatial co-ordinates are interpreted correctly as longitudes and latitudes.

We saved the object returned by readShapeSpatial() as sfdata (of data class
SpatialPolygonsDataFrame), which we then passed to the plot() function to
create a map from the shapefile data.

Once we've read the data into the appropriate format, we can perform any transformations
on the data. To save the transformed dataset back into a shapefile, we use the
writeSpatialShape() function which takes the data object as the first argument and the
name of the output shapefile (without any file type extension) as the second argument.

There's more...
There is another package called shapefiles, which can be used to read and write
shapefiles. To use it, we must first install and load it:

install.packages("shapefiles")
library(shapefiles)

To read a shapefile using this package we can use the read.shapefile() function:

sf<-system.file("shapes/sids.shp", package="maptools")[1]
sf<-substr(sf,1,nchar(sf)-4)
sfdata <- read.shapefile(sf)

We first saved the path of the sids.shp example file in a variable called sf. We had to trim
the path string to remove the extension .shp because the read.shapefile() function
takes just the name of the shapefile as its argument. The shapefile data is saved in a list
called sfdata.

To write out a shapefile using this package we need to use the write.shapefile()
function:

write.shapefile(sfdata, "newsf")

The write.shapefile() takes two key arguments: the first is the data object (sfdata in
the example) and the second is the name of the new shapefile without any file extension.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10
Finalizing graphs

for publications and
presentations

In this chapter, we will cover:

ff Exporting graphs to high resolution image formats: PNG, JPEG, BMP, TIFF

ff Exporting graphs to vector formats: SVG, PDF, PS

ff Adding mathematical and scientific notations (typesetting)

ff Adding text descriptions to graphs

ff Using graph templates

ff Choosing font families and styles under Windows, Mac OS X, and Linux

ff Choosing fonts for PostScripts and PDFs

Introduction
In the previous chapters, we have learnt how to make graphs of different types and styles
using various functions and arguments. In this chapter, we will learn some tricks and tips to
add some polish to our graphs so that they can be used for publication and presentation.

We will look at the different image file formats we can save our graphs in and learn how
to export our graphs at high resolutions. Most publications require authors to submit high
resolution figures along with their manuscripts. We will also look in more detail at vector
formats such as PDF, SVG, and PS, which are preferred by most publications since these
are resolution-independent formats.

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

224

We will also learn how to add mathematical and scientific notations to graphs. These are
indispensible in any scientific data visualization. We will also see how to add text descriptions
inside graphs, which can be very handy as slides for presentation. Graph templates are a way
to save time by creating functions which cut down repetitive code, so that once we are happy
with the basic structure of a graph, we can experiment with various pre-defined themes to
choose the most appropriate color combinations and styles.

Finally, we will also look at how to choose fonts under different operating systems and graphic
devices. We will also learn how to add new font mappings and to choose additional font
families for vector file formats.

As with the previous chapters, it is best to try out each recipe first with the example shown
here and then with your own datasets so that you can fully understand each line of code. If
you are preparing any graph for publication or presentation, it is also good practice to print out
the saved graphs and verify that the printed output looks correct and clear.

Exporting graphs in high resolution image
formats: PNG, JPEG, BMP, TIFF

In this recipe, we will learn how to save graphs in high resolution image formats for use in
presentations and publications.

Getting ready
We are only using the base graphics functions for this recipe. So, just run the R code at the
R prompt. You may wish to save the code as an R script so that you can use it again later.

How to do it...

Let's re-create a simple scatter plot example from Chapter 1 and save it as PNG file 600 px
high and 600 px wide with a resolution of 200 dots per inch (dpi):

png("cars.png",res=200,height=600,width=600)

plot(cars$dist~cars$speed,
main="Relationship between car distance and speed",
xlab="Speed (miles per hour)",ylab="Distance travelled (miles)",
xlim=c(0,30),ylim=c(0,140),
xaxs="i",yaxs="i",col="red",pch=19)

dev.off()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

225

The resulting cars.png file looks like the following:

The pictured graph has a high resolution but the layout and formatting has been lost. So, let's
create a high resolution PNG while preserving the formatting:

png("cars.png",res=200,height=600,width=600)

par(mar=c(4,4,3,1),omi=c(0.1,0.1,0.1,0.1),mgp=c(3,0.5,0),
las=1,mex=0.5,cex.main=0.6,cex.lab=0.5,cex.axis=0.5)

plot(cars$dist~cars$speed,
main="Relationship between car distance and speed",
xlab="Speed (miles per hour)",ylab="Distance travelled (miles)",
xlim=c(0,30),ylim=c(0,140),
xaxs="i",yaxs="i",
col="red",pch=19,cex=0.5)

dev.off()

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

226

The resulting PNG file looks like the following:

How it works...
To save our graph as a high resolution PNG (200 dpi), we had to set the res argument of
the png() function to a value of 200. The default value of res is 72. We also set both the
height and width arguments to 600.

In the first example, we can see that simply specifying the resolution and dimensions of
the PNG file is not enough. The resultant image loses its original formatting and layout. In
addition to specifying the resolution and size, we also need to re-adjust the margins and
sizes of various graph elements, including the data points, axis, plot titles, and axis labels.
We set these parameters using the par() function and its arguments as we learnt in
Chapter 1 and Chapter 2.

To save the graphs as even higher resolution images, we would again need to adjust the
relative margins and sizes of the graph components.

There's more...
To save a graph in other formats such as JPEG, BMP, and TIFF, we can use the res argument
in the jpeg(), bmp(), and tiff() functions respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

227

See also
In the next recipe, we will learn how to save graphs in vector formats.

