
www.it-ebooks.info

http://www.it-ebooks.info/

R for Data Science

Learn and explore the fundamentals of data science
with R

Dan Toomey

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

R for Data Science

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1201214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-086-0

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Dan Toomey

Reviewers
Amar Gondaliya

Mohammad Rafi

Tengfei Yin

Commissioning Editor
Akram Hussain

Acquisition Editor
Subho Gupta

Content Development Editor
Sumeet Sawant

Technical Editors
Vijin Boricha

Madhuri Das

Parag Topre

Copy Editors
Roshni Banerjee

Sarang Chari

Project Coordinator
Aboli Ambardekar

Proofreaders
Jenny Blake

Ameesha Green

Sandra Hopper

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Dan Toomey has been developing applications for over 20 years. He has worked
in a variety of industries and companies in different roles, from a sole contributor
to VP and CTO. For the last 10 years or so, he has been working with companies
in the eastern Massachusetts area.

Dan has been contracting under Dan Toomey Software Corporation as a contractor
developer in the area.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Amar Gondaliya is data scientist at a leading healthcare organization. He is a Big
Data and data mining enthusiast and a Pingax (www.pingax.com) consultant. He is
focused on building predictive models using data mining techniques. He loves to
play with Big Data technologies and provide Big Data solutions.

He has been working in the field of data science for more than 2 years. He is a
contributor at Pingax and has written multiple posts on machine learning and
its implementation in R. He is continuously working on new machine learning
techniques and Big Data analytics.

Mohammad Rafi is a software engineer who loves data analytics, programming,
and tinkering with anything he can get his hands on. He has worked on technologies
such as R, Python, Hadoop, and JavaScript. He is an engineer by day and a hardcore
gamer by night. As of writing this book, he is fanatical about his Raspberry Pi.

He has more than 6 years of very diversified professional experience, which includes
app development, data processing, search expert, and web data analytics. He started
with a web marketing company named Position2. Since then, he has worked with
companies such as Hindustan Times, Google, and InMobi.

Tengfei Yin earned his Bachelor of Science degree in Biological Science
and Biotechnology from Nankai University in China and completed his PhD
in Molecular, Cellular, and Developmental Biology (MCDB) with focus on
Computational Biology and Bioinformatics from Iowa State University. His research
interests include information visualization, high-throughput biological data analysis,
data mining, machine learning, and applied statistical genetics. He has developed
and maintained several software packages in R and Bioconductor.

www.it-ebooks.info

www.pingax.com
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Data Mining Patterns	 7

Cluster analysis	 8
K-means clustering	 9

Usage	 9
Example	 10

K-medoids clustering	 13
Usage	 14
Example	 15

Hierarchical clustering	 18
Usage	 19
Example	 19

Expectation-maximization	 21
Usage	 21
List of model names	 22
Example	 23

Density estimation	 27
Usage	 27
Example	 29

Anomaly detection	 30
Show outliers	 31

Example	 31
Example	 32
Another anomaly detection example	 33

Calculating anomalies	 34
Usage	 34
Example 1	 35
Example 2	 35

Association rules	 36
Mine for associations	 37

Usage	 37
Example	 37

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Questions	 39
Summary	 40

Chapter 2: Data Mining Sequences	 41
Patterns	 41

Eclat	 42
Usage	 42
Using eclat to find similarities in adult behavior	 43
Finding frequent items in a dataset	 44
An example focusing on highest frequency	 45

arulesNBMiner	 46
Usage	 46
Mining the Agrawal data for frequent sets	 48

Apriori	 49
Usage	 49
Evaluating associations in a shopping basket	 50

Determining sequences using TraMineR	 53
Usage	 54
Determining sequences in training and careers	 55

Similarities in the sequence	 60
Sequence metrics	 61
Usage	 61
Example	 61

Questions	 63
Summary	 63

Chapter 3: Text Mining	 65
Packages	 66

Text processing	 66
Example	 66
Creating a corpus	 67

Text clusters	 75
Word graphics	 78
Analyzing the XML text	 81

Questions	 86
Summary	 86

Chapter 4: Data Analysis – Regression Analysis	 87
Packages	 87

Simple regression	 87
Multiple regression	 94
Multivariate regression analysis	 100
Robust regression	 106

Questions	 112
Summary	 112

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 5: Data Analysis – Correlation	 113
Packages	 113

Correlation	 114
Example	 114

Visualizing correlations	 118
Covariance	 121
Pearson correlation	 123
Polychoric correlation	 124
Tetrachoric correlation	 128
A heterogeneous correlation matrix	 132
Partial correlation	 134

