
www.it-ebooks.info

http://www.it-ebooks.info/

Learning RStudio for
R Statistical Computing

Learn to effectively perform R development, statistical
analysis, and reporting with the most popular R IDE

Mark P.J. van der Loo

Edwin de Jonge

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning RStudio for R Statistical Computing

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1171212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-060-1

www.packtpub.com

Cover Image by Tarun Singh (tarunsingh@gmx.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Mark P.J. van der Loo

Edwin de Jonge

Reviewers
Mzabalazo Z. Ngwenya

Yihui Xie

Acquisition Editor
Kartikey Pandey

Commissioning Editor
Meeta Rajani

Technical Editors
Prasad Dalvi

Pooja Pande

Project Coordinator
Esha Thakker

Proofreader
Maria Gould

Indexer
Monica Ajmera Mehta

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Mark P.J. van der Loo obtained his PhD from the Institute for Theoretical
Chemistry at the University of Nijmegen (The Netherlands). Since 2007 he has
worked at the statistical methodology department of the Dutch official statistics
office (Statistics Netherlands). His research interests include automated data cleaning
methods and statistical computing. At Statistics Netherlands he is responsible for
the local R center of expertise, which supports and educates users on statistical
computing with R. Mark has been teaching R for several years and (co)authored a
number of R packages that are available via CRAN: editrules, deducorrect, rspa, and
extremevalues. A list of publications can be found at www.markvanderloo.eu.

Edwin de Jonge has worked for more than 15 years at the Dutch official statistics
office (Statistics Netherlands). Having a background in theoretical and computational
solid state physics (MSc.) he started working at the statistical computing department.
Currently he works with the statistical methodology department. His research
interests include data visualization, data analysis, and statistical computing. He has
trained over 150 people in the workshop Graphical Analysis with R. Edwin has (co)
authored several R packages that are available via CRAN: tabplot, tabplotd3, ffbase,
whisker, editrules, and deducorrect.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Mzabalazo Z. Ngwenya has worked extensively in the field of consulting and
currently works as a biometrician.

Yihui Xie (http://yihui.name) is currently a PhD student in the Department of
Statistics, Iowa State University. His research interests include interactive statistical
graphics, statistical computing, and reproducible research. He is the author of several
R packages such as animation, cranvas, formatR, Rd2roxygen, and knitr, among which
the animation package won the 2009 John M. Chambers Statistical Software Award
(American Statistical Association). In 2006 he founded the Capital of Statistics
(http://cos.name), which has grown into a large online community on statistics in
China. He also initiated the first Chinese R conference in 2008 and has been organizing
R conferences in China since then. He is a co-author of the book Reproducible Research
with R (Chapman & Hall), which is under development.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started 5

RStudio at a glance 7
Installing RStudio 9

Installing R 9
Installing R on Windows and Mac OS X 9
Installing R on Linux 9

Building R from source 10
Building R using Windows 11
Installing RStudio 11

Installing RStudio Server 11
Installing R packages 11

Overview: A first R session 12
Keyboard shortcuts 17
Getting help 17

What if I uninstall RStudio? 18
Further reading 18
Summary 19

Chapter 2: Writing R Scripts and the R Console 21
Moving around RStudio 21
Features of the R console 23

Executing commands 23
Command history 24
Command completion 26

Completion of functions and arguments 27
Object completion 28
Completion of filenames 28

Keyboard shortcuts for the console 29

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Features of the source editor 30
Editing R scripts 31

Syntax highlighting 33
Indenting code 35
Commenting code 35
Find and replace 36

Folding, sectioning, and navigation 37
Code folding 37
Code navigation 37
Code sections 39

Code execution 40
Summary 41

Chapter 3: Viewing and Plotting Data 43
Viewing data and the object browser 43
Plotting 46

Zoom 46
Export 47
Navigation 48

Interactive plotting with the manipulate package 48
The manipulate function 48
Using more options of manipulate 50
Advanced topic: retrieving plot parameters from manipulate 51

Summary 55
Chapter 4: Managing R Projects 57

R projects 57
Creating an R project 58
Directory structure and file manipulations 59

Version control 60
Introduction to version control 60

Installing GIT or Subversion 61
Version control for single-person projects 62

GIT 62
Subversion 68

Working with a team 73
Further reading 74
Summary 74

Chapter 5: Generating Reports 75
Prerequisites for report generation 76
Notebook 77

Notebook options 77
Publishing a notebook 79

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

R Markdown and Rhtml 79
Workflow for R Markdown 79
An extended example 80
An introduction to Markdown syntax 84
Rhtml 85

Code chunks 85
Chunk syntax and options 86

RMarkdown: .Rmd files 86
Rhtml: .Rhtml files 86
LaTeX: .Rnw files 86

RStudio's chunk support and keyboard shortcuts 88
LaTeX 89
Further reading 91
Summary 91

Chapter 6: Using RStudio Effectively 93
Additional features for function writing 93

Function extraction 94
Function navigation 95

Introduction to package writing 97
Prerequisites 98
Basic structure and workflow 98
Creating the package directory structure 99

Documenting functions with Roxygen2 99
Building your package with devtools 101

More about the devtools package 102
Publishing your package 102

Summary 103
Index 105

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Learning RStudio for R Statistical Computing is a comprehensive guide to the popular
open source integrated development environment for R. In six chapters, we will
show you how to perform reproducible statistical research with RStudio. The
book covers automatic report generating, advanced R code editing, project files
management, data visualization, and more.

What this book covers
Chapter 1, Getting Started: We install R and RStudio on Windows, Mac, and Linux
and guide you through your first reproducible research project.

Chapter 2, Writing R Scripts and the R Console: A thorough discussion of RStudio's
code editing and execution features, both interactively in the console and in scripts.

Chapter 3, Viewing and Plotting Data: RStudio facilitates inspection of R objects
and visualization of data. Learn how to create interactive plots with the
manipulate package.

Chapter 4, Managing R Projects: This chapter discusses RStudio's project file
management features and version control integration. A short introduction
to version control is provided as well.

Chapter 5, Generating Reports: Learn how to automatically transform your data
analysis into a beautifully laid out HTML page or a PDF report, making it truly
reproducible. RStudio offers several ways to generate reports, all of which are
discussed thoroughly in this chapter.

Chapter 6, Using RStudio Effectively: This chapter is reserved for R developers
who need to get the most out of RStudio—advanced code editing, code
navigation, and package development are discussed in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

What you need for this book
All you need for this book is a reasonably modern computer that allows you to run
R and RStudio. This book is not about learning statistics, and although we do not use
any advanced statistics in this book, some basic statistical knowledge is assumed.
We also expect you to have some experience with R. Although the book is not meant
to teach R, some of the less commonly used features of R will be explained in detail
where appropriate.

Who this book is for
The book is aimed at R developers and analysts who wish to do R statistical
development while taking advantage of RStudio functionality to ease their
development efforts. Familiarity with R is assumed. Those who want to get
started with R development using RStudio will also find the book useful. Even
if you already use R but want to create reproducible statistical analysis projects
or extend R with self-written packages, this book shows how to quickly achieve
this using RStudio.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "On the bottom right-hand side it shows
the first 25 records of the resulting data.frame."

A block of code is set as follows:

meanLength <- mean(abalone$Length)
model <- lm(Whole.weight ~ Length + Sex, data=abalone)
x <- 1:3
cv <- function(x, na.rm=FALSE){
 sd(x, na.rm=na.rm)/mean(x, na.rm=na.rm)
}

Any command-line input or output is written as follows:

form <- as.formula(paste("Length", "Whole.weight", sep="~"))

plot(x=form, data=abalone)

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "These
packages can be updated by clicking on Check for Updates".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Some of the examples used in this book use GIT version control. You can download
all extensive examples from https://github.com/rstudiobook.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started
This chapter shows how to obtain R and RStudio. An introduction to the concepts
of reproducible research will be given. We will first show a simple RStudio session
that already results in a simple, fully reproducible report. If you have ever had to
analyze data for work, study, or a research project you'd have probably run into a
situation where you ended up with a messy kludge of temporary files, scripts, and
intermediate results that are almost impossible to untangle. If this sounds familiar,
you probably also had to rewrite pieces of your report while debugging your
analyses, or when receiving updates of your data sets. Re-running calculations, and
re-inserting figures, tables, and results can take a lot of time. Moreover, as a project
turns more and more into a spaghetti of files and folders, reproducing exactly what
you did becomes harder and harder. Needless to say, things can become even more
difficult when collaborating with a number of people on such projects.

RStudio™ is a free and open source tool that makes it easier for you to do
the following:

• Work with R and R's graphics interactively
• Organize your code and maintain multiple projects
• Make your research reproducible
• Maintain the packages in your R installation
• Create and share your reports
• Share your code and collaborate with other users

RStudio runs on all the major operating systems, including Windows, Linux,
and Mac OS X. Additionally, it can be used to run R on a remote web server.
In that case, RStudio's interface will run in your browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[6]

This book is aimed at beginning and moderate R users who want to get the most out
of R and RStudio. In the coming chapters we will cover most of RStudio's features,
and emphasize some best practices in statistical data analyses. A few words about
R: R is a free software tool for statistical analyses comprised of the R programming
language and the R environment. Here, free means not only free of charge (as in free
beer) but also free as in freedom. That is, you are allowed to download and use R,
inspect or alter its source code, and redistribute it as you like. Note that this freedom
is in fact a requirement to perform truly reproducible research, as it allows one, in
principle, to check exactly how data is processed in a certain project, down to R's
source code itself.

R is distributed via the Comprehensive R Archive Network, a network of servers
around the world from where you can download R and its extension packages. You
can access it via www.r-project.org. There are a few other sites offering extension
package repositories; the most noteworthy are bioconductor (www.bioconductor.
org) and the Omega project for statistical computing(www.omegahat.org).

The R environment is a so-called repl, which stands for a read-evaluate-print loop.
That is, it offers a text-based interface where you can enter R commands. After a
command is entered, the R engine processes it (evaluation) and possibly prints a
result to the screen. Alternatively (and more commonly), the commands can be
stored in a text file to be run by R.

Users who are accustomed to point-and-click interfaces for using statistical
functionality may find the first encounter with such an interface daunting, and
to be honest, the learning curve for R can be steep at times. However, in order to
make work reproducible, it is unavoidable to store the steps of your analyses as
source code. Moreover, being a true programming language makes R a much
more versatile and powerful tool than any point-and-click software that only
offers a predefined functionality.

Fortunately for us, writing code is nothing new and over the past decades, many
good ideas have been developed in the software industry to make coding and code
management a lot easier. RStudio implements many of those ideas for R users.
Important tips for your maintaining of your R installation are mentioned as follows:

• Always use the latest, stable version. This is the version likely to have the
least bugs in the older functionality. You can read about the latest features
by reading the news file, for example by running View(news()) from the R
command line. See the Installing R section for an easier way to install R.

• Frequently update your installed packages. This is simply done by running
the update.packages() command from your R console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

RStudio at a glance
Like R, RStudio is a free and open source project. Founded by JJ Allaire, RStudio
is also a company that sells services related to their open source product, such as
consulting and training.

RStudio is an Integrated Development Environment (IDE) for R. The term IDE
comes from the software industry and refers to a tool that makes it easy to develop
applications in one or more programming languages. Typical IDEs offer tools to
easily write and document code, compile and perform tests, and offer integration
with a version control tool.

RStudio integrates the R environment, a highly advanced text editor, R's help system,
version control, and much more into a single application. RStudio does not perform
any statistical operations; it only makes it easier for you to perform such operations
with R. Most importantly, RStudio offers many facilities that make working
reproducibly a lot easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[8]

The following table gives an overview of some of the most important features of
RStudio that you will learn to use with this book:

Features Description
Integration of the
R console

Type commands directly in the R console within RStudio.

Code execution Directly execute code from your script file.
Syntax
highlighting

Color (possibly self-defined) keywords and functions for easy
reading.

Bracket support Matching brackets are highlighted upon selection. When typing a
bracket "[", brace "(", curly brace or single or double quote, Rstudio
autocompletes it for you.

Command
completion

Press Tab halfway while typing a command and RStudio shows
a menu of matching R functions. When a function is chosen, its
arguments and "help" can be shown as well.

Keyboard
shortcuts

Common tasks can be accessed quickly by pressing a key or key
combination.

Help integration RStudio allows for browsing and searching R's native help files, and
offers context-related help as well.

Object browser You can inspect every object defined in the running R session.
History browser RStudio makes it easy to see what commands you used and re-

execute them.
Code navigation Jump from the use of a function to its definition. Jump from code in

a report to the code in the source.
Data viewer A spreadsheet-like view of tables (data.frames).
Data import
menus

For some of the most common data types RStudio has a menu that
generates the R read command for you.

Graphics
integration

Zoom, manipulate, and export graphics interactively.

Project
management

Easily switch between several projects.

Version control RStudio integrates the popular version control systems git and
svn.

Document
generation

Generate pdf, html, or other report formats using RMarkdown,
Sweave, or knitr with the push of a button.

Publishing Publish your reports and scripts online at Rpubs.com so that others
may learn from your examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Readers with some programming experience might wonder why a feature such as
debugging support is not in the list. The answer is that it is just not there yet. RStudio
is continuously being improved and updated, and according to the forums at RStudio's
web pages, support for debugging is certainly on the to-do list of the makers.

Installing RStudio
Before you install RStudio, you need to install R. It is possible to have multiple
versions of R installed side by side. RStudio will use the latest version by default,
but can be configured to use a different installed version.

Installing R
RStudio needs at least R version 2.11, but we highly recommend you to install the
latest version.

Installing R on Windows and Mac OS X
To download and install R, point your browser to www.r-project.org, click on
Download R (in the text underneath the graphics), and choose a server near where
you are. From there, follow the instructions in the Download and install R box.
Alternatively, use the Download R! button at www.inside-R.org. This website
automatically offers you the most recent R version fitting your computer and
operating system.

Installing R on Linux
Automatic R installation is supported for several popular Linux flavors, including
Debian, OpenSuse, and Ubuntu.

For OpenSuse, the default installation can be obtained by pointing your web browser
to http://software.opensuse.org/search, search for r-base, and install from
there. At the moment, the newest R version is available from there.

The R version offered by the package installer is frozen when the operating system
is released. We assume that you are familiar enough with tools such as Synaptic
or aptitude in order to install the R version that comes with those operating
systems. Here, we provide some details on how to install the latest R version on
Ubuntu or Debian.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[10]

CRAN hosts Debian and Ubuntu repositories, which are as follows:

1. Add the repository for Ubuntu 12.04 (precise pagnolin) by adding (as root)
the following line to your /etc/apt/sources.list file:
deb http://<your_nearest_cran_mirror>/bin/linux/ubuntu precise/

2. Replace <your_nearest_cran_mirror> with a server near where you live. A
list of mirrors can be found at http://cran.r-project.org/mirrors.html.
Next, register the security key by typing the following:
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
E084DAB9

3. Type the following commands to install the R.sudo apt-get update:
sudo apt-get install r-base

Alternatively you can install the latest R now via Synaptic. For Debian 6.05 (squeeze),
the line to add to your /etc/apt/sources.list file is deb http://<your_
nearest_cran_mirror>/bin/linux/debian squeeze-cran/.

The security key is installed with the following command:

sudo apt-key adv --keyserver subkeys.pgp.net --recv-keys 381BA480

After this, installation proceeds as in Ubuntu.

Building R from source
If you wish, you can download the source code R and compile the executables
yourself. This is really only for an expert user, so to paraphrase r-project.org: "if
you are not sure what compiling means, you most probably do not want to do this".

To make sure that RStudio can talk with the compiled binaries, you need to configure
the Makefile using the --enable-R-shlib flag. So after downloading and unpacking
the source tarball, change the directory to R2.XX.X, and type the following commands:

./configure --enable-R-shlib

make

make install

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Building R using Windows
Most Windows users will use the default installer, but if you want to you can
compile R under Windows. You need to download the latest version of RTools
(http://cran.r-project.org/bin/windows/Rtools) and follow the instructions
on the Rtools web page.

Installing RStudio
The desktop version of RStudio can be downloaded from http://www.rstudio.
com/ide for Windows XP and higher, MacOS X 10.6 or higher, and several Linux
flavors. The desktop version of RStudio can be installed easily by clicking on the link
for your platform and following the instructions. We strongly recommend that you
check www.rstudio.com once in a while for new updates. Alternatively, you can
check for updates from RStudio by clicking on Help | Check for updates.

Installing RStudio Server
RStudio Server is currently only available for Linux-based systems. Before you install
it you need to have R installed, as described in the previous paragraph.

1. Go to http://www.rstudio.com/ide/download/server and follow the
instructions there to download and install the RStudio server. Once RStudio
is installed, you can run it by typing the following:
sudo rstudio-server start

2. To log on you need to know the server's URL. If you have installed it locally,
you can access it by pointing your browser to the following path:
http://localhost:8787

RStudio allows the users of your Linux system to log on with their standard
password and username, so user management can be done as in Linux.