Exporting graphs in vector formats:
SVG, PDF, PS

In this recipe, we will learn how to save graphs in vector formats such as PDF, SVG, and
PostScript (PS), which are resolution-independent.

Getting ready
Once again we will use the basic graph functions. So, just make sure you have started R and
type the code at the R prompt.

How to do it...
Let's use the same scatter plot example from the previous recipe and save it in different
vector formats, starting with PDF:

pdf("cars.pdf")

plot(cars$dist~cars$speed,
main="Relationship between car distance and speed",
xlab="Speed (miles per hour)",ylab="Distance travelled (miles)",
xlim=c(0,30),ylim=c(0,140),
xaxs="i",yaxs="i",
col="red",pch=19,cex=0.5)

dev.off()

Similarly, we can save the graph as SVG or PS using the svg() and postscript()
functions respectively:

svg("3067_10_03.svg")
#plot command here
dev.off()

postscript("3067_10_03.ps")
#plot command here
dev.off()

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

228

How it works...
The vector format export commands are similar to the image format commands we saw in the
previous recipe. First we open a new device by calling the pdf(), svg(), or postscript()
functions with the output filename as its only argument, then issue the plot command and
finally close the device with dev.off().

Windows users will have to use the CairoSVG() command in order to export
files to SVG format. First import the Cairo package:

install.packages("Cairo")

library(Cairo)

And then use the following commands:
CairoSVG("3067_10_03.svg")

#plot command here
dev.off()

Since vector formats are resolution-independent, you can zoom in or out of them without
losing any clarity of the graph. Size does not affect the resolution. So, unlike the image
formats in the previous recipe, we did not have to re-adjust the graph margins and component
sizes to save the graph as PDF, SVG, or PS.

There's more...
We can save more than one graph in a single PDF file by setting the onefile argument to
TRUE (the default value). This is a useful output for presentations. All we have to do is issue
the pdf() command with the output file name, then issue all the plot commands in the
desired order and close the device with dev.off(). For example, let's make three variations
of the cars plot with three different colors for the data points and save them into one file:

pdf("multiple.pdf")

for(i in 1:3)
 plot(cars,pch=19,col=i)

dev.off()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

229

Another important setting when saving graphs in vector formats is the color model. Most
publications require authors to use the CMYK (Cyan Magenta Yellow Key) color model in
their graphs, instead of the default RGB (Red Green Blue) model. We can save our graphs
as PDFs or PostScripts with the CMYK color model simply by setting the colormodel
argument to cmyk:

pdf("multiple.pdf",colormodel="cmyk")

for(i in 1:3)
 plot(cars,pch=19,col=i)

dev.off()

By default, colormodel is set to rgb. The other possible value is gray for grayscale.

Adding mathematical and scientific
notations (typesetting)

Producing graphs for scientific journals is rarely ever done without adding some special
scientific and mathematical notations, such as subscripts, superscripts, symbols, and other
notations. In this recipe we will learn how to add these to annotations to our graphs.

Getting ready
We are only using base graphics functions for this recipe. So, just open up the R prompt and
type the following code. We will use the airpollution.csv example dataset for this recipe.
So let's first load it:

air<-read.csv("airpollution.csv")

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

230

How to do it...
Let's make a scatter plot of concentrations of Particulate Matter(PM) versus Nitrogen
Oxides(NOX) and add titles with subscripts as in PM10 and NOX and units mg m-3:

plot(air,las=1,
main=expression(paste("Relationship between ",PM[10]," and ",NO[X])),
xlab=expression(paste(NO[X]," concentrations (",mu*g^-3,")")),
ylab=expression(paste(PM[10]," concentrations (",mu*g^-3,")")))

How it works...
In the example, we added three new elements of special formatting and notation: subscripts,
superscripts, and a Greek symbol, using the expression() function.

The expression() function accepts arguments in a pre-defined syntax and translates
them into the desired format or symbol. For example, any characters enclosed within square
brackets [] are converted to subscripts, such as the X in NOX and 10 in PM10. Similarly, any
characters following the ^ sign are converted to superscripts, such as the power value -3 in
mg m-3. The letters mu are converted to symbol μ denoting micro.

In the example, we used a combination of regular text and expressions by using the
expression() function with the paste() function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

231

There's more...
There are a lot more options and functions we can use inside expression() to create a
lot more advanced notations than subscripts and superscripts. For example, integral(),
frac(), sqrt(), and sum() can be used to create mathematical signs for integrals,
fractions, square roots, and sums respectively.

To see and learn all the possible options and symbols, run the following command at the
R prompt:

demo(plotmath)

You will see the following symbols displayed on the plot device. You will need to press Return
or Enter to progress through each set of symbols:

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

232

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

233

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

234

Adding text descriptions to graphs
Sometimes we may wish to add descriptions to a graph, say if we are producing a
PDF for presentation or as a handout with notes. In this recipe, we will learn how to
add text descriptions in the margins of a graph, instead of having to add it separately
in another program.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt and
type the code we are about to see. You may wish to save the code as an R script for later use.

How to do it...
Let's plot a random normal distribution and add a little bit of description below the graph:

par(mar=c(12,4,3,2))
plot(rnorm(1000),main="Random Normal Distribution")

desc<-expression(paste("The normal distribution has density ",
f(x) == frac(1,sqrt(2*pi)*sigma)~ plain(e)^frac(-(x-mu)^2,2*sigma^2)))

mtext(desc,side=1,line=4,padj=1,adj=0)

mtext(expression(paste("where ", mu, " is the mean of the distribution
and ",sigma," the standard deviation.")),
side=1,line=7,padj=1,adj=0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

235

How it works...
In the example, we set the bottom margin of the plot to a high value and used the mtext()
function to add a small description below the graph.