Questions	 135
Summary	 135

Chapter 6: Data Analysis – Clustering	 137
Packages	 137
K-means clustering	 138

Example	 138
Optimal number of clusters	 143

Medoids clusters	 146
The cascadeKM function	 148
Selecting clusters based on Bayesian information	 150
Affinity propagation clustering	 152
Gap statistic to estimate the number of clusters	 155
Hierarchical clustering	 157

Questions	 159
Summary	 160

Chapter 7: Data Visualization – R Graphics	 161
Packages	 161

Interactive graphics	 162
The latticist package	 166

Bivariate binning display	 167
Mapping	 169
Plotting points on a map	 171
Plotting points on a world map	 171
Google Maps	 175

The ggplot2 package	 176
Questions	 187
Summary	 188

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 8: Data Visualization – Plotting	 189
Packages	 189
Scatter plots	 190

Regression line	 193
A lowess line	 194
scatterplot	 195
Scatterplot matrices	 198

splom – display matrix data	 199
cpairs – plot matrix data	 201

Density scatter plots	 203
Bar charts and plots	 206

Bar plot	 206
Usage	 206

Bar chart	 209
ggplot2	 209
Word cloud	 210

Questions	 212
Summary	 212

Chapter 9: Data Visualization – 3D	 213
Packages	 213
Generating 3D graphics	 214

Lattice Cloud – 3D scatterplot	 218
scatterplot3d	 221
scatter3d	 222
cloud3d	 224
RgoogleMaps	 226
vrmlgenbar3D	 227
Big Data	 229

pbdR	 230
bigmemory	 232

Research areas	 234
Rcpp	 235
parallel	 236
microbenchmark	 236
pqR	 237
SAP integration	 237
roxygen2	 237
bioconductor	 237
swirl	 237
pipes	 239

Questions	 240
Summary	 240

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 10: Machine Learning in Action	 241
Packages	 241
Dataset	 242

Data partitioning	 246
Model	 247

Linear model	 247
Prediction	 248
Logistic regression	 249
Residuals	 251
Least squares regression	 251
Relative importance	 252
Stepwise regression	 255
The k-nearest neighbor classification	 256
Naïve Bayes	 259

The train Method	 260
predict	 261
Support vector machines	 261
K-means clustering	 264
Decision trees	 266
AdaBoost	 267
Neural network	 268
Random forests	 269

Questions	 270
Summary	 270

Chapter 11: Predicting Events with Machine Learning	 271
Automatic forecasting packages	 271

Time series	 272
The SMA function	 278
The decompose function	 279
Exponential smoothing	 280
Forecast	 283

Correlogram	 284
Box test	 285

Holt exponential smoothing	 287
Automated forecasting	 291
ARIMA	 293
Automated ARIMA forecasting	 297

Questions	 299
Summary	 299

Chapter 12: Supervised and Unsupervised Learning	 301
Packages	 302

Supervised learning	 302
Decision tree	 303
Regression	 307

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Neural network	 310
Instance-based learning	 313
Ensemble learning	 316
Support vector machines	 317
Bayesian learning	 318
Random forests	 321

Unsupervised learning	 322
Cluster analysis	 322
Density estimation	 325
Expectation-maximization	 327
Hidden Markov models	 329
Blind signal separation	 330

Questions	 333
Summary	 333

Index	 335

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
R is a software package that provides a language and an environment for data
manipulation and statistics calculation. The resulting statistics can be displayed
graphically as well.

R has the following features:

•	 A lean syntax to perform operations on your data
•	 A set of tools to load and store data in a variety of formats, both local and

over the Internet
•	 Consistent syntax for operating on datasets in memory
•	 A built-in and an open source collection of tools for data analysis
•	 Methods to generate on-the-fly graphics and store graphical representations

to disk

What this book covers
Chapter 1, Data Mining Patterns, covers data mining in R. In this instance, we will look
for patterns in a dataset. This chapter will explore examples of using cluster analysis
using several tools. It also covers anomaly detection, and the use of association rules.

Chapter 2, Data Mining Sequences, explores methods in R that allow you to discover
sequences in your data. There are several R packages available that help you to
determine sequences and portray them graphically for further analysis.

Chapter 3, Text Mining, describes several methods of mining text in R. We will look at
tools that allow you to manipulate and analyze the text or words in a source. We will
also look into XML processing capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 4, Data Analysis – Regression Analysis, explores different ways of using
regression analysis on your data. This chapter has methods to run simple and
multivariate regression, along with subsequent displays.