Installing R packages
One of the most attractive features of R is the abundance of freely available extension
packages. The installation of R comes bundled with many important packages, but
newly developed statistical methods come readily available in packages. These
packages are published on the Comprehensive R Archive Network (CRAN) and
can be easily installed in RStudio. To get started, we will install the knitr package,
which we'll need in our first session.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[12]

One of the tabs in the bottom right-hand side of RStudio is a package panel that
allows you to browse the currently installed packages. These packages can be
updated by clicking on Check for Updates. RStudio will check what packages
have newer versions and will give you the option to select which of these packages
should be updated. Alternatively you can use the General menu's Tools | Check
for Package Updates.

To install the packages click on the Packages tab in the bottom right-hand side panel.
Each tab has its own menu items at the top of the panel. Click on the Install button
to start the installation. The pop-up menu that appears allows you to choose either
a CRAN server or a local repository. If you have Internet access, choose a mirror
somewhere near you. Next, type the first letters of the package you wish to install.
Here, we will install the knitr package. When typing, RStudio will show suggestions
of packages with similar names. Choose knitr and hit Enter. RStudio generates the
command that installs the package, copies it to the console, and executes it.

To load the package, scroll down the window with installed packages and check it.
The package is now loaded.

Trying to update a package that is currently loaded may fail.
The easiest solution is to close and restart RStudio and update
again without the package being loaded.

Overview: A first R session
Now we have R and Rstudio installed we can start our first R session from within
RStudio. It is a good practice to use an RStudio project for all your data analysis
with R, for reasons we will encounter later in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

We create an R project using the menu Project | New Project. Choose New
Directory and name the project file Abalone.

In this session, we download and manipulate the abalone file.
This file will be used in examples throughout the book.

Abalones are a very common type of edible sea snail (sometimes called sea ear)
occurring in waters around the world. The data in the file used in this book was
compiled and published by Warwick J. Nash, Tracy L. Sellers, Simon R. Talbot,
Andrew J. Cawthorn, and Wes B. Ford in 1994 [Sea fisheries division Technical Report
No. 48 (ISSN 1034-3288)]. It was generously donated to the UCI machine learning
repository in 1995.

If you are a beginner in R programming, the RStudio menus facilitate many R
commands. When you click on a menu item, RStudio generates and executes the
corresponding R commands in the console window. It is a good (and a reproducible!)
practice to put your R code in script files as much as possible; but for now we will
use some menu commands.

Select Workspace | Import DataSet | From Web URL.

RStudio (and R) can import text files from the disk and over the Internet as well,
as shown in the following example:

Type (or paste) the following URL: http://archive.ics.uci.edu/ml/machine-
learning-databases/abalone/abalone.data.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[14]

RStudio downloads the file and shows the Import Dataset dialog:

The top left-hand side shows the name (abalone) of the resulting data.frame.
On the bottom left-hand side are the settings for reading the data file that RStudio
deduced from the data file. You can alter these; however, in this example they are
fine. On the top right-hand side RStudio shows the first 25 lines of the data file. On
the bottom right-hand side it shows the first 25 records of the resulting data.frame.
Click on the Import button.

RStudio imports the data and creates a data.frame with the name abalone using
the R command read.table and the options that you have set in the Import DataSet
dialog. Also, it automatically runs View(abalone), which shows the data we just
imported. Notice that the Workspace panel on the right-hand side now contains the
variable abalone. Also, notice that the column names of the data are missing, so we
need to add them.

In the console panel we type the following:

names(abalone) <- c("Sex","Length","Diameter","Height","Whole weight"

 ,"Shucked weight","Viscera weight","Shell weight"

 ,"Rings")

write.csv(abalone, "abalone.csv", row.names=FALSE)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

This sets the correct names for the data set and stores the data in your project directory,
so you don't have to download it again. This data file is part of your compendium.

We will start our first data analysis within RStudio with an R script.

Follow the next few steps in order to start the data analysis:

1. Create a new R script by navigating to File | New | R script (Ctrl+Shift+N or
Command+Shift+N) and type the following:
abalone <- read.csv("abalone.csv")
table(abalone$Sex)
plot(Length ~ Sex, data=abalone)

These commands load the data, calculate the gender frequencies in the data,
and plot a box plot of Length by Sex for abalone.

2. Save your R script as abalone.R using File | Save (Ctrl+S or Command+S).
3. Execute your R script with Ctrl+Shift+Enter or Command+Shift+Return.

Et voila! We have run a small R script from within RStudio. Notice that the panel on
the bottom right-hand side shows the plot that we have created.

But we can do better than that. If you did not follow the previous instructions to
install knitr, now is the time to do it after all. You may also install it by typing
install.packages("knitr") in the console.

1. Choose File | Compile Notebook.
2. Close the Abalone project with Project | Close Project. Choose Save.

We have now a new empty RStudio session.
3. Open your newly created an Abalone project by navigating to Project |

Recent Projects | Abalone.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[16]

Your environment is restored, including all the commands that you typed, thanks to
R and RStudio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Keyboard shortcuts
Besides the standard keyboard shortcuts that you likely use in everyday computer
use (cut-copy-paste, or to undo an activity), RStudio supports many keyboard
shortcuts specifically for R code editing, execution, and more. Although you are
unlikely to learn or use all of them, it is useful to get used to at least a few. We will
highlight a few of the most useful keyboard shortcuts in every chapter.

Panel Windows & Linux Mac Description
Source,
console

Tab or Ctrl+space
bar

Tab or Command+space bar Command completion.

Source Ctrl+Enter Command+Return Run current line or
selection.

Source Ctrl+Shift+Enter Command+Shift+Return Source with echo (run
whole file).

Any Ctrl+1 Command+1 Move cursor to source
editor.

Any Ctrl+2 Command+2 Move cursor to console.

Getting help
If you run into trouble with RStudio, there are several ways to get help online.

• The developers of RStudio have shown to be amazingly responsive on
the help forum at http://support.rstudio.org/. There are many
people using R and RStudio, so chances are that someone has already
posted the same question somewhere and had it answered. So, before
posting a question, make sure to take a look at the troubleshooting guide
at RStudio's support page.

• Search whether your question has been answered before in the FAQs
or the forum.

• Google your question. It may have been answered on another Q&A forum,
such as stack exchange.

When you post a question, it helps a lot to include a small example that reproduces
your problem. Also, you may want to attach the output of R's sessionInfo()
command to show in what context the problem occurred. Finally, it can be helpful
if you attach RStudio's logfile. You can find the folder where it is stored by opening
Help>Diagnostics>Show log files. If RStudio fails to start, you can find it in the
following place folder:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started

[18]

Operating systems Folder paths
Windows XP %USERPROFILE%\Local Settings\Application Data\

RStudio-Desktop\log

Windows Vista, 7 %localappdata%\RStudio-Desktop\log

Linux, Max OS x ~/.rstudio-desktop/log/

What if I uninstall RStudio?
Although you may find this hard to believe, this is absolutely no problem. Each
RStudio project is just a folder, containing your scripts, reports, and data in their
original form. Additionally there is a .proj file that holds some session information
for RStudio and possibly an .Rdata file. So even if you wish to uninstall RStudio,
your work is as accessible as before. You can still re-open your last-closed R session
by starting the default Rgui and opening the .Rdata file in that folder. Scripts are
stored as simple text files.

It is important to note that RStudio does not alter the storage format of your data in
any way. In contrast, many proprietary products force you to import your data and
store it in some binary format that cannot be opened with other products.

Further reading
The paper Statistical Analyses and Reproducible Research by Robert Gentleman and
Duncan Temple Lang offers a thorough description of methods for reproducible
research. It can be downloaded for free from http://biostats.bepress.com/
bioconductor/paper2/. There are many books for learning about R, a lot of which
are dedicated to specific subjects. Two recent books that discuss R in general that
have quickly gained popularity are R in a Nutshell by Joseph Adler, 2010, O'Reilley,
and The Art of R programming by Norman Matloff, 2011, No Starch Press, Inc. The
former book discusses R as a language as well as many statistical features while the
latter thoroughly discusses R as a programming language. Two books focusing on
general statistics with R are worth mentioning here as well. The first is Introductory
Statistics with R (2nd ed. 2008, Springer) by Peter Dalgaard. The second is Introductory
Probability and Statistics Using R by G. Jay Kerns. The latter book is developed as an
open source project and can be downloaded from http://ipsur.org/.

To keep up-to-date information on what happens in the R community, we highly
recommend frequent visits to Tal Galili's r-bloggers.com. This website collects a
large amount of R related blogs in a convenient newspaper-like layout. Subscribing
with an RSS reader for smartphone or PC is also possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

Summary
In this chapter we emphasized the importance of making your analyses reproducible
and introduced the concepts of reproducible research and the compendium. How
to install R and RStudio in several environments was shown. RStudio supports the
concept of a compendium through projects, and if you followed the first session
carefully, you have learned to read, alter, and store a simple CSV file, perform some
simple analyses, and make a simple plot and generate an HTML report automatically
that you can share with your coworkers.

In the next chapter we will take a deeper dive into writing scripts with RStudio.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts
and the R Console

In this chapter we will discuss the two panels of RStudio that are used the most—the
console and the source editor. Additionally we discuss the history panel.

Moving around RStudio
The features that we will discuss in this chapter are spread across the four main
panels of RStudio. Most panels harbor multiple tabs with different functionalities.
The main panels shown in the following figure (in clockwise order) are as follows:

• The source editor and data viewer panel: This panel can harbor a
variable number of tabs, each containing an open (source) file or a
view of a data.frame

• The command history and workspace browser: When working with
RStudio projects, a tab for version control features can be added

• The R console: This panel helps in working directly with R. It has no
separate tabs

• The file, help, package, and plots panel: This panel is used for browsing
files, viewing help, searching, and package (un)loading and installation

Each tab in each panel has its own set of menu items, relevant for the content of
that tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[22]

Every panel has a maximize/minimize button at the top right-hand side. When
maximized or minimized, the respective button changes into a restore icon that
allows you to restore the panel to its previous size. Panels can be resized horizontally
or vertically with the mouse. At the time of writing, diagonal resizing is not possible.
The order and content of panels in RStudio can be customized. Go to Tools |
Options | Pane Layout to alter the content of each quadrant.

Keyboard shortcuts to move around RStudio
Besides the usual point-and-click way to activate the various panels, there are
handy keyboard shortcuts that allow you to move around without taking your
hands from the keyboard. Each shortcut is a Ctrl+<number> combination and
works independently of the current focus. The shortcuts are the same for Linux,
Mac, and Windows.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

The most important shortcuts to remember are Ctrl+1 to move to the source editor
and Ctrl+2 to move to the console. The following is a table with every shortcut:

Numbers for
shortcuts

Focus

1 Source editor
2 Console
3 Workspace browser
4 History editor
5 File browser
6 Plots area
7 Packages
8 Help
9 Git/SVN version control

You can print all of RStudio's shortcuts by going to
Help | Keyboard Shortcuts | Print

Features of the R console
We will now talk about various features of the R console in this section.

Executing commands
The most direct way to work with R is by entering commands straight in the
console. When RStudio is started for the first time, its interface to the R console
is on the left-hand side. The console window has three buttons on its top bar.
On the right-hand side, there are two buttons that minimize or maximize the
command window. On the left-hand side, just after the word Console, the
current working directory is shown. On the right-hand side is an arrow that,
when clicked, opens the file browser on the right-hand side to view RStudio's
current working directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[24]

To execute a command from the console, type it after the prompt (the > symbol)
and press Enter. The command is sent to the R engine, executed, and printed back
to the screen in a different color. This is the first example of what is called syntax
highlighting to which we will return extensively in the next subsection. Note that the
result is preceded by a [1]. Recall that in R the basic data type is a vector of values
of the same type. In the previous screenshot, the [1] indicates that the answer 2 is the
first element of the result vector. If the result is a longer vector, each printed line of
results starts with a number between brackets, indicating the position of the next value.
As a demonstration, generate a vector v by entering the following command:

v <- seq(1,100,by=2)

This shows the result type v. Press Enter. Depending on the width of your window,
the resulting vector of 50 elements is shown over one or more lines. In the following
example, the window is just wide enough to show 25 elements on one line, so
element number 26 starts on the second line.

In some cases it is convenient to break a command over multiple lines; for example,
when typing a vector explicitly. The R console is able to recognize when a command
is not finished and precedes a continuing command with a + sign.

When you happen to get stuck in an unfinished command, you can always press
Esc to exit.

Command history
Analyzing data by typing commands at the console is not really a reproducible
research. However, RStudio offers three ways to retrieve and restore all the
commands that you entered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

The first is by scrolling through your commands by hitting the up or down arrow
keys, when in the console. Previous commands are shown on the command line one
by one. Press Enter to execute the current command or Esc to return to an empty line.

The second way to scroll through your command history is to press Ctrl+up. This
opens a popup screen showing previously given commands. You can select a
command with the up and down keys or by clicking on them with the mouse. Press
Enter to copy the selected command to the console, and hit Enter again to execute it.

The third and the most extensive way to inspect or alter the command history is by
using the command history panel. The command history panel is situated in the top
right-hand side panel, under the second tab. You can activate it by pressing Ctrl+4.

The panel allows you to scroll through all the commands that you issued at
the command line, including the ones that were given by executing them from
the source editor (to be discussed in the next section). After pointing focus to
the command history panel, commands can be selected by clicking on them, or
scrolling through them with the up and down arrow keys. Multiple lines can be
selected by holding Shift while clicking on the lines or by holding the Shift key
while pressing the up and down arrow keys. The search box on the right-hand side
allows for searching through the commands. The search encompasses commands
given in the current session as well as the commands from past sessions or from
other projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[26]

Commands can be re-executed by selecting them and pressing Enter, or by clicking
the To Console button at the top of the panel. The commands will be copied to the
console, executed, and then focus is set to the console.

Commands can be deleted from the history by pressing the Delete button (with the
white cross in the red circle) at the top of the panel. Alternatively, the entire history
may be deleted by pressing the broom button next to it.

The entire command history can be saved by clicking on the Save button (with the
image of the blue floppy disk) at the top of the panel. The commands are stored with
the extension .Rhistory. In the spirit of openness, this file is a simple text file with
R commands. So even if you uninstall RStudio, your command history is available
to be edited with any text editor, or to be sourced by R. Previously saved command
histories can be loaded using the load history button (with the folder icon) on the
left-hand side.

Loading and saving command histories is not the recommended way to make
your analyses reproducible. When working in the console, one typically repeats or
alters commands on-the-fly, making a command line history difficult to read. If you
performed an analysis that you want to reproduce, there is a better way to do so: by
saving it as a source file.

Selected commands can be copied to a source file by clicking on the To Source
button at the top of the history panel. If no source file was open yet, a new one will
be opened for you. This way you may edit the commands into a real script and store
them as a .R file, which is usual for analyses automation.

Your history file typically contains many copies of a command.
RStudio can remove all duplicated history entries automatically.
This can be set in Tools | Options | R General.

Command completion
Command completion is arguably the most important feature that RStudio offers.
It is a feature that makes working with the command line a much more productive
and enjoyable experience. Command completion is also something you will probably
use more than any other functionality, so it is a good idea to familiarize yourself with
RStudio's completion features.

Activating command completion is very easy—just type the beginning of what
you aim to type and hit Tab. RStudio can complete functions and function
arguments, objects in the R environment, and filenames (strings). Finally, there is
bracket completion, which is performed automatically without pressing Tab. Each
completion feature is discussed separately in the following section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

We note that many of the command completion features will also work in R's native
environment. However the use of pop-up menus, help integration, and bracket
completion implemented by RStudio make Tab completion even more user-friendly.

Completion of functions and arguments
It is easy to mistype a function name or argument. Tab completion allows you to
forget most of a function's name, and most of its arguments. Let's get started right
away with an example.

Type s in the console and hit Tab. After pressing Tab, a pop-up menu shows
completion options.

1. RStudio shows a pop-up menu with possible completion options that may
include variables from the workspace or names of (possibly self-defined)
functions. You can scroll through the options using the up and down arrow
keys. Pressing Tab again (or Enter or Right) completes the command and
closes the pop-up screen.

2. Behind the function name in the pop-up menu, the name of the package
containing the function is displayed. Alongside the list is the Description and
Usage portion of the R help file that comes along with the function. Pressing F1
opens the whole help file for that function in RStudio's help browser.

3. Once a function name is completed, type an opening bracket "(" and hit Tab.
RStudio opens a popup with the function arguments and their descriptions
from the function's help file. Pressing Tab (or Enter or right arrow key)
copies the selected argument and equals symbol to the command line and
closes the popup.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[28]

Object completion
The Tab completion functionality attempts to complete a non-finished command in
any way possible, including names of objects and functions defined by the user in
R's workspace. Moreover, for objects that allow R's dollar operator, tab expansion
of subobjects is available as well. The most important and useful examples thereof
are data.frame and list objects, as it is very common to make typing errors
in names of data.frames. As an example, load the iris dataset by typing the
following in the console:

data(iris)

To select a column, type iris$ and hit Tab. A popup with a list of columns in the
iris data.frame appears for selection.