We created an expression called desc with the expression() function we saw in the
previous recipe and used mtext() to place it in the fourth line of the bottom margin. To make
the text top-left aligned we set padj to 1 and adj to 0. We used mtext() again to place the
other half of the description on the seventh line of the margin. We had to split the description
into two halves and use mtext() twice because we couldn't automatically line wrap an
expression. We will soon see another example with a text-only description, where we can wrap
it in just one mtext() function call.

There's more...
Let's look at another example, where we add the description above the graph but just below
the title. This time the description will just be plain text and will not contain any expressions.
We will use the dailysales.csv example dataset and make a line graph of daily sales data:

dailysales<-read.csv("dailysales.csv")

par(mar=c(5,5,12,2))

plot(units~as.Date(date,"%d/%m/%y"),data=dailysales,type="l",
las=1,ylab="Units Sold",xlab="Date")

desc<-"The graph below shows sales data for Product A in the month of
January 2010. There were a lot of ups and downs in the number of units
sold. The average number of units sold was around 5000. The highest
sales were recorded on the 27th January, nearly 7000 units sold."

mtext(paste(strwrap(desc,width=80),collapse="\
n"),side=3,line=3,padj=0,adj=0)

title("Daily Sales Trends",line=10,adj=0,font=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

236

This will produce the following graph:

In the example, we set the margins such that the top margin is 12 lines wide. We created a
string called desc with the description for the graph. We then used mtext() to place the
string in the third line of the margin. We couldn't simply pass desc to mtext() because
it wouldn't fit within the width of the plot area and would get chopped off after the first
sentence. So we used the strwrap() function to wrap the string with a width of 80
characters. We used the paste() function to join the split strings created by strwrap(),
with line breaks added by setting the collapse argument to "\n". Finally, we used the
title() function to add a graph title on top.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

237

Using graph templates
We may often find ourselves using similar code repetitively to plot similar kinds of data or
different versions of the same dataset. Once we have analyzed our data and are looking to
produce a finished graph, it can be useful to quickly try out different color combinations and
other aesthetic settings without having to write too much repetitive code. In this recipe, we
will learn how to create graph templates and use them to quickly try out various "looks" for
a graph.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt
and type the following code. We will use the themes.csv file which contains theme
parameters for this recipe. So let's first load it:

themes<-read.csv("themes.csv")

How to do it...
We will make a simple scatter plot showing a random normal distribution, and apply different
color combination themes to it with a single command:

themeplot<-function(x,theme,...) {
 i<-which(themes$theme==theme)
 par(bg=as.character(themes[i,]$bg_color),las=1)

 plot(x,type="n",...)

 u<-par("usr")
 plotcol=as.character(themes[i,]$plot_color)
 rect(u[1],u[3],u[2],u[4],col=plotcol,border=plotcol)

 points(x,col=as.character(themes[i,]$symbol_color),...)
 box()
}

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

238

Using this function, we can create a scatter plot using different themes such as the following:

themeplot(rnorm(1000),theme="white",pch=21,main="White")

themeplot(rnorm(1000),theme="lightgray",pch=21,main="Light Gray")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

239

themeplot(rnorm(1000),theme="dark",pch=21,main="Dark")

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

240

themeplot(rnorm(1000),theme="pink",pch=21,main="Pink")

How it works...
In the preceding example, we created a function called themeplot(), which used
pre-defined color combinations from the themes.csv file to create different themed graphs.

We first read the themes.csv file into a data frame called themes, which contains
four columns:

ff theme (name of the theme)

ff bg_color (figure background color)

ff plot_color (plot region color)

ff symbol_color (color of plotting symbol)

We then created the themeplot() function which accepts the plotting variable x and
theme as arguments. The trailing "..." means that additional arguments can be passed
which are passed on to the specified functions within the themeplot() function definition.
themeplot() uses the which() function to find the row index of the specified theme and
then uses the corresponding column values to set the figure background color in par(), the
plot region color in rect(), and symbol color in points().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

241

Once the function is defined, all we have to do to try out different color combinations is pass
the theme argument to themeplot(). If we wish to modify the color combinations or add
new themes we can simply edit the themes.csv file and re-read it. We can also adjust
the function definition so that we can pass the color values separately to override the
theme specifications.

There's more...
In the example, we chose some very simple color parameters to demonstrate the usefulness
of themes. However, we could easily add more columns to the themes definitions, such as
symbol types, sizes, line types and colors, fonts, grid line styles, legend styles, and so on. It is
best to work with your own dataset and define themes as you go along and have a better idea
of what your specific requirements are. Once you have the structure of the graph decided, you
can define various themes to quickly experiment and choose from.

Choosing font families and styles under
Windows, Mac OS X, and Linux

In this recipe we will see how to choose font families and styles under the three most popular
operating systems, namely, Windows, Mac OS X, and Linux.

Getting ready
We are only using base graphics functions for this recipe. So, just open up the R prompt and
type the following code. You may wish to save the code as an R script for later use.