Chapter 5, Data Analysis – Correlation, explores several correlation packages.
The chapter analyzes data using basic correlation and covariance as well as
Pearson, polychor, tetrachoric, heterogeneous, and partial correlation.

Chapter 6, Data Analysis – Clustering, explores a variety of references for cluster
analysis. The chapter covers k-means, PAM, and a number of other clustering
techniques. All of these techniques are available to an R programmer.

Chapter 7, Data Visualization – R Graphics, discusses a variety of methods of
visualizing your data. We will look at the gamut of data from typical class
displays to interaction with third-party tools and the use of geographic maps.

Chapter 8, Data Visualization – Plotting, discusses different methods of plotting your
data in R. The chapter has examples of simple plots with standardized displays as
well as customized displays that can be applied to plotting data.

Chapter 9, Data Visualization – 3D, acts as a guide to creating 3D displays of your data
directly from R. We will also look at using 3D displays for larger datasets.

Chapter 10, Machine Learning in Action, discusses how to use R for machine learning.
The chapter covers separating datasets into training and test data, developing a
model from your training data, and testing your model against test data.

Chapter 11, Predicting Events with Machine Learning, uses time series datasets.
The chapter covers converting your data into an R time series and then separating
out the seasonal, trend, and irregular components. The goal is to model or predict
future events.

Chapter 12, Supervised and Unsupervised Learning, explains the use of supervised and
unsupervised learning to build your model. It covers several methods in supervised
and unsupervised learning.

What you need for this book
For this book, you need R installed on your machine (or the machine you will be
running scripts against). R is available for a number of platforms. This book is not
constrained to particular versions of R at this time.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

You need an interactive tool to develop R programs in order to use this book to
its potential. The predominant tool is R Studio, a fully interactive, self-contained
program available on several platforms, which allows you to enter R scripts, display
data, and display graphical results. There is always the R command-line tool
available with all installations of R.

Who this book is for
This book is written for data analysts who have a firm grip over advanced data
analysis techniques. Some basic knowledge of the R language and some data science
topics is also required. This book assumes that you have access to an R environment
and are comfortable with the statistics involved.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the kmeans directive."

A block of code is set as follows:

kmeans(x,
centers,
iter.max = 10,
nstart = 1,
algorithm = c("Hartigan-Wong",
 "Lloyd",
 "Forgy",
 "MacQueen"),
trace=FALSE)

Any command-line input or output is written as follows:

seqdist(seqdata, method, refseq=NULL, norm=FALSE,

 indel=1, sm=NA, with.missing=FALSE, full.matrix=TRUE)

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You can
see the key concepts: inflation, economic, conditions, employment, and the FOMC."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/0860OS_ColoredImages.pdf.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/0860OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0860OS_ColoredImages.pdf
http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns
A common use of data mining is to detect patterns or rules in data.

The points of interest are the non-obvious patterns that can only be detected
using a large dataset. The detection of simpler patterns, such as market basket
analysis for purchasing associations or timings, has been possible for some time.
Our interest in R programming is in detecting unexpected associations that can
lead to new opportunities.

Some patterns are sequential in nature, for example, predicting faults in systems
based on past results that are, again, only obvious using large datasets. These will
be explored in the next chapter.

This chapter discusses the use of R to discover patterns in datasets' various methods:

•	 Cluster analysis: This is the process of examining your data and establishing
groups of data points that are similar. Cluster analysis can be performed
using several algorithms. The different algorithms focus on using different
attributes of the data distribution, such as distance between points, density,
or statistical ranges.

•	 Anomaly detection: This is the process of looking at data that appears to be
similar but shows differences or anomalies for certain attributes. Anomaly
detection is used frequently in the field of law enforcement, fraud detection,
and insurance claims.

•	 Association rules: These are a set of decisions that can be made from your
data. Here, we are looking for concrete steps so that if we find one data point,
we can use a rule to determine whether another data point will likely exist.
Rules are frequently used in market basket approaches. In data mining, we
are looking for deeper, non-obvious rules that are present in the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[8]

Cluster analysis
Cluster analysis can be performed using a variety of algorithms; some of them are
listed in the following table:

Type of model How the model works
Connectivity This model computes distance between points and organizes the points

based on closeness.
Partitioning This model partitions the data into clusters and associates each data

point to a cluster. Most predominant is k-means.
Distribution
Models

This model uses a statistical distribution to determine the clusters.

Density This model determines closeness of data points to arrive at dense areas
of distribution. The common use of DBSCAN is for tight concentrations
or OPTICS for more sparse distributions.