For the advanced user, completion using the Tab key also works for
instances of self-defined S4 objects for which the dollar operator has
been overloaded.

Completion of filenames
Entering long path and filenames can be a nuisance. Fortunately, RStudio also
completes strings into filenames. To try this, just enter a single or double quote at
the command line and hit Tab. A popup with file and directory names in RStudio's
current working directory is shown. For partially completed strings, completions are
suggested from the partially completed path in the string. If you are working in an
RStudio project, the completion assumes that paths are relative to the project directory.

It is a good idea to use paths relative to your project directory, as it allows you to
effortlessly move your whole project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

The previous screenshot shows the popup after typing "/ Tab (quote forward slash
Tab) on an Ubuntu system, showing the root directory structure.

Recall that R expects a forward slash "/" to indicate levels in a directory
structure. As a mnemonic, you may think of the "address" of your file
as a sort of web address (URL) that also uses forward slashes. Forward
slashes are also common in Unix-like systems and Mac OS X (which is
Unix-like at its core). Alternatively, under Windows, one forward slash
may be replaced by two backslashes "\\".

Bracket and quote completion
It is an easily and frequently made mistake to forget closing the brackets, especially
when several nested commands are used. RStudio automatically completes round,
square, and curly brackets with the closing bracket as soon as the opening bracket is
typed. The cursor is immediately placed between the brackets. For single and double
quotes, RStudio has the same behavior. When an opening bracket or quote is deleted,
the matching closing bracket is deleted as well.

Keyboard shortcuts for the console
Many shortcuts that are common in text editors are supported by RStudio, including
Ctrl+left/right arrow keys to jump a word, Shift+left/right arrow keys for selection
and Home and End to jump to the beginning or end of a line. Below is a table of
shortcuts for the R console; some of them will be familiar to users of unix shell systems.

Windows & Linux Mac Description
Tab (or Ctrl+space) Tab (or Command+space) Command completion
Esc Esc Interrupt current command
Ctrl+up Command+up Command history popup
Up/down arrow keys Up/down arrow keys Scroll through history
Ctrl+L Command+L Clear console

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[30]

There are many more keyboard shortcuts, some of them for actions that are probably
rarely performed, such as copying (yanking) a line up to the cursor position (Ctrl +
U). Once you've familiarized yourself with the shortcuts in the previous table, it is
advisable to browse through the list of shortcuts (Help | Keyboard shortcuts) to see
if there are more shortcuts that are useful to you.

Features of the source editor
The most important panel in RStudio is the source editing panel. This is where you
write your R scripts and probably spend most of your time working on the project. It
has several features that make writing R scripts in RStudio much more comfortable
than most other editors. The editor panel of RStudio supports editing several file
formats such as HTML, Sweave, Markdown, C, C++, and JavaScript files. In this
chapter we will discuss editing R scripts, leaving features for some of the other
languages to Chapter 5, Generating reports.

Every code completion feature described in the previous section also
works in the source editor.
If you're accustomed to the Vi or Vim editor you can let RStudio
emulate some of their properties by going to Tools | Options | Code
editing and selecting Enable Vim Editing mode.

A few words on code quality
A development process, either for a software project or when authoring a statistical
analysis, is unavoidably comprised of writing, running, and debugging code. This
means that you should try to make your code as readable and maintainable as
possible. Here we discuss a few of the most well-known ideas that by now are clichés
in software engineering but which should definitely be copied by statistical analysts.

A basic rule of thumb is Don't Repeat Yourself (DRY). As soon as you have to write
a line of code two or three times, write a loop or a function.

"Premature optimization is the root of all evil."

This quote by famous computer scientist Donald Knuth tells you that at least in the
beginning of your project, the most important feature is that your code works the
way it should, and that you can read and understand it exactly. If you DRY and write
functions, it is simple to replace a slow and simple function with a fancy fast one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The shape of your code should reflect its function. Use indentation to separate blocks
such as for-loops and if-then-else statements. RStudio will do this automatically
for you, and it is bad practice to ignore or undo the automatic indentation. Use
meaningful variable and function names. The name of a variable should reflect the
meaning of its content (for example speed, length). For functions, imperatives
describing the action a function carries out are often a good choice (for example
downloadAbalone()).

In the ideal case, code is understandable without adding comments. However, some
complicated pieces of code may need some clarifying remarks. In that case describe
what the code is aimed to do, not how it does it. Realize that just like code, comments
have to be maintained. So writing code that is readable without comments can save
you a lot of time when fixing bugs or updating your compendium. It is better to have
no comments than comments that are wrong.

Editing R scripts
To start a new R script file, click on the new file button (right under the File menu,
with the green + sign) and select R Script.

To open an existing file, use the Open file button next to the new file button to open
the file selection dialog of your operating system. The arrow next to the open file
button unfolds a list of recently opened files.

RStudio can open many source files of different programming languages
simultaneously. Each file will be opened in a different tab. Filenames appear at the
top of the tab. Tabs containing new and unsaved content display the filename in red
with an appended asterisk. As different languages require different support features,
the menu items of tabs may differ for files. Menus of the editor change depending
on the type of file being edited. Here, the menus for R scripts (top) and for Rhtml
(bottom) files are shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[32]

The actions under these buttons can also be found in the Code menu. At the bottom
left-hand side is the Jump To option (showing Top Level in the figure) that allows
for easy navigation. The bottom right (R Script) allows you to set the type of a file
and syntax coloring explicitly.

Files stored with the .R or .r extension are immediately recognized
as R files. Saving a file with this extension will switch on the features
supporting R code editing (syntax highlighting, completion, and so on).

Keyboard shortcuts for file navigation
Memorizing the keys for navigation between tabs can be very efficient as navigating
between a number of open files occurs more frequently than creating or opening a
new file. The shortcut for Save current document is very useful to memorize as well.

Windows/Linux Mac Description
Ctrl+Shift+N Command+Shift+N Opens a new R script file*
Ctrl+S Command+S Saves current document
Ctrl+W Command+W Closes current document**
Ctrl+O Command+O Opens document dialog
Ctrl+Up / Ctr+Alt+right arrow Ctrl+Option+right arrow Moves one tab to the right
Ctrl+Up / Ctr+Alt+left arrow Ctrl+Up / Ctr+Alt+left

arrow
Moves one tab to the left

*Not when connecting to RStudio server on Chrome under Windows

**Not when connecting to RStudio server on Chrome

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

Keyboard shortcuts for code editing
Most of the common shortcuts supported by many software are also supported
by RStudio. These include using Shift+<arrow> for selection, Ctrl+Z for undo and
Ctrl+Shift+Z for redo as well as the usual Ctrl+X/C/V for cut/copy/paste. Below
are some useful shortcuts pertaining more specifically to source code editing.

Windows / Linux Mac Description
Ctrl+Shift+C Command+Shift+C Comment/uncomment selection or

current line
Ctrl+I Command+I Reindent lines or selection
Ctrl+Shift+/ Command+Shift+/ Reformat comment
Ctrl+F Command+F Find and replace
Ctrl+Shift+F Ctrl+Shift+F Find and replace in multiple files.
Alt+- Option+- Insert <- (assignment operator)

Syntax highlighting
A basic but important feature of a script editor is syntax highlighting. RStudio
automatically colors your R scripts according to the different parts of the R
language. This makes it easier to read and edit R code. Syntax highlighting is
very helpful in avoiding and detecting typos and syntax errors.

By default, RStudio colors R keywords blue, text strings green, numbers dark
blue, and comments dimmed green.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[34]

Adjusting the syntax highlighting theme
The style of an editor is to some extent a matter of taste. RStudio allows you
to change the font, font size, and coloring scheme used for syntax coloring.
The appearance of the editor window can be adjusted in Tools | Options |
Appearance. This shows the three options for changing the editor window.

You can change the default font and font size to your liking.

A fixed-width or monospaced font is preferable because it helps
you to structure and indent your code better. All fonts in RStudio
are monospaced.

RStudio has several color schemes that you can use to alter the appearance of the
source code editor. The color schemes are all inspired by the colors used in other
popular editors:

• Textmate
• Eclipse

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

• Cobalt
• Solarized
• Solarized (dark)
• Idle Fingers
• Twilight
• Tomorrow

Indenting code
When writing R code in the script editor, RStudio automatically indents your code,
which results in better structured and more readable code. RStudio does not change
the indentation of an existing R script. A script can be re-indented by RStudio by
selecting the code and choosing Code | Reindent (Ctrl + I).

Commenting code
Often during the development of scripts, it can be useful to comment and uncomment
lines of code. In RStudio this can be done by selecting code and choosing Code |
Comment/Uncomment lines (Ctrl+Shift+C). Note that activating and deactivating code
with comments should not be part of your final work flow—it makes your actions
non-reproducible. A better option is to split the code in functions and/or multiple files.

In more mature scripts it is good practice to add comments that explain parts of your
code. Editing these descriptions can result in very long comment lines. RStudio can
reformat comment lines with Ctrl+Shift+/.

Do not reformat comments on commented code, as the inserted
newline characters may break or change the working of your
code after you uncomment it.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[36]

Find and replace
RStudio offers basic find-and-replace functionality. Ctrl+F allows you to search for
a text string within the current open document. Typing the string and hitting Enter
gives you the first occurrence of the text.

By default searching for the texts is case insensitive, but this can be changed by
selecting Match Case. It is also possible to use regular expressions (Regex) for
searching and replacing your texts.

Find and replace using Regex is similar to the gsub function
in R with perl=TRUE.

With Ctrl+Shift+F it is possible to search in multiple files. By default RStudio searches
in the current working directory and its subdirectories, but this can be specified.

Searching in multiple files results in an extra tab in the console panel named Find
in Files. This panel lists all the occurrences of the search string. Clicking on an
occurrence opens the file at the right location in the script editor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

Folding, sectioning, and navigation
For easy editing and code inspection, the appearance of code in the editor can be
customized. Code folding allows you to temporarily hide user-defined sections
or indented blocks (functions, loops, and so on). RStudio also offers shortcuts and
menus that allow for quick navigation between blocks and sections.

Code folding
Long scripts with many blocks of code can be hard to read. Often this is an
indication that the script should be split into multiple files, but alternatively
RStudio has a code folding feature that allows you to collapse blocks of code.
All the blocks with curly brackets ({}) and code sections (see the following code
snippets) can be folded. All foldable code is preceded with a small triangle.
Clicking on the triangle collapses or expands a code block. That a block of code is
collapsed can also be seen in the gap of line numbers. Here, the folded/collapsed
function, the body of the function at line 5, is collapsed:

Keyboard shortcuts for code folding

Windows / Linux Mac Description
Alt+L Alt+L Folds selection
Shift+Alt+L Shift+Alt+L Unfolds selection
Alt+A Alt+A Folds all
Shift+Alt+A Shift+Alt+A Unfolds all

Code navigation
RStudio has lots of smart code navigation that can make code editing faster.
It is of great benefit to learn some of these tricks, especially if you're develop
large or numerous R scripts.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[38]

RStudio allows to go to a specific line number (Ctrl + G), but as line numbers are
shown, you won't use this feature is a lot.

With Code | Jump To... (Alt+Shift+J) it is possible to jump to functions and code
sections within the current file. RStudio shows the available destinations at the
bottom of the window. A related navigation feature is hitting the F2 key by selecting
the name of a function. RStudio will open up the file with the function definition.
This even works for functions from base R and R extension packages.

Functions definitions without curly braces (often used for
simple one-line function definitions) will not be found by
the jump-to function.

Even more useful is the Code/Go to File/Function... (Ctrl+.) option. It helps to
quickly locate and load functions in your script files. RStudio will show all the
available functions and files in the current working directory and its subdirectories
that start with the characters you type. Behind function names is the script file
where it is located.

Go to File/Function shows the location of functions and files starting with "a".

Selecting one of the listed functions opens the file at the right location.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

When writing multiple R scripts simultaneously and jumping between files, it is easy
to lose track of changes. RStudio allows you to navigate between files using Back
(Ctrl+F9) and Forward (Ctrl+F10). RStudio remembers the positions where edits
were made and facilitates jumping between them.

Keyboard shortcuts for code navigation

Windows/Linux Mac Description
Alt+Shift+J Alt+Shift+J Jump to function definition (user defined)
Ctrl+. Ctrl+. Go to File/Function
F2 F2 Show function definition
Ctrl+F9 Ctrl+F9 Back
Ctrl+F10 Ctrl+F10 Forward

Code sections
Code sections are not an R, but an RStudio feature. You can structure your R code
by partitioning your scripts into sections. Sections are still valid R, because they are
implemented as a comment with a special syntax.

The syntax for a section is as follows:

<sectionname> ---

Here <sectionname> is the name that you want to assign to a section. A section
can also be inserted from the RStudio menu: Code | Insert Section (Ctrl + Shift
+ R). RStudio will ask you to name your section and insert the comment with the
section name.

Code section "My Section"

www.it-ebooks.info

http://www.it-ebooks.info/

Writing R Scripts and the R Console

[40]

Note that the Jump to button in the editor window (bottom left-hand side) now
contains the name of the section.

In RStudio you can use sections to jump to parts of your code or to fold/unfold
your code.

Code execution
There are several ways to execute code in the script editing window. Most of them
literally copy the lines with R script to the console window and execute them.

To execute the current line or selection use Ctrl+Enter. The previous command can
be rerun using Ctrl+Shift+P.

Code completion of your code in the editor window will only
work if the objects are available in your workspace. Make sure
that you execute the assignment of objects in the editor.

Executing a script file line by line is tedious. So RStudio makes it easy to execute (or
source) all the lines of a script file with Ctrl+Shift+Enter. This will copy all the lines
to the console and execute them. The output of the script is printed in the console
windows. Note that RStudio treats the execution of all the lines as one statement.

It is also possible to source the current file without printing statements in the console.
This can be done with Ctrl+Shift+S. RStudio makes this even easier with the Source
on Save option that is on top of the editing window. Whenever you save your file, it
is automatically sourced. This ensures that your workspace always contains the latest
version of your objects and functions.

Don't use Source on Save on scripts that take a long time to
run. It can be frustrating to wait a long time when changing
and saving a file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Keyboard shortcuts for code execution

Windows / Linux Mac Description
Ctrl+Enter Command+Enter Runs current selection or line

Ctrl+Shift+P Command+Shift+P Re-runs last executed code

Ctrl+Shift+Enter Command+Option+R Runs whole current document

Ctrl+Alt+F Command+Option+F Runs current function definition

Ctrl+Alt+B Command+Option+B Runs from first to current line

Ctrl+Alt+E Command+Option+E Runs from current line to end

Summary
This chapter treated the editing and completion features of the console and methods
for command history retrieval and storage. Important features of the source code
editor were discussed, including code appearance features (highlighting, sectioning,
folding), editing features (find/replace, commenting, indentation), and code
execution. Some of the more advanced features, such as function extraction and
the code viewer have not been discussed here yet. These are left to Chapter 6, Using
RStudio Effectively.

Now we know how to write scripts in RStudio it is time to see how data can be
viewed and plotted.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data
In this chapter we will discuss how to view and edit objects in the workspace.
We will also discuss plotting and interactive plot manipulation with RStudio's
manipulate package.

Viewing data and the object browser
Reviewing your data and other R objects as you develop your analyses is an excellent
way to monitor the progress of your work. We will now discuss RStudio's features
that allow for the inspection of objects and data.

The panel on the top right-hand side holds the Workspace tab. This tab has menu
items to load and save workspaces from or to a .RData file (R's native format to store
data). There is an Import Dataset button for convenient loading of ASCII files, as
discussed in Chapter 1, Getting Started. The Clear all button removes all the variables
from the current workspace. Finally, the Refresh button re-examines the workspace
and refreshes the workspace browser.

Buttons of WorkSpace

To show some of the data viewing features, we will use the Abalone project from
Chapter 1, Getting Started. To open Abalone, navigate to Projects | Abalone. If you
followed the instructions in Chapter 1, Getting Started precisely, there is only the
abalone variable. Let's create some extra variables to see how RStudio presents
them in the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data

[44]

Type the following commands in an R script and execute them:

meanLength <- mean(abalone$Length)

model <- lm(Whole.weight ~ Length + Sex, data=abalone)

x <- 1:3

cv <- function(x, na.rm=FALSE){

 sd(x, na.rm=na.rm)/mean(x, na.rm=na.rm)

}

The function cv computes the coefficient of the variation. Right now, your workspace
browser should look something like the following screenshot:

The workspace browser

The workspace browser neatly separates all the objects defined in the workspace
in Data, Values (variables, or objects), and Functions. For Values, some extra
information is shown in the second column, depending on the type of object. For
vectors of length one, the value is shown. For all the other objects, the class is
shown. The size is indicated between the square brackets. That is, for vectors (and
multidimensional arrays) the length is shown. For more complex objects, such as
the lm object in the example, the number of attributes is shown.