How to do it...
Let's look at all the basic default fonts available under Windows:

par(mar=c(1,1,5,1))
plot(1:200,type="n",main="Fonts under Windows",axes=FALSE,xlab="",
ylab="")

text(0,180,"Arial \n(family=\"sans\", font=1)",
family="sans",font=1,adj=0)
text(0,140,"Arial Bold \n(family=\"sans\", font=2)",
family="sans",font=2,adj=0)
text(0,100,"Arial Italic \n(family=\"sans\", font=3)",
family="sans",font=3,adj=0)
text(0,60,"Arial Bold Italic \n(family=\"sans\", font=4)",
family="sans",font=4,adj=0)

text(70,180,"Times \n(family=\"serif\", font=1)",

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

242

family="serif",font=1,adj=0)
text(70,140,"Times Bold \n(family=\"serif\", font=2)",
family="serif",font=2,adj=0)
text(70,100,"Times Italic \n(family=\"serif\", font=3)",
family="serif",font=3,adj=0)
text(70,60,"Times Bold Italic \n(family=\"serif\", font=4)",
family="serif",font=4,adj=0)

text(130,180,"Courier New\n(family=\"mono\", font=1)",
family="mono",font=1,adj=0)
text(130,140,"Courier New Bold \n(family=\"mono\", font=2)",
family="mono",font=2,adj=0)
text(130,100,"Courier New Italic \n(family=\"mono\", font=3)",
family="mono",font=3,adj=0)
text(130,60,"Courier New Bold Italic \n(family=\"mono\",
font=4)",
family="mono",font=4,adj=0)

How it works...
In the example, we demonstrated all the combinations of the basic font faces and families
available in R under Windows. Fonts are specified in R by choosing a font family and a font
face. There are three main font families: sans, serif, and mono, which are mapped on to
specific fonts under different operating systems. As shown in the example, under Windows
sans maps to Arial, serif to Times New Roman and mono to Courier New. The font family is
specified by the family argument, which can be passed to the text() function (as in the
example) or in par() (thus applied to all text in the plot), mtext(), and title().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

243

The font face can take four basic values denoted by the numbers 1 to 4, which stand for
regular, bold, italic, and bold italic respectively. The default value of font is 1. Note that font
only applies to text inside the plot area. To set the font face for axis annotations, labels and
the plot title, we need to use font.axis, font.lab, and font.main respectively.

In the example, we created a plot area with X and Y co-ordinates running from 0 to 200
each, but suppressed drawing of any axes or annotations. Then we used the text()
function to draw text labels showing the 12 combinations of the three font families
and four font faces.

There's more...
As you may have noticed, we did not specify the names of the font families in the
text() command. Instead we used the keywords sans, serif, and mono to refer to the
corresponding default fonts under Windows. We can check these font family mappings by
running the windowsFonts() command at the R prompt, which lists the names of the fonts
for each of the font families. We can also add new mappings using this function. For example,
to add the font Georgia we need to run:

windowsFonts(GE = windowsFont("Georgia"))

Then we can just set family to "GE" to use the Georgia font:

text(150,80,"Georgia",family="GE")

Just like under Windows, there are default font families under Mac OS X and Linux. The serif
and mono fonts are the same as in Windows. However the sans font is usually Helvetica. To
check the default font mappings and add new font families, we need to use the X11Fonts()
and quartzFonts() functions under Linux and OS X respectively.

See also
In the next recipe we will see how to use additional font families available for vector formats
such as PDF and PS.

Choosing fonts for PostScripts and PDFs
The pdf and postscript graphic devices in R have special functions that handle the
translation of an R graphics font family name to a PostScript or PDF file. In this recipe, we will
see how to choose the fonts for these vector formats.

Getting ready
We are only using the base graphics functions for this recipe. So, just open up the R prompt and
type the code we are about to see. You may wish to save the code as an R script for later use.

www.it-ebooks.info

http://www.it-ebooks.info/

Finalizing graphs for publications and presentations

244

How to do it...
Let's create a PDF of an rnorm() graph with the title and axis annotations in the font
Avant Garde:

pdf("fonts.pdf",family="AvantGarde")
plot(rnorm(100),main="Random Normal Distribution")
dev.off()

To save the same graph as a PostScript file, we can do:

postscript("fonts.ps",family="AvantGarde")
plot(rnorm(100),main="Random Normal Distribution")
dev.off()

How it works...
As shown in the examples, the font family for a PDF or PostScript output is set exactly the
same way as in the previous recipe, by using the family argument. In the examples, we
passed the family argument to the pdf() and postscript() functions since they open
the relevant graphics devices.

Note that we used a font family which was not available in the basic R graphics device. We
can also use the default values sans, serif, and mono, which are mapped to Helvetica,
Times New Roman, and Courier New respectively. The pdf and postscript devices have
inbuilt mappings to a lot of font families. To see all the available fonts, we can use the
pdfFonts() command. Running pdfFonts() at the R prompt lists all the names of the font
families and related attributes (metrics, encoding, and class). To list just the names of all font
families we can run:

names(pdfFonts())

That gives the following output at the R prompt:

 [1] "serif" "sans" "mono"
 [4] "AvantGarde" "Bookman" "Courier"
 [7] "Helvetica" "Helvetica-Narrow" "NewCenturySchoolbook"
[10] "Palatino" "Times" "URWGothic"
[13] "URWBookman" "NimbusMon" "NimbusSan"
[16] "URWHelvetica" "NimbusSanCond" "CenturySch"
[19] "URWPalladio" "NimbusRom" "URWTimes"
[22] "Japan1" "Japan1HeiMin" "Japan1GothicBBB"
[25] "Japan1Ryumin" "Korea1" "Korea1deb"
[28] "CNS1" "GB1"

We can check the default mapping to sans by running pdfFonts()$sans at the R prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

245

There's more...
The postscript device has two extra fonts: Computer Modern and Computer Modern
Italic (you can check this by running names(postscriptFonts()) at the R prompt).
Just like the commands for specific operating systems, we can use pdfFonts() and
postscriptFonts() to add new font mappings for the pdf and postscript devices
respectively. Please refer to the help section to see some examples of such mappings
(?postscriptFonts() and ?pdfFonts()).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
abline() function

about 85, 102, 105, 115, 184
using 104

aggregate() function
about 117
arguments 118
using 118

ann argument 157
annotations

adding, to graphs 229, 230
fonts, setting for 54, 55

args.legend argument 125
arrows() function 80, 136
as.Date() function

about 13, 110
arguments 110
using 116

at argument 101
auto.key argument 72
axes

data density, displaying on 91, 92
axes argument 157
axis annotations

about 50
adjusting 63, 64
colors, setting for 50, 51

axis() function
about 174, 184, 190
using 51, 64

axis labels
about 50
annotating, in human readable time formats

113, 114
colors, setting for 50, 51

B
background color

setting, for plot 48
bar charts

about 16, 123
creating 14-16
creating, with multiple factor variable 124,

125
creating, with vertical error bars 135-137
exact values, displaying on 132, 133
example 16
styles, adjusting for bars 130, 131

bar charts, creating
about 14-16
with multiple factor variable 124, 125
with vertical error bars 135-137

barplot() function
about 46, 124, 125, 133, 157
using 14

bars
colors, setting for 44-46

beside argument 16, 17, 125, 127
bg argument

about 48
using 48

bin size
setting 148, 149

border argument 131, 151
boxcol argument 170
box() command

using 62
boxfill argument 170
boxlty argument 170
boxlwd argument 170
boxplot() function 20-22, 46, 160

www.it-ebooks.info

http://www.it-ebooks.info/

248

box plots
about 20
creating 20, 21
creating, with horizontal boxes 167, 168
creating, with narrow boxes 160, 161
creating, with notches 165, 166
observations, displaying on 172, 174
outliers, excluding from 166, 167
styles, changing for 169, 170
whiskers, adjusting for 170, 172

box plots, creating
about 20, 21
with horizontal boxes 167, 168
with narrow boxes 160, 161
with notches 165, 166

box styles
selecting 60, 61

boxwex argument 161
box widths

varying, by number of observations 164, 165
breaks

setting, between bars 148, 149
breaks argument 149, 150
brewer.pal() function 54
bty argument 61

C
Cairo package 228
CairoSVG() command 228
calendarHeat() function 199
calendar heat maps

creating 199
calendar.plot() function 203
cex argument 57
clockwise argument 141
clockwise-ordered slices

pie chart, creating with 139-141
closely packed data points

distinguishing, jitter() function used 82-84
cm.colors() palette 53
col argument

about 15, 35, 46, 101, 151
example 44
working 46

col.axis argument 51
col.lab argument 51

collapse argument 236
col.main argument 51
color combinations

selecting 52
colormodel argument 229
colors, setting

for axis annotations 50, 51
for axis labels 50, 51
for bars 44-46
for lines 44-46
for points 44-46
for text elements 50, 51

Comprehensive R Archive Network. See CRAN
contour() function 192
contour plots

creating 192, 193
correlation heat maps

creating 185-187
creating, image() function used 26, 27
working 187

correlation matrix
creating, pairs plot used 78, 79

count frequencies
distributions, visualising as 146, 147

CRAN 8
customized legends

adding, for multiple line graphs 96-98

D
data

plotting, on Google maps 215-218
plotting, with varying time averaging periods

117, 118
data density

displaying, on axes 91, 92
data() function 11
data_matrix 184
data points

grouping, within scatter plots 70-72
labelling 75-77

dataset
functions of variables, plotting 107, 108
non-linear model curves, adding to 85, 86

density() function 19, 153

www.it-ebooks.info

http://www.it-ebooks.info/

249

density line
overlaying, over histograms 152, 153

density plots
creating 18-20

desc expression 235
destfile argument 217
dev.off() function 228
dimensions

adjusting 66, 67
display.brewer.pal() command

using 54
distributions, for histograms

visualising, as count frequencies 146, 147
visualising, as probability densities 146, 147

dotchart() function 138, 139
dot charts

modifying, by grouping variables 137, 138

E
error bars

adding 79-81
ESRI shapefiles

about 220
working with 221

exact values
dispalying, on bar chart 132, 133

expression() function 109, 230, 235

F
family argument 242
filled.contour() function 195
filled contour plots

creating 194-197
fin argument 66
findInterval() function 209, 212
fonts, selecting

for PDFs 243-245
for PostScripts 243-245
under Linux 241
under Mac OS X 241
under Windows 241, 242

fonts, setting
for annotations 54, 55
for titles 54, 55

format() function 118
formatted date values

plotting, on X axis 112
formatted time values

plotting, on X axis 112
frac() function 231
freq argument 147

G
GADM database

about 213
URL, for downloading 213

get.hist.quote() function 120
GetMap() function 217
GetMap.OSM() function

URL 218
getSymbols() function 120
ggplot2 package 70
global data

plotting, by countries 206-209
Google Maps

data, plotting on 215-218
graph margins

adjusting 66, 67
graphs

annotations, adding to 229, 230
creating, with maps 37, 38
creating, with regional maps 210-212
horizontal grid lines, adding to 102
legends, adding to 33-36
saving, as image file format 40, 41
saving, in high resolution image formats