Matrix-like objects are gathered under the Data section. This includes objects of the
class data.frame, matrix, and two-dimensional array objects. The dimension of
those objects is shown in the second column. Clicking on the object opens the Data
viewer tab in the panel on the top left-hand side.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

The dataviewer

The data viewer has the following properties:

It shows up to (and including) the first 1000 records and the first 100 variables. When
looking for a specific record or subset of records, use R's subsetting capabilities
(indexing, the subset function) to make a selection before viewing.

The view is not updated when data gets updated. The viewer shows a copy of data
at the time the View command was issued. You can refresh the view by clicking on
the dataset's name in the workspace browser.

Right-clicking on the Data viewer tab shows a Reload option.
However, this reloads the project and not the dataset. See
Chapter 4, Managing R Projects, for project management.

These features may seem limiting when expecting spreadsheet functionality.
However, remember that manually adapting data is not reproducible if it is not
logged appropriately. Having said that, data editing is a feature that has been
requested by several users on RStudio's forum and such features may be added in
the future.

Clicking on an item under Values or Functions is equivalent to typing fix(<name>)
in the console. RStudio opens a simple text editor, allowing you to alter the content
of the object. However we strongly advise against this practice, as there is no way to
easily record such changes. For example, you could alter the content of the lm object
of the example we just saw, in the workspace. However, you will not be able to
re-create this object by re-running the script we just wrote.

According to some discussions on RStudio's forum, the workspace
browser is up for some major improvements in the near future,
so keep your eyes open for updates.

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data

[46]

Plotting
Plotting is an essential need when analyzing data. One of the major reasons
for developing R was to enable users to create graphics and charts easily and
interactively.

Graphs are also useful as the result of the data analysis. Graphics can be an excellent
way of communicating your result. R makes it possible to create high resolution
graphics that can be used in scientific publications. RStudio includes several utilities
that make both uses a bit easier. It has a specific plots panel that can be found at the
bottom right-hand side of your RStudio window.

In a normal R session, all the graphics are rendered in a new graphics device
(window). In RStudio, on the contrary, all graphics are by default rendered in the
plots panel. This is an improvement upon normal R where a plot command opens
up a new window and the command window loses its focus. In RStudio the plot
generation does not interrupt the flow of analysis. If needed it is possible to enlarge
the plot window and zoom in, but RStudio does not enforce it.

Buttons of the plot panel

It is helpful to know that the plots panel in RStudio does not store the generated
plots, but the actual R command that generates them. This makes it possible to
generate the plot at different resolutions (aka zooming) or to export the plot to
different formats. Let's illustrate the plots panel with the following example.
We will use the data example from Chapter 1, Getting Started.

Type the following command to generate a scatter plot in the plots panel (Ctrl+6):

library(ggplot2)

qplot(x=Rings, y=Length, data=abalone)

Zoom
The Zoom button opens up a new window with a larger version of the current plot.
Notice that RStudio redraws the plot at a higher resolution. Whenever the Zoom
window is resized, the plot is regenerated.

Right-clicking on the Zoom window reveals a menu with the options
to save the image. In our experience it is a better option to use the
export facility for saving images.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Export
The plot panel allows you to export the current plot to different formats, which
can be very helpful. Note that the current export facility is a manual action.
Unfortunately in RStudio version 0.97, it is not possible to see the resulting R
command that generates the export, which makes using the export button not
reproducible. However, the export functionality can help in determining the right
parameters for a scripted export version. We strongly advise you to always script
your graphics and use the export facility for finding the right parameters.

The export menu has three options—Save Plot as Image..., Save Plot as PDF..., or
Copy Plot to Clipboard.... Choosing Save Plot as Image yields the following popup:

Exporting a plot

The export to image allows exporting to the PNG, JPG, SVG, TIFF, BMP, Postscript,
and Windows Metafile (WMF) formats. Notice that the screen can be resized by
dragging the bottom right-hand side corner. The Width and Height parameters are
automatically adjusted. Copying to the clipboard is similar to exporting to image.

Exporting to PDF generates a one page PDF file with the current plot in landscape or
portrait format.

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data

[48]

Navigation
The plots panel has several buttons that allow for navigation through previously
generated plots.

The R statement generates a box plot of the length of abalone per sex.

plot(Length ~ Sex, data=abalone)

With the left arrow (Ctrl+Shift+PgUp), it is possible to retrieve the previous plot and
the right arrow (Ctrl+Shift+PgDn) allows you to return to more recents plots. You
can remove a plot from plot history by clicking on Remove current plot. Hitting the
Clear All button will remove the complete plotting history.

Interactive plotting with the manipulate
package
During exploratory data analysis, it is often useful to play with the parameters of
a graphic. This can be done, of course, in the R console by repeatedly executing
the same command and changing the graphical parameters. RStudio includes the
manipulate package, that facilitates altering parameters of the current plot.

The manipulate function
The most important function of the manipulate package is manipulate. The value
of the first argument of the manipulate function must be an expression or function
that generates a plot. Various arguments can be added to define custom sliders,
buttons, checkboxes, or pickers (drop-down menus) that are to be used in a small
user interface (a manipulator) to manipulate a graphic. The following is an example
of a manipulator:

library(manipulate)

manipulate(

 plot(Length ~ Rings, data=abalone

 , axes = axes

 , cex = cex

 , pch = if(pch) 19 else 1

)

 , axes = checkbox(TRUE, "Show axes")

 , cex = slider(0, 5, initial = 1, step=0.1, label="Point size")

 , pch = button("Fill points")

)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

If these statements are executed, a plot is created with a gearbox icon at the top
left-hand side. Clicking on the icon opens a small menu box with a checkbox, a
slider, and a button. Each time you move the slider or click on a button or checkbox,
the variables (pch, cex, and axes) are set to the value chosen in the menu, and the
plot is recreated.

Simple manipulate function

It is possible to have multiple sliders, pickers, and so on, in a single manipulator.

The following is a table showing the possible controls and their outcomes.

Control Arguments Result Use
Button A label TRUE from

the first click
onwards

Sets a logical
variable to TRUE

Checkbox Optionally an initial value and a label logical Toggles a logical
variable

Slider min and max values, optionally an
initial value, a label, a stepsize, and a
logical (ticks) indicating whether tick
marks should be drawn

numeric Sets a numerical
value in a range

Picker A list of values to choose from,
optionally a label and initial value

The chosen
value

Selects from a
list of options

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data

[50]

Using more options of manipulate
After a manipulator is launched it creates the plot with initial values and waits for
an action of the user. When one of the controls is altered, the following actions
are performed:

• The values returned by the controls are substituted in the
corresponding variables

• The expression in the first argument is re-evaluated, causing a new plot

The expression in the first argument need not be a single expression. In fact, the first
argument can be a sequence of complex expressions enclosed by curly braces { }.
Inside those braces you may use any R command, either plotting or otherwise.

If executing one of the commands takes a long time, for example because it involves
computing a complex model, you may store the results for retrieval on reruns after
the user controls using manipulatorSetState and manipulatorGetState.

Here's a simple example:

manipulate({

 if (is.null(manipulatorGetState("model"))){

 fit <- lm(Length~Whole.weight, data=abalone)

 manipulatorSetState("model",fit)

 print("hey, I just estimated a model!")

 } else {

 fit <- manipulatorGetState("model")

 print("Now I just retrieved the model from storage")

 }

 plot(abalone$Length, predict(model), col=col)

}

 , col=picker("red","green","blue")

)

In the if statement of the first line, we check whether the variable model was stored
before. If it wasn't, manipulatorGetState returns NULL. If the variable was not stored
before, it is computed with lm and stored using manipulatorSetState, here under
the name model. This branch is executed only the first time the expression is evaluated.
We've added a print command, so the difference between calls will be clearly noticed.
If the variable has been stored before (after the first evaluation), it is retrieved using
manipulatorGetState in the else branch. Finally, a plot of original versus predicted
values is made. The manipulator allows for choosing the color of points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

There is one more function specific to manipulate, which can be used in the set of
expressions passed to manipulate, namely manipulatorMouseclick. This function
returns NULL when a plot was made because a menu item was changed, otherwise it
returns a list of plotting coordinates in several coordinate systems.

Here is an example where we plot Length against the number of Rings in the
abalone dataset and use the mouse to plot an extra cross:

manipulate({

 plot(Length~Rings, data=abalone)

 xy <- manipulatorMouseClick()

 if (!is.null(xy)) points(xy$userX, xy$userY, pch = 4)

 })

In the first line of the expression, the scatterplot is created. Next,
manipulatorMouseClick() is called to retrieve the coordinates. The userX and
userY coordinates are the ones that can be used directly with the points command.

Adding a cross to a plot with a mouse click.

Advanced topic: retrieving plot parameters
from manipulate
In this example we will write an interactive plotting function for exploring bivariate
plots of any data.frame. We will use manipulate for interactivity but we also want
to be able to retrieve the parameters that were set interactively. To achieve this we
need some fairly advanced features of R. In particular, we will discuss do.call, sys.
call, formula objects, and environment objects. We assume that you are somewhat
familiar with R list objects and that you know how to write R functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data

[52]

A formula object is R's way to express relations between variables. If you ever
worked with functions such as table or lm, you have probably encountered formula
before. A formula always looks something like the following:

<dependent variable(s)> ~ <independent variable(s)>

A tilde (~) separates the dependent from the independent variables. Functions that
take a formula as input usually also take a data argument as input. For example, to
plot the variable Length against Whole.wheight of the abalone dataset, you can use
the following command:

plot(Length ~ Whole.weight, data=abalone)

A formula can also be constructed from a character object, so the following
commands have the same result as the plot command mentioned previously:

form <- as.formula(paste("Length", "Whole.weight", sep="~"))

plot(x=form, data=abalone)

Here, we used the paste command to paste the variable names together to a single
string representing the formula.

You are probably used to calling functions in the form shown previously. That is, you
provide a function name, followed by the arguments between brackets. However,
R has another smart way to pass arguments to a function— do.call. The function
do.call takes two arguments—a function, and a list of (named) arguments that
should be passed to the function. For example, to plot Length against Whole.weight
like in the previous example, we may also use the following statement:

do.call(plot, list(x=form, data=abalone))

The nice thing about do.call is that it allows you to have a function process lists of
arguments that are generated automatically.

An R environment is very much like a list, in the sense that you can store R objects
in it. There is one very important difference that we will use here, which is the fact
that environment objects are reference objects. Usually when you pass a variable
to a function, the function may internally overwrite or change that variable without
your noticing it, as variables are copied to within the function's workspace. For
environments, however, this is not true. Once you create an environment every
function that adds, changes, or deletes an object from that environment, changes the
original environment. A new environment can be made with new.env, and the dollar
operator can be used to add or adapt objects. For example:

myenv <- new.env()
myenv$x <- 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Use myenv$x to view the value of x stored in myenv. We now write a function that
alters the content of an environment.

f <- function(e) e$x <- 1

Note that f does not actually return anything. If you now call f(myenv) you
will note that myenv$x is changed. To understand the difference with a list,
try the following:

L <- list()

L$x <- 0

f(L)

L$x

We are now ready to discuss our data manipulation function, shown as follows:

dataplot <- function(dat){

 name <- sys.call()[[2]]

 vars <- as.list(names(dat))

 e <- new.env()

 e$data <- name

 manipulate(

 {

 form=as.formula(paste(y,x,sep="~"))

 plot(form, data=dat, main=as.character(name), las=1)

 e$form <- form

 },

 x=do.call(picker, c(vars, initial=vars[1])),

 y=do.call(picker, c(vars, initial=vars[2]))

)

 invisible(e)

}

The input of this function is a data.frame. When the function is called, like in the
following example, it starts a manipulate session and returns an environment
(stored here in variable f) that is going to be used to store everything we need to
recreate the plot afterwards:

f <- dataplot(abalone)

www.it-ebooks.info

http://www.it-ebooks.info/

Viewing and Plotting Data

[54]

The manipulate session allows for choosing an x and a y variable to plot, shown
as follows:

Selecting variables to plot.

In the first statement of the function, we use sys.call to ask R what the name of the
argument was that was given to the function. Next, the column names of the data.
frame are stored. These will be used when we create the pickers for manipulate.
Next, an environment is created and the variable name of the input data frame is
stored in it. Now, the manipulate session is launched. The expression it receives will
be executed every time you change a setting in the manipulate interface. So we make
sure that the variables we want to store are exported to our environment using the
<<- assignment operator. The x and y pickers for manipulate are generated using
do.call, as we cannot know beforehand which columns are in the input data.
frame.

After closing the manipulate session you can now replot the plot you made with
manipulate using do.call.

do.call(plot, as.list(f))

Or you can do this by passing the individual arguments directly, shown as follows.

plot(x=f$form,data=f$data)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Summary
In this chapter we discussed several interactive features of RStudio including the
workspace browser and the data viewer, and reviewed the functionality of the plot
window. Interactive plotting with the manipulate package was discussed, including
features to store intermediate results and manipulations by mouse clicks. Finally,
we discussed an advanced example showing how to extract parameters set in the
manipulate function automatically.

Now that we've discussed interactive analyses, script writing, and graphical
analyses, let's see how we can organize these activities using RStudio's project
management features.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects
In this chapter, we will cover RStudio projects, RStudio's file manager, introduce
version control, and show how to use RStudio's integrated version control features.

R projects
In Chapter 1, Getting Started, we introduced the concept of a compendium—the set
of scripts and data files that reproduce a statistical analyses as well as the report
that is based on it. Managing growing sets of interdependent files, especially when
multiple people are working on the same analyses, can be a hassle. RStudio's project
management features make things a lot more manageable.

Always create an RStudio project, even for simple analyses—it makes
managing your scripts a lot easier with virtually no extra effort.

Technically, an RStudio project is just a directory with the name of the project and a
few files and folders created by RStudio for internal purposes. It typically holds your
scripts, data, and reports, which you may manage through RStudio's file manager
tab or through your operating system's file manager. The project directory can also
contain subdirectories.

When a project is reopened, RStudio opens every file and data view that was open
when the project was closed the last time. Moreover, a new R session is started in
the project directory, its working directory is set to the project directory, and the
history and workspace data are reloaded (if they were saved the last time). This
means that when you reopen a project, R will be in (nearly) the exact same state as
when you closed it the last time, so you can continue where you left off. A possible
exception is when you're using a package that creates objects outside of R's memory
space; such objects are obviously not stored in a .Rdata file when R is closed. One
example of such a package is lpSolve, which creates a linear program definition for
GNU lpSolve outside of R's memory space while the corresponding R object is just
a reference to that external object.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[58]

Because each project starts a new session, it is also possible to
use a .Rprofile file in your project's base directory that will
be executed when the project is opened.

Creating an R project
To create a new project, click on the Project button at the top right above the
workspace panel.

Starting a new project

When creating a project, you have the option to start from scratch (New Directory),
to turn an existing directory into a project managed with RStudio (Existing Directory),
or to hook up to an existing project and download a project from a repository (version
control). We will save the latter option for the section on version control.

When a project is created, RStudio creates a text file called <projectname>.Rproj,
which is used to store the project-specific options such as which LaTeX compiler to
use. Although it is a simple text file, you should neither alter its contents by direct
editing nor remove it, or RStudio may not recognize the folder as a project anymore.
Besides the <projectname>.Rproj file, RStudio creates a hidden directory called
.Rproj.user. This folder is used to store some information between sessions, so
your RStudio session looks exactly the way you left it when switching between
projects or leaving and restarting RStudio. It is also used to make sure that two
different users do not open the same R project at the same time. This wouldn't make
sense since each user may have personal pane layout options set and that are not to
be shared between collaborators. To collaborate on a project, one usually sets up a
(central) repository. That way, each user gets a copy with their own .Rproj.user
directory. Using version control tools (to be discussed at the end of the chapter),
contributions from collaborators can be merged.

You can easily switch between several projects by clicking on
the Project button at the top right and choosing from the list of
previously opened projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

Directory structure and file manipulations
For simple projects, a single script file and one data file can be sufficient. But as
analyses grow and become more complex, organizing the work in a well-chosen
directory structure becomes almost inevitable. A commonly-used subdivision is
to put all files of a certain type in the same directory, for example:

• R: The directory that holds scripts or files with custom functions
• data: All data needed for the analysis
• doc: Articles or other documents related to the analyses
• reports/html/latex: A directory with generated reports from the analysis

Use paths relative to your project directory in your scripts. That
way, the whole project can be moved or copied and all the scripts
will still run.

Navigating directories is done by clicking on a directory name in the file list or on
the path shown at the top of the list. The green, angled arrow takes you one step up
in the directory tree. To alter a file's name, or to move or delete it, you need to select
it first using the checkbox in front of it, before choosing one of the menu items:

Menu items of the file browser panel

To import files into your project, just copy the file to the project directory or a
subdirectory thereof, using your operating system's file browser. RStudio's file
browser tab does not support dragging-and-dropping files into its file browser.
Instead, the button with three dots at the right of the menu opens a file or folder
browser of your operating system.

Data does not necessarily have to be stored in the project directory since R can read
data from almost anywhere, including the databases and the web. If your data is not
stored under the project directory, it is a good idea to save the references to where
the data is stored (paths, filenames, database connection strings) in a single R file
that is to be sourced before running the actual analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[60]

Version control
In the following sections we will discuss what a version control system is, and
demonstrate RStudio's version control capabilities.

Introduction to version control
As a project matures, scripts and reports are often adjusted, rewritten, or discarded
altogether. These changes are usually improvements, but it's easy to make a mistake
and you may wish to revert changes every now and then. Also, you may want to
perform some experiments that require large changes in your scripts. Beginner
programmers often solve this by making copies of files with special extensions such
as .old or .1. After a while, such solutions usually end up in a kludge of files and
directories from which it is hard to obtain the correctly running version, especially
when working with many people on a single project. Version control systems are a
great way to cope with such a development process.

There are many version control systems available, both proprietary and free, but all
systems at least allow you to:

• Store incremental backups of your project and the option to revert
to any of them

• Comment the increments so that the development process
becomes documented

• Detect when the work of one developer conflicts with another,
and mark conflicts in the file

• Branch off a line of development (sequence of increments) that can
be integrated with the original branch later

The most important feature that a version control system has to offer is peace of
mind. You can safely rewrite your scripts, deleting ugly constructs and replacing
them with better ones, knowing that the working code you submitted earlier is
safely guarded by the version control system.

Developing a project under version control has the following basic workflow. First
you obtain the most recent copy of the project from the version control repository.
Next, you work on the project and make changes until, after a while, you commit
the changes to the repository, together with a description of your changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

RStudio integrates with two popular version control systems—Subversion and GIT,
where GIT is the default. In fact, RStudio is developed using GIT for version control.
The central repository, with the growing code and its revisions, is visible online at
github.com. The following screenshot shows an example of some commits, showing
what developments have taken place. Note that at Aug 29, 2012, one of the commits
is actually reverted:

A screenshot of RStudio's commits at github.com/rstudio, note the revert at Aug 29, 2012.

Installing GIT or Subversion
You need to have GIT and/or Subversion installed to be able to use them from
RStudio. Both are free and open source tools. Most Linux distributions include a
version of GIT and Subversion in their application repositories. For example, under
Debian-based distributions such as Ubuntu, open a terminal and type the following
statements to install GIT or Subversion:

sudo apt-get install git-core
sudo apt-get install subversion

Alternatively, use Synaptic or another graphical package manager to install it.
For Windows, the authors of RStudio recommend msysGit (http://msysgit.
github.com/) as the GIT client and SlikSVN for Subversion. The popular
TortoiseSVN (tortoisesvn.net) is not supported by RStudio since it does not
offer a command-line interface that RStudio uses to control the version control
system. You can use TortoiseSVN alongside RStudio with no problems, however.
For OS X, you can use GIT-osx-installer available at http://code.google.
com/p/git-osx-installer. For OS X version 10.7 and lower, a Subversion client
is already installed. For 10.8 and higher, you need to install Xcode and download
the command-line tools via Xcode Preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[62]

When you install SlikSVN under Windows, you may need to add the
location of sliksvn.exe to the PATH variable manually. This can
be done (in Windows 7 or lower) by navigating to System settings |
Advanced | Environment variables | Path.

Version control for single-person projects
Although it may at first not be obvious, using a version control system for your own
work has its merits. Once you grow accustomed to managing R projects with source
control, you'll find it hard to believe how you managed without it. In the following
sections, we will demonstrate a simple example, first using GIT and next using
Subversion as version control system.

GIT
To demonstrate how to work with a local version control repository, we will
work through some examples of our Abalone project. If you don't have those
files (anymore), you can download or view them at https://github.com/
rstudiobook/abalone. When we left the project in Chapter 1, Getting Started,
we had the following files:

Files in the abalone project

If you set the project up with the Create a git repository for the project option
checked, there should be a Git tab near your workspace browser. If not, you can
still create one now by going to Project | Project options | Version control and
choosing Git as the version control system from the drop-down menu.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

Once a repository has been created, working with GIT has the following
basic workflow:

1. If necessary, get the latest version of the project from the repository (pull).
This is only necessary when collaborating with multiple developers.

2. Do the work—create, delete, move, or alter files.
3. Stage changes you want to commit to the repository. That is, you need to

tell GIT which of the alterations should make it to the repository.
4. Commit the staged changes to the repository.

If you create a new R project from an existing directory (Project | New
project | Existing directory) that is already under GIT version control,
RStudio will recognize this and show the Git tab automatically.

The staging part of the workflow is an important feature that sets GIT apart from
Subversion. Staging gives you the freedom to try quick and dirty stuff that you may
not want to end up in the repository. It saves you making the famous <filename>.1
copy, since none of the changes will be submitted as long as you don't stage them.
Reverting work that has been staged, but not committed, can be done with the click
of a button in RStudio and will be discussed next.

Thus far in our Abalone example, we have only created a repository for GIT. Nothing
has been committed to that repository yet, and we first need to decide which files we
want to bring under version control. The only files that are directly created by us are
abalone.csv and abalone.R. The abalone.html file was generated automatically
from our R script when we compiled the notebook. Since this is the output of our
script, we do not need to put it under version control. It can be recreated any time
we want. The files .gitignore and .Rhistory are for GIT and RStudio's internal
use and do not need to be put under version control right now. In some cases, for
example, when working with multiple people on a project, it can still be convenient
to bring the .gitignore file under version control.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[64]

To add files to the version control system, open the Git tab, near the Workspace
panel, and mark abalone.R and abalone.csv as shown in the following screenshot:

Adding files to the git repository

By marking these files, we tell GIT that the files are staged for submission to the
repository. This is indicated by the status icons between the checkmarks and the
filenames. The Status column has two columns of icons. The right column is used
to indicate that GIT has noticed that a file has been changed since its last commit. A
question mark means that the file has not been added to version control yet. When
you stage a file, the left icon indicates what the committing action will be. In the
preceding screenshot, the A stands for adding. The following table lists the icon
combinations used in GIT's Status column.

Icons Meaning
? ? File noticed by GIT, but not under version control

A File is staged for adding to the repository on commit

M File is modified, but not staged yet

M Modification is staged for commit

M M A modification was staged, and the file was modified again

D File under version control is deleted

D File deletion is staged for commit to repository

R File is staged for rename (or move)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

The .gitignore file tells GIT which files to ignore. You can add files
by right-clicking on a file under the Git tab and hit Ignore. Alternatively,
you can edit the .gitignore file yourself, using RStudio's text editor.

You can commit the changes to the repository by clicking on the Commit button.
This will open a window allowing you to review your changes and to add a
description of the commit (commit message). In GIT, adding a description
comment is obligated.

The commit window

Click on Commit after adding the comment and then click on OK in the following
popup to complete your first commit.

Take a look at the preceding screenshot again. The checkbox labeled Amend
previous commit allows you to overwrite the previous commit with the current
commit, when checked. It will be as if the previous commit never occurred—the
previous commit and related comments will be lost. It is in general not a good idea
to use this technique unless you have a very good reason for it. If you make a
mistake in a commit, you can either commit new changes by fixing it or revert it
using GIT's command-line interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[66]

Now, let's see what happens when we move some files around in the project.
Using a file manager (RStudio's or your operating system's), add subdirectories
called data and R to your project, and move abalone.csv to the data directory
and abalone.R to the R directory. Under the Git tab, the moved files will be now
marked with a red D for deletion—a move means deleting from one place and
adding it to another. If you stage the files and folders under the Git tab, RStudio
shows that the planned action is actually to move the files into the new directories
(indicated with an R for rename).

The project directory Git tab before (left) and after (right) staging the new directories and the file moves

If you move a file with RStudio's file browser that is still open in the
editor, the editor will ask you if you want to close the "deleted" file.
You can safely confirm since it is deleted from one place, but created
at another.

Now commit these changes by clicking on Commit and adding a comment, and then
close the overview screen.

To show how to revert changes, we are going to make a mistake, stage it, and revert
it. Open R/abalone.R and change the following line:

abalone <- read.csv("abalone.csv")

To the following:

abalone <- read.csv("WRONGDIR/abalone.csv")

Save the file. Note that as soon as you save the file, the letter M (for modified)
appears in the Status column of the Git tab. Now stage the modified file and click
on Commit. The version control panel opens with a view of the changed lines.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

The Diff view shows exactly the changes you made, with the old lines in red and the
altered lines in green.

Noting that this is an unwanted change, select the file in the file panel of the version
control window and click on Revert.

Select a file before committing and revert it.

All changes made to the file will be reverted to the previous commit. Close the
commit window and change the line to the following:

abalone <- read.csv("data/abalone.csv")

And commit the file.

Always make sure that your main script runs before committing
(even when unfinished), especially when working with multiple
people on a project.

Now, if you click on More and then click on History in the Git tab, you should see
something as shown in the following screenshot:

The History panel

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[68]

In this window, you can browse through the history of your project. On the top right
of the diff window, there is a View file link, allowing you to open past versions of
the files under version control. This gives you a simple opportunity to revert changes
by copying and pasting lines from a previous version of the file to the one you are
currently editing.

GIT is capable of reverting your project to previous commits. This feature is currently
not directly available from RStudio. If you need to do this, consult a GIT tutorial
and search for "revert". GIT is a very versatile version control system and has many
more features that are currently not accessible from RStudio. It is possible to use this
functionality directly from GIT; refer to the Further reading section in this chapter
for some recommendations on GIT documentation.

Subversion
In Subversion, the location of the repository that stores increments of your project
is different from the directory where you actually do your work. To create a project
under Subversion version control, perform the following steps:

1. Create a new svn repository.
In your operating system's command-line interface, you can do this by
typing svnadmin create <path to projectname>. A new directory
will be created with some svn-specific files. You should never alter this
directory yourself. It is where Subversion will store incremental versions
of your project.

2. In some directory, for example, in <your home directory>/projects/,
do an svn checkout. In your operating system's command-line interface, you
can do this by typing svn checkout file:///<path to projectname>
(notice the triple slash after file:).

3. Open RStudio. Go to Project | Create project… | Existing directory.
Choose the directory that you just checked out from the empty
Subversion repository.

4. Or, instead of the last two steps, you can go to Project | Create project |
Version Control | Subversion. Type file:///<path to projectname>
in Repository Url and RStudio will do the rest for you.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

Both for GIT and SVN, there are options to set up repositories online
instead of on your local system. Refer to the Working with a team
section discussed later in this chapter for some suggestions.

We made a fresh empty repository named abalone, checked it out with Subversion,
and created an RStudio project in the checked-out directory. The RStudio panel now
contains an extra tab SVN, shown in the following screenshot. We will replay some
of the steps of the previous section, but now with Subversion.

The SVN tab in RStudio

The yellow question mark shows that abalone.Rproj is not (yet) in the
central repository.

The SVN tab of RStudio has a Status column containing icons that indicate the
status of files with respect to their versions in the central repository. At the moment,
there is only the abalone.Rproj file, which has not been added to the repository yet,
so it is marked with a question mark icon. An overview of SVN status icons is given
in the following table:

Icon Meaning
? Not in repository

A Marked for addition to repository

M Modified or different from repository

! Deleted in local directory

D Marked for deletion in repository

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[70]

To continue with our example, copy abalone.csv and abalone.R (discussed in
Chapter 1, Getting Started) into your working directory, or get them from https://
github.com/rstudiobook/abalone. The files appear under the SVN tab and are
marked with question marks as well. To tell RStudio which files should be added to
the repository, mark the files by selecting them in the SVN tab and click on the Add
button. This will change the question mark icons to A icons. Now, clicking on the
Commit button brings up the menu shown in the following screenshot:

Commit window for Subversion

To upload your files to the central repository, add a message describing your actions
and click on the Commit button at the bottom.

Now let's see what happens with SVN when we move some files around. Using a
file manager (RStudio's or your operating system's), add two subdirectories to the
project directory, one called data and one called R. Also move abalone.csv to the
data directory and abalone.R to the R directory. In the SVN tab, the moved files
are now marked with a purple exclamation mark icon for missing file, and the two
newly created directories are marked with a yellow question mark because they are
not in the central repository yet. The following screenshot explains this situation:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Now, if you select the R directory in the SVN tab, click on Add, and then on
Commit, the Commit window appears as follows:

If these changes are to be committed, all of them should be selected. Selecting a
directory (such as R) results in the addition of all the files contained in it. Selecting
a file marked with an exclamation mark will stage the file for deletion from the
central repository. Notice that if you happen to forget to mark a file for deletion
that has been moved (for example, abalone.csv), you will end up with two copies
of this file—one in the original location and one in the location where you moved it.

To demonstrate how unwanted changes can be reverted, we're going to make a
mistake, mark it for addition, and revert it. Open R/abalone.R and change the
following line:

abalone <- read.csv("abalone.csv")

To the following line:

abalone <- read.csv("WRONGDIR/abalone.csv")

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[72]

Save the file. Note that as soon as you save the file, the letter M (of modified) appears
in the Status column of the SVN tab. To review your exact changes, click on the Diff
button in the SVN tab. You will get a view as shown in the following screenshot:

The diff view shows exactly the changes you made, with the old lines in red and the
altered lines in green.

Noting that this is an unwanted change, select the file in the file panel of the version
control window, and click on Revert. SVN will replace the modified file with its
older, central copy.

Now change to the following line:

abalone <- read.csv("data/abalone.csv")

And commit the file.

If you now click on More and then click on History in the SVN tab, you should see
something as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

The History windows of SVN

The history of SVN shows all commits to the central repository. Subversion revisions
automatically get incremental version numbers. The history also shows who made
which commit and when.

Working with a team
Working with a team on a project is almost unthinkable without a version control
system. In principle, with GIT it is possible to work without a central repository.
However, it is very common to still work with a central repository where
collaborators can pull changes from and push their own. There are several online
resources where you can host your open source projects free of charge. Popular ones
include github (obviously supporting GIT only), code.google.com, and bitbucket.
The latter two support GIT as well as Subversion. At the time of writing, bitbucket
is the only of these three hosting non-open repositories for free as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Managing R Projects

[74]

To start on a project with an online repository, you need to create an account and
create a new project at the hosting site. When you create a project, you usually have
to choose the version control system you want to use. Once the online repository
is created, start RStudio and click on Project | New project. Choose Check out a
project from a version control repository. After choosing the version control system,
you will be asked for the URL of your repository and where to store the files on your
own computer.

Now, for GIT repositories, the workflow is as follows. To get the updates from your
collaborators, pull the latest changes via the Git tab menu More | Pull Branches.
Next, you can do the work, stage files, and commit them with a comment. After
the commit, the local copy of the GIT repository is updated. However, to send the
same changes to your coworkers, you need to push the latest commits to the central
repository via More | Push Branch.

For subversion repositories, you need to update your working copy, using More
| Update. After the work is done, when you commit the changes, they will be
immediately uploaded to the central repository.

Further reading
There is much more to be said about version control and we have only covered enough
here to get you started with the most common operations. As you grow accustomed
with version control, you probably want to start using more features than are currently
interfaced through RStudio. The first features to look into are probably branching
and merging of development lines and reverting commits. A good online resource for
using GIT on the command line is the GIT book (http://git-scm.com/book). For
Subversion, the SVN book (http://svnbook.red-bean.com), which is partly written
by some of Subversion's developers comes highly recommended. Both books can be
read for free online or ordered as a hard copy.

Summary
In this chapter, we've covered how RStudio projects are built up and gave some
tips on how to order the files in them. We've introduced RStudio's file manager and
shown how to set up and manage version control for your project through RStudio.
Now that we're able to manage projects under version control, let's see how to
automate reports with R and RStudio.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports
In this chapter, we treat three different ways to produce reports that automatically
include the results of an analysis.

A very important feature of reproducible science is generating reports. The main
idea of automatic report generation is that the results of analyses are not manually
copied to the report. Instead, both the R code and the report's text are combined
in one or more plain text files. The report is generated by a tool that executes the
chunks of code, captures the results (including figures), and generates the report by
weaving the report's text and results together. To achieve this, you need to learn a
few special commands, called markup specifiers, that tell the report generator which
part of your text is R code, and which parts you want in special typesetting such as
boldface or italic. There are several markup languages to do this, but the following is
a minimal example using the Markdown language:

A simple example with Markdown

The left panel shows the plain text file in RStudio's editor and the right panel shows
the web page that is generated by clicking on the Knit HTML button. The markup
specifiers used here are the double asterisks for boldface, single underscores for
slanted font, and the backticks for code. By adding an r to the first backtick, the
report generator executes the code following it.

To reproduce this example, go to File | New | R Markdown, copy
the text as shown in the preceding screenshot, and save as one.Rmd.
Next, click on Knit HTML.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[76]

The Markdown language is one of many markup languages in existence and RStudio
supports several of them. RStudio has excellent support for interweaving code with
Markdown, HTML, LaTeX, or even in plain comments. We've encountered the latter
option already in Chapter 1, Getting Started, when we created a notebook straight
from R script.