224-226
saving, in vector formats 227, 228
text descriptions, adding to 234, 235
vertical grid lines, adding to 102

graph templates
about 224, 237
using 238-240

grepl() function 209
grid() function 102, 151
grouped data points, highlighting

by size 73-75
by symbol type 73-75

www.it-ebooks.info

http://www.it-ebooks.info/

250

H
heat.colors() function

about 46, 187
example 46, 47

heat.colors() palette 53
heatmap() function

about 26, 184
using 25

heat maps
about 24, 26, 181
calendar heat maps 199
correlation heat maps 185
creating 25, 26
example 26, 27
with single Z variable along X and Y axes 182

heat maps, of single Z variable with scale
creating 182-184

height argument 226
heights argument 157
high resolution image formats

graphs, saving into 224-226
hist() function

about 46
using 146, 147

histograms
about 146
creating 18-20
drawing, in margins of bivariate scatter plot

155-157
embedding, in another kind of graph

153-155
kernel density lines, imposing on 152, 153

histogram styles
adjusting 150, 151

Hmisc package 82
horiz argument 15, 98, 129, 130
horizontal argument 168
horizontal bars

orientation, adjusting 128, 129
horizontal boxes

box plots, creating with 167, 168
horizontal error bars

drawing 80
horizontal grid lines

adding, to graphs 102

human readable time formats
axis labels, annotating in 113, 114

I
image file format

graphs, saving as 40, 41
image() function

about 184, 188, 209
correlation heat map, creating 26, 27

installation, RgoogleMaps package 215
integral() function 231

J
jitter() function

about 82, 84
closely packed data points, distinguishing

82-84

K
Keyhole Markup Language See KML data
KML data

creating 219
reading 219

L
labels

placing, inside bars 134, 135
labels argument 139
las argument

about 161
using 64

lattice library 214
lattice package 70
layout() function

about 184, 209
arguments 157
using 156

legend() function
about 35, 125, 128, 143
arguments 97, 98
using 97

www.it-ebooks.info

http://www.it-ebooks.info/

251

legends
adding, to graphs 33-36
adding, to pie chart 143, 144
formatting 33-36

length() function 47
library() command 37
line argument 101
linear model lines

adding 84, 85
line graphs

about 12, 96
creating 12, 13
example 235, 236

lines
colors, setting for 44-46

lines() function 13, 46, 153
line styles

selecting 58-60
Linux

fonts, selecting under 241
lmfit object 85
lm() function 85
log argument 65
log axes

formatting 65
lower.panel argument 79
lowess

about 86
adding 87

lowess() function 87
L-shaped box

drawing, for plot area 62
lwd argument 60, 98
lyt argument 98

M
Mac OS X

fonts, selecting under 241
main argument 11
maps

graphs, creating with 37, 38
maps package 206
mar argument 128, 157
margin labels

using, for multiple line graphs 99-101

marker lines, adding
at X axis 104, 105
at Y axis 104, 105

matchcol() function 212
matplot() function 99
medbg argument 170
medcex argument 170
medcol argument 170
medlty argument 170
medlwd argument 170
medpch argument 170
melt() function 138
metals concentration box plot

drawing, with horizontal bars 168
mtext() function 101, 235, 236
multiple line graphs

customized legends, adding for 96-98
margin labels, using for 99, 100, 101

multiple plot matrix layouts
creating 30, 31
example 32, 33

multivariate data
summarizing, in heat map 187-190

N
narrow boxes

box plots, creating with 160, 161
ncol argument 98
nls() function 86
non-linear model curves

adding, to dataset 85, 86
notches

box plots, creating with 165, 166
nx argument 103
ny argument 103

O
observations

displaying, on box plots 172, 174
oma argument 62
omi argument 107
onefile argument 228
Open Street Map

about 218
URL 218

www.it-ebooks.info

http://www.it-ebooks.info/

252

order() function 140, 190
orientation, adjusting

for horizontal bars 128, 129
for vertical bars 128, 129

outbg argument 170
outcex argument 170
outcol argument 170
outliers

excluding, from box plots 166, 167
outline argument 167
outlty argument 170
outlwd argument 170
outpch argument 170
outwex argument 170

P
pairs() command 28, 79
pairs plots

about 27
correlation matrix, creating 78, 79
creating 28, 29

palette() function
about 52
working 52

palettes
about 52
selecting 52

panel.cor function 79
panel.hist() function 154
par() command

about 48, 100, 107, 128, 151, 161, 226
using 51
working 31, 48

paste() function 230, 236
pch argument 57
PDF fonts

viewing 55
pdfFonts() function 55
pdf() function 41, 228
PDFs

fonts, selecting for 243-245
percentage values

pie chart, labelling with 141, 142

pie chart
about 124, 139
creating, with clockwise-ordered slices

139-141
labelling, with percentages values for each

slice 141, 142
legend, adding to 143, 144

pie() function
using 140

pin argument 66
plot

background color, setting 48
plot() command 11, 44, 65, 70, 154
PlotOnStaticMap() function 217, 218
plotrix package 82
plotting point symbol styles

selecting 56, 57
png() command 40, 226
points

colors, setting for 44-46
points() function 11, 46 107
polynomial function

plotting, example 109
postscriptFonts() function 55
postscript() function 227
PostScripts

fonts, selecting for 243-245
probability densities

distributions, visualising as 146, 147
prob argument 147
pseudo rainfall data

creating, for French administrative regions
214

plotting, on map 214

Q
qplot() function 73
qqline() function 90
qqnorm() function 90
Quantile-Quantile (Q-Q) plots