Notebooks are useful to quickly share annotated lines of code or results. There are
a few ways to control the layout of a notebook. The Markdown language is easy to
learn and has a fair amount of layout options. It also allows you to include equations
in the LaTeX format. The HTML option is really only useful if you aim to create a
web page. You should know, or be willing to learn HTML to use it. The result of
these three methods is always a web page (that is, an HTML file) although this
can be exported to PDF.

If you need ultimate control over your document's layout, and if you need features
like automated bibliographies and equation numbering, LaTeX is the way to go.
With this last option, it is possible to create papers for scientific journals straight
from your analysis.

Depending on the chosen system, a text file with a different extension is used as
the source file. The following table gives an overview:

Markup system Input file type Report file type
Notebook .R .html (via .md)
Markdown .Rmd .html (via .md)
HTML .Rhtml .html

LaTeX .Rnw .pdf (via .tex)

Finally, we note that the interweaving of code and text (often referred to as literate
programming) may serve two purposes. The first, described in this chapter, is to
generate a data analysis report by executing code to produce the result. The second is
to document the code itself, for example, by describing the purpose of a function and
all its arguments. The latter purpose will be discussed in the next chapter, where we
will discuss the Roxygen2 package for code documentation.

Prerequisites for report generation
For notebooks, R Markdown, and Rhtml, RStudio relies on Yihui Xie's knitr
package for executing code chunks and merging the results. The knitr package
can be installed via RStudio's Packages tab or with the command install.
packages("knitr").

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

For LaTeX/Sweave files, the default is to use R's native Sweave driver. The knitr
package is easier to use and has more options for fine-tuning, so in the rest of this
chapter we assume that knitr is always used. To make sure that knitr is also used
for Sweave files, go to Tools | Options | Sweave and choose knitr as Weave Rnw
files. If you're working in an RStudio project, you can set this as a project option as
well by navigating to Project | Project Options | Sweave. When you work with
LaTeX/Sweave, you need to have a working LaTeX distribution installed. Popular
distributions are TeXLive for Linux, MikTeX for Windows, and MacTeX for Mac OS X.

Notebook
The easiest way to generate a quick, sharable report straight from your Rscript is by
creating a notebook via File | Notebook, or by clicking on the Notebook button all
the way on the top right of the Rscript tab (right next to the Source button).

Notebook options
RStudio offers three ways to generate a notebook from an Rscript—the simplest are
Default and knitr::stitch. These only differ a little in layout. The knitr::spin mode
allows you to use the Markdown markup language to specify text layout. The markup
options are presented after navigating to File | Notebook or after clicking on the
Notebook button. Under the hood, the Default and knitr::stitch options use knitr to
generate a Markdown file which is then directly converted to a web page (HTML file).
The knitr::spin mode allows for using Markdown commands in your comments and
will convert your .R file to a .Rmd (R Markdown) file before further processing.

In Default mode, R code and printed results are rendered to code blocks in a fixed-
width font with a different background color. Figures are included in the output and
the document is prepended with a title, an optional author name, and the date. The
only option to include text in your output is to add it as an R comment (behind the #
sign) and it will be rendered as such.

In knitr::stitch mode, instead of prepending the report with an author name and
date, the report is appended with a call to Sys.time() and R's sessionInfo(). The
latter is useful since it shows the context in which the code was executed including
R's version, locale settings, and loaded packages. The result of the knitr::stitch
mode depends on a template file called knitr-template.Rnw, included with the
knitr package. It is stored in a directory that you can find by typing system.
file('misc',package='knitr').

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[78]

The knitr::spin mode allows you to escape from the simple notebook and add text
outside of code blocks, using special markup specifiers. In particular, all comment
lines that are preceded with #' (hash and single quote) are interpreted as the
Markdown text. For example, the following code block:

This is printed as comment in a code block
1 + 1
#' This will be rendered as main text
#' Markdown **specifiers** are also _recognized_

Will be rendered in the knitr::spin mode as shown in the following screenshot:

Reading a notebook in the knitr::spin mode allows for escaping to Markdown

The knitr package has several general layout options for included code (that will be
discussed in the next section). When generating a notebook in the knitr::spin mode,
these options can be set by preceding them with a #+ (hash and plus signs). For
example, the following code:

#' The code below is _not_ evaluated
#+ eval=FALSE
1 + 1

Results in the following report:

Setting knitr options for a notebook in knitr::spin mode

Although it is convenient to be able to use Markdown commands in the knitr::spin
mode, once you need such options it is often better to switch to R Markdown
completely, as discussed in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

Note that a notebook is a valid R script and can be executed as such. This is in
contrast with the other report generation options—those are text files that need
knitr or Sweave to be processed.

Publishing a notebook
Notebooks are ideal to share examples or quick results from fairly simple data
analyses. Since early 2012, the creators of RStudio offer a website, called RPubs.
com, where you can upload your notebooks by clicking on the Publish button in
the notebook preview window that automatically opens after a notebook has been
generated. Do note that this means that results will be available for the world to see,
so be careful when using personal or otherwise private data.

R Markdown and Rhtml
Markdown (created by John Gruber and Aaron Swartz) is an easy-to-read and
easy-to-write markup language that is designed to make preparing HTML
documents (web pages) easier. The Markdown syntax is inspired by how people
write plain text e-mails. For example, to emphasize a word in an e-mail, constructs
like *emphasized word* or _emphasized word_ are frequently used. Also, people
tend to use asterisks or dashes to represent bullet lists in plain text. The idea of
Markdown is to treat such constructions as actual markup commands by translating
them to equivalent HTML syntax (web page). With Markdown, you can alter the
appearance of text by altering its size, typeface, and more. What you cannot do with
Markdown, is to alter document properties such as page size, margin sizes, and
so on. If you need to control such features, you can consider switching to LaTeX
(described in the following section). Alternatively, one can use Max Kuhn's odfWeave
package (not supported by RStudio).

With RStudio, you can generate reports with .Rmd or .Rhtml files—in these files
you combine R output with Markdown or HTML. Note that RStudio also supports
editing plain Markdown (.md) and HTML (.html) files.

Workflow for R Markdown
To create a report with R Markdown, open or start a new .Rmd file (File | New | R
Markdown). Note that the .Rmd tab has special menu items.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[80]

Click on the Knit HTML button (Ctrl + Shift + H or Command + Shift + H) to create
and open the report. If a report is already open, it will be updated.

As a first example, let us create a new .Rmd file, empty it, and type:

Adding _one and one_ gives '1 + 1'

Now click on the Knit HTML button. RStudio generates an HTML file and opens it
in a viewer. It is important to realize that this HTML file is self-contained. That is,
all text and figures are contained in a single file, whereas web pages usually rely on
many external references to include pictures, for example. The main advantage is
that you can store the HTML file and send it as a single unit by an e-mail.

When a new .Rmd file is created, RStudio opens an example file with a starter guide.
If you click on the MD button on the left of the Knit HTML button, a help file will
open showing some of Markdown's syntax. On the right-hand side, there are the
Run, Rerun, and Chunks buttons. Since these are present for Rnw/Sweave as well
as for Rmd and Rhtml files, they will be discussed separately in the section on code
chunks and chunk options.

An extended example
To demonstrate some of the most important capabilities of R Markdown, we will
walk step by step through an extensive example. In this example, we'll see how to
create a document and section titles, equations, how to include code chunks inline as
well as in separate blocks, and how to add links to other documents. We'll also see
the first example of code chunk options. You can either type the example in an empty
file or pull the example from github by clicking on Project | New | Version control
| Git and entering https://github.com/rstudiobook/abalone.git.

Also see Chapter 4, Managing R Projects on version control. Alternatively, you can
copy the preceding URL to your browser and read through the code online.

In this example, we are going to create a report of a simple analysis on the Abalone
dataset that we've used throughout the book. We assume that by now you have an
RStudio project directory with a subdirectory data that holds the abalone.csv file.
See Chapter 1, Getting Started, to see how to obtain the file (it is also included in the
github repository mentioned in the preceding section).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

To start, create a new directory named Rmd and a file called density.Rmd. In the
example, we are going to estimate the "density" (weight per volume) of abalones,
by modeling them as rectangular boxes. We start with a title, author name, and
date as follows:

Estimating Abalone density
==========================
By me, myself, and I. ('r as.character(Sys.Date())')

Here, the double-underlining tells Markdown that the text above it should be treated
as the document title (in HTML it will be put between the <H1></H1> tag as well as
between <title></title>). Under the title, we add the author names, and between
brackets, the current date as returned by R. This is the first example of inline code.
In Markdown, text between single backticks is interpreted and printed as code. By
adding an r behind the first backtick, we tell knitr to replace the R code between
backticks with its result.

Next, an introducing section is added.

Introduction

If we can estimate the density of _abalones_, we never have to weight
them again!

The single underline tells Markdown that the text directly above it is a section
heading (<h2> in HTML). The text between underscores is typeset in a slanted font.

We continue with the theory section.

Theory

To estimate the density of _abalones_, we make the model assumption
that they are rectangular boxes with their volume V given as the
product of length, width, and height:
$$V = l\times w\times h.$$

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[82]

The density ρ is estimated as from the linear model
$$ m = \rho V, $$
where m is the measured weight of the abalone.

Here, we've used V (dollar sign) to escape inline to LaTeX mode so the V is printed
in an equation font in the result. The difference between the single and double dollar
signs to escape to LaTeX mode is that single dollar signs create inline equations
while double dollar signs create an equation centered on a separate line.

RStudio uses MathJax to render the equations. That is, the generated web page does
not contain the rendered equation itself. Instead, the webpage (HTML) contains a
small piece of code that tells your browser to download a library from a MathJax
server which is to be used for rendering. It means that this rendering will not work if
you happen to work on a closed network without Internet access. In particular, every
reader of the document must have Internet access at the time of reading to be able to
see the equations in pretty print.

It is possible to install MathJax locally or on a corporate network
(http://www.mathjax.org/download). After installation,
RStudio needs the right hyperlink to MathJax. This link is stored in
<RStudio>/resources/MathJax.html. Alter the src attributes in
MathJax.html so that it points to your (local) installation of MathJax.

We are now ready to do the actual calculation.

Data and calculations

'''{r, echo=FALSE, cache=TRUE}
dat <- read.csv("../data/abalone.csv")
dat$V <- dat$Length * dat$Diameter * dat$Height *(20^3)
dat$Whole.weight <- dat.Whole.weight * 200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[83]

model <- lm(Whole.weight ~ V - 1,data=dat)
'''
We use the abalone that can be found at the [the UCI machine learning
laboratory](http://archive.ics.uci.edu/ml/datasets/Abalone). This
dataset contains information on 'r nrow(dat)' _abalones_,
including length, diameter, and height. The estimated density is 'r
coefficients(model)' grams per cubic mm with an R-squared value of 'r
summary(model)$r.squared'.

The three backticks indicate that we are about to start a chunk of code. Between
the curly brackets, chunk options can be set. First, we write r to indicate that we're
dealing with R code here. Next the options echo=FALSE and cache=TRUE are given.
The first option indicates that the code should not be printed in the output. The cache
option tells knitr to calculate the result only when it generates the markdown file
for the first time. The results will be stored for later re-use. Only if you change the
contents of the chunk (or of the chunks it depends upon, discussed in the following
paragraph) between report generation runs, will the chunk be re-run. This can save
a lot of time when developing a report that involves heavy calculations or plots that
take a while to generate. The second triple of backticks indicate that the code chunk
has ended.

In the code chunk itself, we read the data, compute the volume and
estimate the weight per volume with R's default lm function. Note that
the dimensions and weight are scaled. That's because in the original
file, all values are in 200th of a mm and 200th of a gram. Here we scale
it so that the density is computed in g/cm^3.

After the chunk that remains invisible to the reader, we put the main text of the
section, starting with a link to the location of the original file. A link is indicated with
[<link name>](<link address>).

Additionally a few inline R statements are used in the running text.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[84]

We conclude the report's final section.

Conclusion

This may not be a realistic density, but the fit is pretty good.

An introduction to Markdown syntax
A complete description of Markdown is beyond the scope of this book (see the
Further reading section in this chapter). However, we will introduce some of the
most important elements of Markdown, which will get beginner users started
and point out the features that are particular to RStudio.

The following table gives a short overview of the Markdown syntax and the
corresponding generated HTML:

Markup HTML
italic italic

bold <bold>bold</bold>

Header <h1> Header </h1>

Header

======

<h1> Header</h1>

Header <h2> Header</h2>

Header

<h2> Header</h2>

Header <h3> Header</h3>

[www.rstudio.org]
(Rstudio)

RStudio</
a>

* item

* item 2

 item

 item 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

Markup HTML
| cell | cell | <table><tr>

 <td>cell</td>

 <td>cell</td>

 </tr>

</table>

Two features that RStudio supports, but that are not part of the original Markdown
language, are the inclusion of mathematical equations and typesetting of tables.

Rhtml
If you are accustomed to editing HTML files, you may prefer to embed R code straight
into an Rhtml file. An Rhtml file is a valid HTML file with special comment sections
signaling that R code follows. The syntax for HTML code chunks looks as follows:

<!--begin.rcode
your R code here
end.Rcode-->

The R code must start on a new line and end.Rcode--> must be on a new line as
well. Chunk options are given as the <option>=<value> pairs, starting with and
separated by a comma as in the following example:

<!--begin.rcode eval=FALSE
your R code here
end.Rcode-->

It is also possible to use code inline (in the middle of a sentence), using the
following syntax:

<!-- rinline #your R code here -->

Code chunks
In all of the markup systems supported by RStudio, chunks of R code can be
embedded and executed. There are many options controlling how the code and
 its results are shown in the report, how resulting figures should be displayed,
and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[86]

Chunk syntax and options
Each markup system has its own syntax to distinguish R code from regular text, but in
every system it is possible to label code chunks and to pass processing options. Both
labeling and optioning are not mandatory and can be left out, so default settings will
be used. The following is an overview of the code chunk denominators. You do not
have to remember any of them; for each file type, the Chunks menu has the Insert
chunk option.

RMarkdown: .Rmd files
Code chunks are indicated with triple backticks:

'''{r <label>, <option>=<value>,... }
Your R code here
'''

Inline code is enclosed in single backticks:

'r <R code>'

Rhtml: .Rhtml files
Code chunks are indicated as special HTML comment sections:

<!--begin.rcode <label>, <option>=<value>,...
Your R code here
end.rcode-->

Inline code is enclosed:

<!-- rinline <R code> -->

LaTeX: .Rnw files
Code chunks are indicated with the <<>>= @ denominator, following
the noweb syntax:

<< <label>, <option>=<value>, ... >>=
Your R code here
@

Inline code is indicated with a pseudo-LaTeX command:

\Sexpr{<R code>}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

The labels allow you to re-use code chunks. For example, in LaTeX syntax you can
create a code chunk named chunk1 and choose not to show it.

<<chunk1>>=
1 + 1
@

Re-using is as easy as follows:

<<chunk1>>=
@

Similar syntax applies for Rhtml and R Markdown.

Thanks to knitr, there are many ways to choose how (the results of) a code chunk is
shown in the resulting report. It goes beyond the scope of this book to discuss them
all (see the Further reading section of this chapter), but we have provided a table with
some of the options that we believe are very useful. Fortunately, RStudio knows
about the options of knitr and their values. Completion is turned on automatically
if the filename of the file you're editing is an .Rmd, .Rhtml, or .Rnw file. As soon as
you type a comma, a list of options is shown, hit Tab to choose an option, and the list
of values will be shown.

Option completion for code chunk options

The following is a table of basic code chunk options; the default value is shown
in brackets:

Option Description
eval (TRUE) Whether to run (evaluate) the code in the chunk or not.
echo (TRUE) Whether to show the code in the report or not.
results
('markup')

• 'markup': The results are formatted
• 'asis': Write results without formatting to output document
• 'hide': Do not show results

error (TRUE) Writes error messages to document.

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[88]

Option Description
warning (TRUE) Writes warning messages to document.
message (TRUE) Writes messages to document.
tidy (TRUE) Automatically re-indents the code.
prompt (FALSE) Whether to show the R prompt in the output or not.
comment ("##") The character(s) to print before the chunk's output; use NA to disable.
size
('normalsize')

LaTeX only. Sets the chunk's font size relative to the base font of
the document. normalsize means that the chunk text is of the
same size as the main text. There are a fair amount of options, but
realistically, tiny, scriptsize, small, and large are the only
ones you'll ever need. See ?highlight in the highlight package
for all the options.

background
("#F7F7F7")

Chunk background color. May be specified as hexcode (as in the
default) or as a three-vector with values between 0 and 1 indicating
red, green, and blue values. Also see colours() for R's built-in
color specifications (for example, salmon).

cache (TRUE) Caches the results so that they do not need to be recalculated each
time the report is generated.