making 89, 90
quantmod package

about 119, 120
URL 121

www.it-ebooks.info

http://www.it-ebooks.info/

R
R

annotations, adding to graphs 229, 230
bar charts, creating 14-16
bar charts, creating with multiple factor vari-

able 124, 125
bar charts, creating with vertical error bars

135-137
box plots, creating 20, 21
box plots, creating with narrow boxes 160,

161
density plots, creating 18-20
dot charts, modifying by grouping variables

137, 138
exact values, displaying on bar charts 132,

133
graphs, creating with maps 37, 38
graphs, saving in high resolution image

formats 224-226
graphs, saving in vector formats 227
graph templates 237-240
heat maps, creating 25, 26
histograms, creating 18-20
labels, placing inside bars 134, 135
legend, adding to pie chart 143, 144
legends, adding to graphs 33-36
line graphs, creating 12, 13
multiple plot matrix layouts, creating 30, 31
orientation, adjusting for horizontal bars 128,

129
orientation, adjusting for vertical bars 128,

129
outliers, excluding from box plots 166, 167
pairs plot, creating 28, 29
scatterplot, creating 9, 10
stacked bar charts, creating 126, 127
styles, adjusting for bars 130, 131
text descriptions, adding to graphs 234, 235
URLs, for downloading 8

rainbow() palette 53
random normal distribution

plotting 234
range argument 172
R base library 44
rbinom() function 84

RColorBrewer package
about 53, 100, 124, 182, 206, 208
using 53

read.csv() function 13
read.shapefile() function 221
read.table() function 100
rect() function 49, 240
regional maps

graphs, creating with 210-212
res argument 226
rgdal package 219
rgl.material() function 199
rgl.surface() function 198
RgoogleMaps package

about 215
installing 215

rnorm() function 19
rug() function 91, 92

S
scale argument 218
scale() function 190
scatter plots

about 8, 69, 70
creating 9, 10
creating, example 224, 227
data points, grouping within 70-72
making, with smoothed density representation

93, 94
saving, in PDF format 227
saving, in png format 225
saving, in PS format 227
saving, in SVG format 227

scatter plots, saving
in PDF format 227
in png format 225
in PS format 227
in SVG format 227

seq() function 116
smoothed density representation

scatter plots, making with 93, 94
smoothScatter() function

about 93
using 94

www.it-ebooks.info

http://www.it-ebooks.info/

space argument 131
sparklines

about 105
creating 106, 107

spplot() function 214
sprintf() function

about 142
arguments 142

sqrt() function 231
stacked bar charts

about 126
benefits 127
creating 126, 127
drawing, with horizontal bars 129, 130
example 127, 128

staplecol argument 170
staplelty argument 170
staplelwd argument 170
staplewex argument 170
stock charts

creating 119, 120
strptime() function 110
strwrap() function 236
styles

adjusting, for histograms 150, 151
changing, for box plots 169, 170

sum() function 231
svg() function 227
symbol type

grouped data points, highlighting 73-75

T
terrain.colors() function 195, 198 214
terrain.colors() palette 53
text argument 101
text() command 76, 133, 190, 242
text descriptions

adding, to graphs 234, 235
text elements

colors, setting for 50, 51
themeplot() function 240
three-dimensional scatter plots

preparing 87, 88
three-dimensional surface plots

creating 197, 198

time series data
formatting, for plotting 109, 110
summarizing 199-204

title() function
about 236
using 51

titles
fonts, setting for 54, 55

topo.colors palette 53
tseries package 119
type argument 13

U
upper.panel argument 79

V
variable

grouping over 162, 163
splitting, at arbitrary intervals 175-177

varwidth argument 165, 172
vector formats

graphs, saving in 227, 228
vertical bars

orientation, adjusting 128, 129
vertical error bars

bar charts, creating with 135-137
drawing 81

vertical grid lines
adding, to graphs 102

vertical markers
adding, for indication of specific time events

115, 116
visual settings

for histograms 151

W
WDI package 206
WDIsearch() function 208
which() function 240
whiskcol argument 170
whisklty argument 170
whisklwd argument 170

www.it-ebooks.info

http://www.it-ebooks.info/

255

marker lines, adding at 104, 105
xaxp argument 63, 64
xyplot() command 70-72

Y
Y axes limits

adjusting, for plots 22-24
Y axis

marker lines, adding at 104, 105
yaxp argument 63, 64

Z
zoo() function 111

width
selecting 58-60

width argument 131, 162, 226
widths argument 157
Windows

fonts, selecting under 241, 242
windowsFonts() command 243
write.shapefile() function 221

X
X axes limits

adjusting, for plots 22-24
X axis

formatted date values, plotting on 112
formatted time values, plotting on 112

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
R Graphs Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Statistical Analysis with R
ISBN: 978-1-849512-08-4 Paperback: 376 pages

Take control of your data and produce superior statistical
analysis with R.

1.	 An easy introduction for people who are new to
R, with plenty of strong examples for you to work
through

2.	 This book will take you on a journey to learn R as
the strategist for an ancient Chinese kingdom!

3.	 A step by step guide to understand R, its benefits,
and how to use it to maximize the impact of your
data analysis

4.	 A practical guide to conduct and communicate
your data analysis with R in the most effective
manner

OpenStreetMap
ISBN: 978-1-847197-50-4 Paperback: 252 pages

Be your own cartographer

1.	 Collect data for the area you want to map with this
OpenStreetMap book and eBook

2.	 Create your own custom maps to print or use
online following our proven tutorials

3.	 Collaborate with other OpenStreetMap
contributors to improve the map data

4.	 Learn how OpenStreetMap works and why
it's different to other sources of geographical
information with this professional guide

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Python Geospatial
Development
ISBN: 978-1-849511-54-4 Paperback: 508 pages

Build a complete and sophisticated mapping application
from scratch using Python tools for GIS development

1.	 Build applications for GIS development
using Python

2.	 Analyze and visualize Geo-Spatial data

3.	 Comprehensive coverage of key GIS concepts

4.	 Recommended best practices for storing spatial
data in a database

5.	 Draw maps, place data points onto a map, and
interact with maps

Plone 3 for Education
ISBN: 978-1-847198-12-9 Paperback: 193 pages

Break the webmaster bottleneck by empowering
instructors and staff

1.	 Enable instructors and staff to represent courses
using Plone's built-in content types—news items,
collections, and events—without writing a single
line of code

2.	 Embed sound and video into your course
materials, news feeds, or anywhere on your Plone
site

3.	 Written by Erik Rose—member of the Plone 4 and
5 Framework Teams

4.	 Expert guidance on using the best plug-ins so that
you can get the best out of your site right from the
beginning

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1:
Basic Graph Functions
	Introduction
	Creating scatter plots
	Creating line graphs
	Creating bar charts
	Creating histograms and density plots
	Creating box plots
	Adjusting X and Y axes limits
	Creating heat maps
	Creating pairs plots
	Creating multiple plot matrix layouts
	Adding and formatting legends
	Creating graphs with maps
	Saving and exporting graphs

	Chapter 2: Beyond the Basics: Adjusting Key Parameters
	Introduction
	Setting colors of points, lines, and bars
	Setting plot background colors
	Setting colors for text elements: axis
	annotations, labels, plot titles, and legends
	Choosing color combinations and palettes
	Setting fonts for annotations and titles
	Choosing plotting point symbol styles
	and sizes
	Choosing line styles and width
	Choosing box styles
	How to adjust axis annotations
	and tick marks
	How to format log axes
	Setting graph margins and dimensions

	Chapter 3: Creating Scatter Plots
	Introduction
	Grouping data points within a scatter plot
	Highlighting grouped data points by size
	and symbol type
	Labelling data points
	Correlation matrix using pairs plot
	Adding error bars
	Using jitter to distinguish closely packed
	data points
	Adding linear model lines
	Adding non-linear model curves
	Adding non-parametric model curves
	with lowess
	Making three-dimensional scatter plots
	How to make Quantile-Quantile plots
	Displaying data density on axes
	Making scatter plots with smoothed density
	representation

	Chapter 4: Creating Line Graphs and Time Series Charts
	Introduction
	Adding customized legends for multiple
	line graphs
	Using margin labels instead of legends
	for multiple line graphs
	Adding horizontal and vertical grid lines
	Adding marker lines at specific
	X and Y values
	Creating sparklines
	Plotting functions of a variable in a dataset
	Formatting time series data for plotting
	Plotting date and time on the X axis
	Annotating axis labels in different human
	readable time formats
	Adding vertical markers to indicate
	specific time events
	Plotting data with varying time
	averaging periods
	Creating stock charts

	Chapter 5: Creating Bar, Dot, and Pie Charts
	Introduction
	Creating bar charts with more than one
	factor variable
	Creating stacked bar charts
	Adjusting the orientation of bars – horizontal
	and vertical
	Adjusting bar widths, spacing, colors,
	and borders
	Displaying values on top of or next to
	the bars
	Placing labels inside bars
	Creating bar charts with vertical error bars
	Modifying dot charts by grouping variables
	Making better readable pie charts with
	clockwise-ordered slices
	Labelling a pie chart with percentage
	values for each slice
	Adding a legend to a pie chart

	Chapter 6: Creating Histograms
	Introduction
	Visualizing distributions as count
	frequencies or probability densities
	Setting bin size and number of breaks
	Adjusting histogram styles: bar colors,
	borders, and axes
	Overlaying density line over a histogram
	Multiple histograms along the diagonal
	of a pairs plot
	Histograms in the margins of line
	and scatter plots

	Chapter 7: Box and Whisker Plots
	Introduction
	Creating box plots with narrow boxes
	for a small number of variables
	Grouping over a variable
	Varying box widths by number
	of observations
	Creating box plots with notches
	Including or excluding outliers
	Creating horizontal box plots
	Changing box styling
	Adjusting the extent of plot whiskers
	outside the box
	Showing the number of observations
	Splitting a variable at arbitrary values
	into subsets

	Chapter 8: Creating Heat Maps and Contour Plots
	Introduction
	Creating heat maps of single Z variable
	with scale
	Creating correlation heat maps
	Summarizing multivariate data in a heat map
	Creating contour plots
	Creating filled contour plots
	Creating three-dimensional surface plots
	Visualizing time series as calendar
	heat maps

	Chapter 9: Creating Maps
	Introduction
	Plotting global data by countries on a
	world map
	Creating graphs with regional maps
	Plotting data on Google maps
	Creating and reading KML data
	Working with ESRI shapefiles

	Chapter 10: Finalizing graphs for publications and presentations
	Introduction
	Exporting graphs in high resolution image
	formats: PNG, JPEG, BMP, TIFF
	Exporting graphs in vector formats:
	SVG, PDF, PS
	Adding mathematical and scientific
	notations (typesetting)
	Adding text descriptions to graphs
	Using graph templates
	Choosing font families and styles under
	Windows, Mac OS X, and Linux
	Choosing fonts for PostScripts and PDFs

	Index