It is possible to change the default values in your document by adding a code chunk
at the beginning of your document, setting some knitr options. For example, to set
the comment symbol that prepends all output to '#*', use the following:

<<echo=FALSE>>=
opts_chunk$set(comment='#*')
@

RStudio's chunk support and keyboard
shortcuts
RStudio's chunk menu makes it easy to include a code chunk in your report or to
navigate between chunks. For any markup mode (R Markdown, Rhtml, or LaTeX),
the editor tab gains a Chunks menu.

The Chunk menu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

The Chunks menu allows you to insert chunk syntax for whatever markup system
you are working on. You can navigate between chunks, using the Chunks menu
or by pressing Ctrl + Alt + J (Command + Option+J). If your chunks are labeled,
RStudio will show them in a pop-up menu. The chunk in which your cursor
currently resides can be executed in RStudio's running R console with Ctrl +
Alt + C (Command + Alt + C). The following is a table with some more keyboard
shortcuts pertaining to report generation:

Windows and Linux Mac Description
Ctrl + Shift + H Command + Shift + H knit HTML (.Rmd or .Rhtml only)

Ctrl + Shift + I Command + Shift + I Compile PDF (.Rnw only)

Ctrl + Shift + < Command + Shift + < Insert chunk

Shift + Alt + J Shift + Option + J Jump to chunk

Ctrl + Alt + C Command + Option + C Run chunk

Ctrl + Alt + N Command + Option + N Run next chunk

LaTeX
The workflow for building a LaTeX-based report is very similar to creating
Markdown or HTML reports, but of course you need to know how to work with
LaTeX. Create a new .Rnw file through File | New | R Sweave. RStudio will open
a LaTeX template in the article document format. Code chunks are delimited by the
<<>>=@ syntax (see the Code chunks section for options) and you can compile the
.Rnw file to pdf via File | Compile pdf, by clicking on the PDF menu button on the
file editor tab, or by hitting Ctrl + Shift + I. Inline R code should be enclosed in the
\Sexp{} command. Here's a minimal example of a .Rnw file and its result:

\documentclass{article}
\begin{document}
One plus one according to \texttt{R}:
<<>>=
1+1
@
\end{document}

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Reports

[90]

This results in the following pdf file:

The extensive example given in the section on Markdown is also available in a LaTeX
version from the github repository, go to https://github.com/rstudiobook/
abalone.git.

When creating slides with the beamer package, use \begin{frame}
[fragile]<your frame code>\end{frame} to ensure that the
code of chunks are correctly included in the verbatim environment.

Working with the .Rnw files comes with a bonus—RStudio allows you to navigate
between code chunks in the PDF of the source file. To highlight the code section you
are currently working on in the PDF viewer, click on the sync PDF view to current
location button, or press Ctrl + Click on the line you want to find in the PDF file.

The Sync pdf view to current location button

This will move the PDF viewer's view window to the current section in the code and
highlight a line near the one you selected. Conversely, use Ctrl + click in the PDF
viewer to navigate back to the source within RStudio.

RStudio does not support command completion for LaTeX. However, under the TeX
button, some common environments can be inserted with the click of a button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

Further reading
If you want to write reproducible reports, it is nearly inevitable to have to learn at
least one markup language. All languages discussed here—Markdown, HTML, and
LaTeX—are available in open source. For Markdown, the website of John Gruber
(www.daringfireball.net) offers a nice overview of the syntax. The Markdown
renderer of RStudio is actually based on the sundown library of Vincent Martí, which
has some extensions. An overview is given at rstudio.org/docs/r_markdown. The
knitr package offers an extensive set of options to control how code chunks are
parsed into the final report as well as features such as code externalization that have
not been discussed here. Full documentation can be found at Yihui Xie's website,
http://yihui.name/knitr/ (click on the Options tab). To learn about LaTeX,
the Not so Short Introduction to LaTeX (Tobias Oetiker et al.), included in nearly every
LaTeX distribution, is a good place to start. The Guide to Latex by Helmut Kopka and
Patrick W. Daly gives a thorough introduction and overview of the system while the
massive The LaTeX Companion (Frank Mittelbach et al.) is very complete.

Summary
In this chapter, we discussed how R code and plain text can be combined to generate
a marked-up report. The markup systems that RStudio supports—Notebooks,
Markdown, HTML, and LaTeX—have been discussed with minimal examples and
an introduction to code formatting and chunk options was given.

In the next chapter, we will see how RStudio supports writing functions and
extension packages for R.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Using RStudio Effectively
This chapter discusses function writing and navigation with RStudio and gives a
short introduction to authoring R packages. Some background on R functions and
package structure will be given as well.

Functions are very much at the heart of the R language. As your knowledge and
experience with R matures, you'll notice that functions are not only to be called from
the command line or script. They can be passed as arguments to other functions.
Hadley Wickham's popular plyr package, for instance, makes extensive use of this
feature. Writing functions is one of the most important things there is to learn about
R, so in the following section, we have given a small introduction to R functions
and discussed RStudio's supporting features. After that, we continue with a short
introduction to package writing.

Additional features for function writing
Functions are an important tool of programming. Functions allow you to separate
a set of operations from the main script and give them a useful name. It also allows
you to define variables that are otherwise invisible to the rest of the script; in the
language of software developers, this is called scoping. Finally, functions can be
shared; once you've developed a cool new procedure that takes a data set and
creates the most awesome plot, why not write a function for it and share it with
your friends?

RStudio has two convenient features for function writing (not discussed earlier in
this book)—automatic function extraction and function code retrieval.

www.it-ebooks.info

http://www.it-ebooks.info/

Using RStudio Effectively

[94]

Function extraction
RStudio's function extraction feature allows you to select a piece of code and wrap
it in a function definition, which can be stored separately for re-use. Here's a simple
example. Suppose we've found this procedure that computes one of the roots of a
quadratic equation and we've written a small script that calculates it, depending on
parameters a, b, and c.

The abc-formula

We first compute the discriminant D, then use it to compute x, and then show x. To
create a function out of this code, select the lines of code, click on the magic wand in
the editor menu, and click on Extract Function (alternatively, hit Ctrl + Shift + U, or
Command + Shift + U, or go to Code | Extract Function):

The function extraction menu

Rstudio will ask you for a function name. Here we chose abc. After we click on
OK, RStudio wraps a function definition around the code and re-indents it. Every
variable that was used but not defined in the selected code is made into an argument.
Here, these variables are a, b, and c.

The resulting function

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[95]

Note that D and x are not arguments of abc, since RStudio understands they are
computed from a, b, and c. To complete the example, store the file as abc.R and
open a new script file. Use source('abc.R') to read the function into R. You are
now ready to start using your very own function, for example (we use named
arguments when calling abc, so their order is unimportant).

using your new function

So here's the cool thing about functions; once you've defined them. You only need
to know about their name and their arguments, and you can forget about all the
complicated stuff that happens inside.

Function navigation
Before we talk about function navigation in RStudio, we will take a little pause and
explain a bit more about the nature of R functions. In R, a function is a variable just
like any other object stored in R's workspace. That means you may copy it, alter its
contents, or delete it as you wish. In the language of software developers, functions
are first-class objects. In particular, you can inspect the code of each function, by
typing its name in the R console (without the brackets) and press Enter. For example,
if you've followed the example in the previous section, type abc in the console to see
its contents.

Now, if we try this with a more complicated function, such as R's built-in summary
function, the answer can seem a bit cryptic.

www.it-ebooks.info

http://www.it-ebooks.info/

Using RStudio Effectively

[96]

What R is trying to tell us here is that summary is a flexible function. You may
feed it objects of various classes, and it will give you a summary for those specific
objects. You can recognize such functions by the UseMethod keyword in the
function's contents. If you've ever worked through an introductory R course, you
have probably used summary on a data.frame or an lm object (the result of a linear
regression) without even thinking about it. Computer scientists on the other hand,
think such behavior is actually quite special. They've even invented a name for it.
It is said that summary is a generic function, with methods for all kinds of objects.
If you type methods(summary) at the R console, you can check for which type of
objects the summary function will work. We're now ready to return to RStudio's
function navigation.

RStudio's function navigation allows you to quickly find out what the internals of a
function look like from the R script editor. To view a function's code, type its name in
the editor (possibly using Tab completion) and hit F2. If the function is defined in an
opened file, the cursor will jump to the function definition. If the function is defined
elsewhere a Source Viewer tab is opened (it is indicated with a pair of glasses):

The source code viewer for a simple function

Now, if the function is a generic function and you hit F2 for it, the source code
viewer is also opened, but instead of showing the code, there's a drop-down menu
showing a list of each type of object for which the function works. The following is
an example of what happens when you use F2 on the summary function:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

Selecting for which method you want to see the code

Introduction to package writing
In the previous section we saw how you can write a function to be shared with other
users. If you want to share a whole bunch of functions with other people, you can
consider creating your own R package.

Writing an R extension package has several advantages even if it is not published in
a public repository. It allows you to distribute and re-use a set of functions that can
be installed on any system that has an R installation. An R package also allows you to
hide all sorts of messy functions that are not useful to the user of your package—you
can choose which functions are seen by your users and which are not. Functions not
seen by the users are for the package's internal use. For example, you could write a
function called discriminant(a,b,c), in the example of the previous section that
the user of the abc function never needs to be aware of.

Packages have a fairly extensive mandatory documentation system that requires that
every parameter of every function is described in the reference manual. Optionally,
you can include more extensive descriptions and examples. The package system also
includes a versioning system, which allows for automatic updating with update.
packages().

www.it-ebooks.info

http://www.it-ebooks.info/

Using RStudio Effectively

[98]

The details of making and building R packages are described in the Writing R
extensions manual, which can be found at http://cran.r-project.org/doc/
manuals/R-exts.html. This manual is written to be complete and up to date rather
than educational and can be daunting at first reading. Fortunately, help is available.
Most notably, the packages devtools (Hadley Wickham) and roxygen2 (Hadley
Wickham, Peter Danenberg, and Manuel Eugster) help you to author and document
your package in a really convenient way. It is entirely possible to develop packages
without them, but in the following example, we're making use of these packages so
you may want to install them now.

Since version 0.97, RStudio has support for creating R packages. The
Build menu has several package building options and allows for
different R project versions that rely on devtools and roxygen2.

Prerequisites
Windows users need to install RTools (http://cran.r-project.org/bin/
windows/Rtools/), which contains a comprehensive set of Unix tools for Windows,
needed for building and checking R extension packages. When using Fortran code in
an R package on Mac OS X you needs to install GFortran (http://cran.r-project.
org/bin/macosx/tools).

If you plan to publish your package on CRAN, you will also need to install the latest
development version of R. All packages that are uploaded to CRAN are checked
against this version and rejected if they generate ERRORS or WARNINGS.

Basic structure and workflow
To create a package, the R functions, their documentation, and the package
descriptions should be stored under a specific directory structure. The traditional
way to build a package from that is to call R CMD build (Linux/Mac) or R CMD
INSTALL --build (Windows) from your operating system's command line on the
directory. This then creates a compressed file that can be installed with install.
packages() from the R console. To successfully create a package, you need to get
a fair amount of settings and files set up in the right place. This is why in the
following example, we use devtools and roxygen2 to make life easier for us.
RStudio supports both of these packages.

You can follow the example discussed in the following section and recreate the
example, or start a new RStudio project from a repository (New project | Version
Control | Git) with the URL https://github.com/rstudiobook/AbcForR.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[99]

Creating the package directory structure
In this example, we are going to develop the abc function, discussed in the previous
section, into a package. We first need to set up a directory structure. Fortunately, R
contains a utility function that does this for us. Make sure that the abc function is
loaded into R's workspace and type the following in the console:

package.skeleton("AbcForR", list="abc")

Here, the first argument is the name of the package and the second is a list of
functions to include. Optionally, you can add a third argument (named path) to tell
R where to create the package directory. In this case, we create a package directory
under the current working directory. Now create a new RStudio project in the
AbcForR directory (New Project | Existing directory). Open the DESCRIPTION file
and change the title to The abc formula for R. Note that the abcForR/R project
directory contains abc.R with our function abc. package.skeleton also creates
a man directory for documentation files and a NAMESPACE file. These can be edited
manually, but we will use devtools and roxygen2 to generate these files, so they
can be deleted.

Another way to start building a package is to start a special RStudio
project. Go to Project | Create Project... | New Project. Choose
Package under the Type drop-down menu. When you click on the
Create Project button, RStudio also executes package.skeleton for
you to create the file and directory structure for an empty package.

Documenting functions with Roxygen2
Roxygen2 is an R extension that helps to document functions. The idea is that
you add a block of special comments before the function code that describes the
function. Roxygen2 recognizes the special block and uses it to generate the .Rd
files in your package's man directory, which will ultimately result in your package's
HTML help files and reference manual. So here's the advantage; instead of having
to maintain both a file with R code and a file with documentation, Roxygen2 allows
you to combine everything in a single file that is much easier to maintain and your
manual is created automatically. Moreover, RStudio has excellent support for
Roxygen2 style documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

Using RStudio Effectively

[100]

Roxygen2 works with a special comment syntax #' (hash and single quote) to indicate
which part of the comments contain function descriptions. Tags, starting with @, are
used to specify the various aspects of documentation. To continue our example, open
R/abc.R and add the following comments just above the function code.

RStudio helps documenting by showing the available tags as soon as you type @. The
first line will be the title of the abc function in the reference manual. Next come the @
param tags. These are important (and mandatory) since they are used to describe the
parameters of the function to the user. Finally, the @export tag tells Roxygen2 that
any user who installs and loads this package may use this function. If you leave this
tag out, the function will not be exported.

Roxygen2 has many tags allowing you to customize the reference manual. A complete
list of tags with explanations can be found by typing ?rd_roclets at the R command
line. The following table is an overview of some of the most important ones:

Tag Documents
@param <name> <description> Parameter of function, required for each

parameter
@return <description> Return value of function
@export Exports function (no documentation)
@examples <R code> Example code demonstrating the function

(inline)
@example <path to R file> Example code demonstrating the function
@note <contents> Creates a Note section
@section <name> : <contents> Creates a named section (note the ":")
@references <reference> Creates a reference to literature

Now, after saving our abc.R file, we could use the roxygenize function on the file
abc.R to generate the .Rd file for our package. Could, because we're not actually
going to do this ourselves; we're going to let some functions from the devtools
package do all the hard work for us, in the next subsection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

Building your package with devtools
The devtools package makes developing, documenting, checking, building, and
testing an R package a breeze. All devtools functions remember the current package
you are working on and most functions won't need parameters.

To create the package, we first need to create the documentation files. Simply load
the devtools package and run document(). This will generate the .Rd files that will
be used by R when the actual package is built.

Creating the .Rd files with the devtools package

Next, run build() to create the package. The package is stored one directory above
the project directory you are working in. You can now install your package by typing
the following in R's console:

install.packages("../<your packagefile>")

It can now be loaded with library like any other package. The following is a
screenshot of the abc function's help page:

Documentation of the abc function

www.it-ebooks.info

http://www.it-ebooks.info/

Using RStudio Effectively

[102]

Developing a package is not usually a matter of write-document-build, like in the
example given here. Developing a package usually means lots of writing, loading,
testing, and testing iterations of functions and documentation, before the final build
command is given. In the next subsection, we will discuss a few features of the
devtools package that make this process easier.

More about the devtools package
The devtools package has a number of features that facilitate the many iterations of
writing, loading, testing, and debugging functions that you're likely to go through
when you're developing a package. Full documentation can, of course, be found in
Devtools' help pages, but in our experiences the functions listed in the following
table are the ones you will probably use the most:

Function RStudio shortcut Description

load_all() Ctrl + Shift + L
or
Cmd + Shift + L

Loads (reloads) all functions in your package
without actually building it

document() Creates the .Rd files from in-code Roxygen2
documentation specification

install() Ctrl + Shift + B
or
Cmd + Shift + B(*)

Installs the package straight from source

check() Ctrl + Shift + E
or
Cmd + Shift + E(*)

Temporarily installs the package and runs
all CRAN tests on it (see the Publishing your
package section)

dev_mode() Initiate development mode; all installations
will go to a temporary library so your normal
R installation is not affected
Turn off with dev_mode(on=FALSE)

(*)These shortcuts do not call Devtools' install() or check(), but directly execute
the equivalent R CMD INSTALL or R CMD CHECK.

Publishing your package
There are several ways to make your package available to the public. You can post it
on a website, put it in an open repository such as github, or publish it via a public
repository such as CRAN or omegahat.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

Package publishing via github is actually supported by devtools—it includes a
function called install_github, which attempts to install a package straight from
the developer's github repository. For example, to install the AbcForR package from
github, execute the following command:

install_github('AbcForR', 'rstudiobook')

Packages submitted to CRAN are thoroughly checked and published only if they are
fully documented. If the check or installation process generates errors or warnings,
the package will not be accepted. If a note is generated, the CRAN maintainers will
ask you to explain why the note is not taken care of, and you will probably have to
fix it still.

The CRAN maintainers are doing a great job and their time is scarce, so be sure that
your package passes check() without any trouble before submitting. Also, do read the
CRAN repository policy at http://cran.r-project.org/web/packages/policies.
html before submitting. You need to agree with these policies when submitting a new
package. Once you're ready to submit a package, the release function of the devtools
package allows you to automatically submit a package to CRAN.

Summary
This chapter discussed function extraction and navigation features of RStudio and
gave a little bit of background on R functions. An overview was given showing how
functions can be combined in a package, using the devtools and roxygen2 packages.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
bold markup 84
| cell | cell | markup 85
@example <path to R file> tag 100
@examples <R code> tag 100
@export tag 100
.gitignore file 63
Header markup 84
Header markup 84
Header markup 84
! icon 69
? icon 64, 69
italic markup 84
* item 2 markup 84
* item markup 84
@note <contents> tag 100
@param <name> <description> tag 100
.Rdata file 57
@references <reference> tag 100
@return <description> tag 100
.R file 26
.Rhistory file 26, 63
.Rprofile file 58
.Rproj.user directory 58
[www.rstudio.org] markup 84

A
abalone dataset 52
abalone.html file 63
abalone variable 43
abc function 97
Add button 70
A icon 64, 69
Alt+- 33

Alt+A 37
Alt+L 37
Alt+Shift+J 39
Amend previous commit 65
arguments completion, R console 27

B
background ("#F7F7F7") 88
bioconductor

URL 6
bracket completion, R console 29
building

R, from source 10
R, Windows used 11

Build menu 98
button control 49

C
cache (TRUE) option 88
Checkbox control 49
check() function 102, 103
Clear All button 43, 48
code chunk

about 85
LaTeX: .Rnw files 86
options 86
Rhtml: .Rhtml files 86
RMarkdown: .Rmd files 86
syntax 86

code, source editor
commenting 35
execution 40
folding 37
indenting 35

www.it-ebooks.info

http://www.it-ebooks.info/

[106]

navigation 38, 39
quality 30, 31
sections 39

colours() 88
Command+Enter 41
Command+F 33
Command+I 33
Command+L 29
Command+O 32
Command+Option+B 41
Command+Option+E 41
Command+Option+F 41
Command+Option+R 41
Command+Shift+/ 33
Command+Shift+C 33
Command+Shift+F 33
Command+Shift+P 41
commands, R console

completion 26, 27
executing 23, 24
history 25, 26

Command+up 29
Command+W 32
comment ("#") 88
Commit button 70
Commit window 71
Comprehensive R Archive Network

(CRAN) 6, 11, 103
Copy Plot to Clipboard... option,

export menu 47
CRAN repository policy

URL 103
Ctrl+. 39
Ctrl+1 17
Ctrl+2 17
Ctrl+Alt+B 41
Ctrl+Alt+E 41
Ctrl+Alt+F 41
Ctrl+Enter 17, 40, 41
Ctrl+F 33
Ctrl+F9 39
Ctrl+F10 39
Ctrl+I 33
Ctrl+L 29
Ctrl+Left/Right 29
Ctrl+O 32
Ctrl+Option+right arrow 32

Ctrl+S 32
Ctrl+Shift+/ 33
Ctrl+Shift+C 33
Ctrl+Shift+Enter 17, 40, 41
Ctrl+Shift+F 33
Ctrl+Shift+N 32
Ctrl+Shift+P 40, 41
Ctrl+Shift+S 40
Ctrl+Up 29
Ctrl+Up / Ctr+Alt+left arrow 32
Ctrl+Up / Ctr+Alt+right arrow 32
Ctrl+W 32

D
data

Abalone project 43
abalone variable 43
Data viewer tab 44
viewer, properties 45
viewing 43-45

data argument 52
data directory 59
data.frame function 28, 53
Data viewer tab 44
density.Rmd 81
dev_mode() function 102
devtools functions 101
devtools package 100-102
D icon 64, 69
directory

navigating 59
discriminant(a,b,c) 97
doc directory 59
document() function 102
Don 't Repeat Yourself (DRY) 30

E
echo (TRUE) option 87
End 29
environment object 52
error (TRUE) option 87
Esc 29
eval (TRUE) option 87
export menu

about 47
Copy Plot to Clipboard... option 47

www.it-ebooks.info

http://www.it-ebooks.info/

[107]

options 47
Save Plot as Image... option 47
Save Plot as PDF... option 47

Extract Function 94

F
F2 39
file Command+S 32
fileCommand+Shift+N 32
filenames completion, R console 28, 29
file panel 21
find and replace functionality,

source editor 36
formula object 52
function extraction, function writing 94, 95
function navigation, function writing 95, 96
functions completion, R console 27
function writing

features 93
function extraction 94, 95
function navigation 95, 96

G
GFortran

URL 98
GIT

about 61
installing 61

GIT book
URL 74

github 102
github repository

URL 90
Git tab 66
GIT, version control for single-person

projects
changes, commiting 66
files, adding to version control system 64
Status column 64
workflow 63

graphs 46

H
Header markup 84
Height parameter 47

help panel 21
Home 29
HTML 76

I
if statement 50
if-then-else statement 31
Import button 14
Import Dataset button 43
Insert chunk option 86
install() function 102
install_github 103
installing

R 9
R, on Linux 9, 10
R, on Mac OS X 9
R, on Windows 9
R packages 11
RStudio 9, 11
RStudio server 11

install.packages() 98
Integrated Development Environment (IDE)

7

J
John Gruber

URL 91
Jump To option 32

K
keyboard shortcuts

about 88, 89
Ctrl+1 17
Ctrl+2 17
Ctrl+Enter 17
Ctrl+Shift+Enter 17
for Mac 17
for Windows & Linux 17
Tab or Ctrl+space bar 17

keyboard shortcuts, code editing
Alt+- 33
Command+F 33
Command+I 33
Command+Shift+/ 33
Command+Shift+C 33

www.it-ebooks.info

http://www.it-ebooks.info/

[108]

Ctrl+F 33
Ctrl+I 33
Ctrl+Shift+/ 33
Ctrl+Shift+C 33
Ctrl+Shift+F 33
Option+- 33

keyboard shortcuts, code execution
Command+Enter 41
Command+Option+B 41
Command+Option+E 41
Command+Option+F 41
Command+Option+R 41
Command+Shift+P 41
Ctrl+Alt+B 41
Ctrl+Alt+E 41
Ctrl+Alt+F 41
Ctrl+Enter 41
Ctrl+Shift+Enter 41
Ctrl+Shift+P 41

keyboard shortcuts, code folding
Alt+A 37
Alt+L 37
Shift+Alt+A 37
Shift+Alt+L 37

keyboard shortcuts, code navigation
Alt+Shift+J 39
Ctrl+. 39
Ctrl+F9 39
Ctrl+F10 39
F2 39

keyboard shortcuts, file navigation
about 32
Command+O 32
Command+S 32
Command+Shift+N 32
Command+W 32
Ctrl+O 32
Ctrl+Option+right arrow 32
Ctrl+S 32
Ctrl+Shift+N 32
Ctrl+Up / Ctr+Alt+left arrow 32
Ctrl+Up / Ctr+Alt+right arrow 32
Ctrl+W 32

keyboard shortcuts, R console
Command+L 29
Command+up 29
Ctrl+L 29

Ctrl+Left/Right 29
Ctrl+Up 29
End 29
Esc 29
Home 29
Shift+Left/Right 29
Tab (or Command+space) 29
Tab (or Ctrl-Space) 29
Up/down arrow keys 29

keyboard shortcuts, RStudio 22, 23
Knit HTML button 75, 80
knitr 77
knitr::spin mode 77

L
LaTeX 76, 89, 90
LaTeX: .Rnw files 86
Linux

R, installing 9, 10
load_all() function 102
load history button 26

M
Mac OS X

R, installing 9
manipulate

abalone dataset 52
about 48, 49
button control 49
Checkbox control 49
data.frame function 53
environment object 52
manipulatorMouseClick() 51
myenv:x 53
options 50
picker control 49
print command 50
session 54
slider control 49

manipulate package 48
manipulatorMouseClick() 51
Markdown 76
markdown language 76
markup specifiers 75
MathJax

URL 82

www.it-ebooks.info

http://www.it-ebooks.info/

[109]

MD button 80
message (TRUE) option 88
methods(summary) 96
M icon 64, 69
msysGit

URL 61
myenv$x 53

N
navigation, plotting 48
normalsize 88
notebook

about 76, 77
options 77-79
publishing 79

O
Omega project for statistical computing

URL 6
Option+- 33

P
package writing

about 97
devtools package 102
functions, documenting with Roxygen2 99,

100
package, building with devtools 101, 102
package directory structure, creating 99
package, publishing 102, 103
prerequisites 98
structure 98
workflow 98

paste command 52
picker control 49
plot parameters

retrieving, from manipulate 51-54
plots panel 21
plotting

about 46
export menu 47
navigation 48
scatter plot, generating in plots panel 46
with manipulate package 48, 49
zoom button 46

plyr package 93
print command 50
prompt (FALSE) option 88

Q
quote completion, R console 29

R
R

about 6
building, from source 10
building, Windows used 11
installing 9
packages, installing 11, 12
text files, importing from disk 13

R CMD build (Linux/Mac) 98
R console

features 23
keyboard shortcuts 29

R console, features
arguments completion 27
bracket completion 29
command completion 26, 27
command, history 25, 26
commands, executing 23, 24
filenames completion 28, 29
functions completion 27
quote completion 29
SObject completion 28

R directory 59
read-evaluate-print loop. See repl
Refresh button 43
Remove current plot 48
repl 6
reports

about 75
generation, prerequisites 77

reports/html/latex directory 59
results ('markup') option 87
Rhtml 85
Rhtml: .Rhtml files 86
R icon 64
R, installing

on Linux 9, 10
on Mac OS X 9
on Windows 9

www.it-ebooks.info

http://www.it-ebooks.info/

[110]

R Markdown
about 79
example 80-82
syntax 84, 85
workflow for 79

RMarkdown: .Rmd files 86
Roxygen2

@example <path to R file> tag 100
@examples <R code> tag 100
@export tag 100
@note <contents> tag 100
@param <name> <description> tag 100
@references <reference> tag 100
@return <description> tag 100
@section <name> : <contents> tag 100
functions, documenting with 99, 100

roxygenize function 100
R packages

manual, URL for 98
R projects

about 57
creating 58
directory structure 59
files, importing in project 59

RPubs.com 79
R scripts, source editor

code editing, keyboard shortcuts 33
file navigation, keyboard shortcuts 32
editing 31, 32

R session
overview 12, 13

RStudio
about 5, 7
chunk support 88, 89
command history 21
customizing 22
data viewer panel 21
features 8
file panel 21
help 17
help panel 21
installing 9, 11
Integrated Development Environment

(IDE) 7
keyboard shortcuts 17, 22, 23, 88, 89

online help 17
package panel 21
plots panel 21
R console 21
R packages, installing 11, 12
R session, overview 12-15
server, installing 11
source editor 21, 30
text files, importing from disk 13
uninstalling 18
version control 60
workspace browser 21

RStudio project
about 57
URL 98

RStudio™ 5
RTools

URL, for installing 98
run build() 101

S
Save Plot as Image... option, export menu 47
Save Plot as PDF... option, export menu 47
scoping 93
Shift+Alt+A 37
Shift+Alt+L 37
Shift+Left/Right 29
size ('normalsize') option 88
slider control 49
SObject completion, R console 28
Source button 77
source editor

code, commenting 35
code editing, keyboard shortcuts 33
code execution 40
code execution, keyboard shortcuts 41
code folding 37
code folding, keyboard shortcuts 37
code, indenting 35
code navigation 37-39
code navigation, keyboard shortcuts 39
code quality 30, 31
code sections 39
features 30
file navigation, keyboard shortcuts 32

www.it-ebooks.info

http://www.it-ebooks.info/

[111]

find-and-replace functionality 36
R scripts, editing 31, 32
syntax highlighting 33
syntax highlighting theme, adjusting 34

Status column 64
subset function 45
subversion

about 61
installing 61

subversion, version control for
single-person projects

about 68
Commit button 70
SVN tab 71

summary function 96
SVN book

URL 74
svn repository 68
SVN tab 71
syntax highlighting. source editor 24

about 33
theme, adjusting 34

T
tab completion, R console 27
Tab (or Command+space) 29
Tab (or Ctrl-Space) 29
Tab (or Ctrl+space bar) 17
team

working with, on project 73
TeX button 90
tidy (TRUE) option 88

U
Up/down arrow keys 29
UseMethod keyword 96

V
version control

about 60, 61
for single-person projects 62
GIT 61
GIT, installing 61
subversion 61
Subversion, installing 61

version control, for single-person projects
GIT 62-64
subversion 68-71

View command 45

W
warning (TRUE) option 88
Width parameter 47
Windows

R, installing 9
used, for building R 11

Windows Metafile (WMF) formats 47
Workspace tab 43
Writing R extensions manual

URL 98

Y
Yihui Xie's website

URL 91

Z
zoom button 46

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Learning RStudio for R Statistical Computing

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

R Graph Cookbook
ISBN: 978-1-84951-306-7 Paperback: 272 pages

Detailed hands-on recipes for creating the most
useful types of graphs in R-starting from the simplest
versions to more advanced applications

1. Learn to draw any type of graph or visual data
representation in R

2. Filled with practical tips and techniques for
creating any type of graph you need; not just
theoretical explanations

3. All examples are accompanied with the
corresponding graph images, so you know
what the results look like

gnuplot Cookbook
ISBN: 978-1-84951-724-9 Paperback: 220 pages

Over 80 recipes to visually explore the full range
of features of the world's preeminent open source
graphing system

1. See a picture of the graph you want to make
and find a ready-to-run script to produce it

2. Working examples of using gnuplot in your
own programming language... C, Python, and
more

3. Find a problem-solution approach with
practical examples enriched with good pictorial
illustrations and code

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

MDX with Microsoft SQL Server
2008 R2 Analysis Services
Cookbook
ISBN: 978-1-84968-130-8 Paperback: 480 pages

80 recipes for enriching your Business Intelligence
solutions with high-preformance MDX calculations
and flexible MDX queries

1. Enrich your BI solutions by implementing best
practice MDX calculations

2. Master a wide range of time-related, context-
aware, and business-related calculations

3. Enhance your solutions by combining MDX
with utility dimensions

Oracle Primavera P6 Version 8:
Project and Portfolio Management
ISBN: 978-1-84968-468-2 Paperback: 348 pages

A comprehensive guide to managing projects,
resources, and portfolios using Primavera P6,
through version 8.2

1. Get a detailed overview of Oracle Primavera P6
Enterprise Project Portfolio Management.

2. Manage your projects from just anywhere using
simple e-mail and the P6 iPhone app.

3. Learn to create a new project in the P6
Professional Client

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	RStudio at a glance
	Installing RStudio
	Installing R
	Installing R on Windows and Mac OS X
	Installing R on Linux

	Building R from source
	Building R using Windows
	Installing RStudio
	Installing RStudio Server
	Installing R packages

	Overview: A first R session
	Keyboard shortcuts
	Getting help
	What if I uninstall RStudio?

	Further reading
	Summary

	Chapter 2: Writing R Scripts and the R Console
	Moving around RStudio
	Features of the R console
	Executing commands
	Command history
	Command completion
	Completion of functions and arguments
	Object completion
	Completion of filenames

	Keyboard shortcuts for the console

	Features of the source editor
	Editing R scripts
	Syntax highlighting
	Indenting code
	Commenting code
	Find and replace

	Folding, sectioning, and navigation
	Code folding
	Code navigation
	Code sections

	Code execution
	Summary

	Chapter 3: Viewing and Plotting Data
	Viewing data and the object browser
	Plotting
	Zoom
	Export
	Navigation

	Interactive plotting with the manipulate package
	The manipulate function
	Using more options of manipulate
	Advanced topic: retrieving plot parameters from manipulate

	Summary

	Chapter 4: Managing R Projects
	R projects
	Creating an R project
	Directory structure and file manipulations

	Version control
	Introduction to version control
	Installing GIT or Subversion

	Version control for single-person projects
	GIT
	Subversion

	Working with a team
	Further reading
	Summary

	Chapter 5: Generating Reports
	Prerequisites for report generation
	Notebook
	Notebook options
	Publishing a notebook

	R Markdown and Rhtml
	Workflow for R Markdown
	An extended example
	An introduction to Markdown syntax
	Rhtml

	Code chunks
	Chunk syntax and options
	RMarkdown: .Rmd files
	Rhtml: .Rhtml files
	LaTeX: .Rnw files

	RStudio's chunk support and keyboard shortcuts

	LaTeX
	Further reading
	Summary

	Chapter 6: Using RStudio Effectively
	Additional features for function writing
	Function extraction
	Function navigation

	Introduction to package writing
	Prerequisites
	Basic structure and workflow
	Creating the package directory structure
	Documenting functions with Roxygen2

	Building your package with devtools
	More about the devtools package
	Publishing your package

	Summary

	Index