Within an algorithm, there are finer levels of granularity as well, including:

•	 Hard or soft clustering: It defines whether a data point can be part of more
than one cluster.

•	 Partitioning rules: Are rules that determine how to assign data points to
different partitions. These rules are as follows:

°° Strict: This rule will check whether partitions include data points that
are not close

°° Overlapping: This rule will check whether partitions overlap in
any way

°° Hierarchical: This rule checks whether the partitions are stratified

In R programming, we have clustering tools for:

•	 K-means clustering
•	 K-medoids clustering
•	 Hierarchical clustering
•	 Expectation-maximization
•	 Density estimation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

K-means clustering
K-means clustering is a method of partitioning the dataset into k clusters. You need
to predetermine the number of clusters you want to divide the dataset into. The
k-means algorithm has the following steps:

1.	 Select k random rows (centroids) from your data (you have a predetermined
number of clusters to use).

2.	 We are using Lloyd's algorithm (the default) to determine clusters.
3.	 Assign each data point according to its closeness to a centroid.
4.	 Recalculate each centroid as an average of all the points associated with it.
5.	 Reassign each data point as closest to a centroid.
6.	 Continue with steps 3 and 4 until data points are no longer assigned or you

have looped some maximum number of times.

This is a heuristic algorithm, so it is a good idea to run the process several times.
It will normally run quickly in R, as the work in each step is not difficult. The
objective is to minimize the sum of squares by constant refining of the terms.

Predetermining the number of clusters may be problematic. Graphing the data (or
its squares or the like) should present logical groupings for your data visually. You
can determine group sizes by iterating through the steps to determine the cutoff for
selection (we will use that later in this chapter). There are other R packages that will
attempt to compute this as well. You should also verify the fit of the clusters selected
upon completion.

Using an average (in step 3) shows that k-means does not work well with fairly
sparse data or data with a larger number of outliers. Furthermore, there can be a
problem if the cluster is not in a nice, linear shape. Graphical representation should
prove whether your data fits this algorithm.

Usage
K-means clustering is performed in R programming with the kmeans function. The R
programming usage of k-means clustering follows the convention given here (note
that you can always determine the conventions for a function using the inline help
function, for example, ?kmeans, to get this information):

kmeans(x,
centers,
iter.max = 10,
nstart = 1,
algorithm = c("Hartigan-Wong",

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[10]

 "Lloyd",
 "Forgy",
 "MacQueen"),
trace=FALSE)

The various parameters are explained in the following table:

Parameter Description
x This is the data matrix to be analyzed
centers This is the number of clusters
iter.max This is the maximum number of iterations (unless reassignment stops)
nstart This is the number of random sets to use
algorithm This can be of one of the following types: Hartigan-Wong, Lloyd, Forgy, or

MacQueen algorithms
trace This gives the present trace information as the algorithm progresses

Calling the kmeans function returns a kmeans object with the following properties:

Property Description
cluster This contains the cluster assignments
centers This contains the cluster centers
totss This gives the total sum of squares
withinss This is the vector of within sum of squares, per cluster
tot.withinss This contains the total (sum of withinss)
betweenss This contains the between-cluster sum of squares
size This contains the number of data points in each cluster
iter This contains the number of iterations performed
ault This contains the expert diagnostic

Example
First, generate a hundred pairs of random numbers in a normal distribution and
assign it to the matrix x as follows:

>x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
 matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))

We can display the values we generate as follows:

>x
 [,1] [,2]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

 [1,] 0.4679569701 -0.269074028
 [2,] -0.5030944919 -0.393382748
 [3,] -0.3645075552 -0.304474590
…
 [98,] 1.1121388866 0.975150551
 [99,] 1.1818402912 1.512040138
[100,] 1.7643166039 1.339428999

The the resultant kmeans object values can be determined and displayed (using 10
clusters) as follows:

> fit <- kmeans(x,10)
> fit
K-means clustering with 10 clusters of sizes 4, 12, 10, 7, 13, 16, 8,
13, 8, 9
Cluster means:
 [,1] [,2]
1 0.59611989 0.77213527
2 1.09064550 1.02456563
3 -0.01095292 0.41255130
4 0.07613688 -0.48816360
5 1.04043914 0.78864770
6 0.04167769 -0.05023832
7 0.47920281 -0.05528244
8 1.03305030 1.28488358
9 1.47791031 0.90185427
10 -0.28881626 -0.26002816
Clustering vector:
 [1] 7 10 10 6 7 6 3 3 7 10 4 7 4 7 6 7 6 6 4 3 10
4 3 6 10 6 6 3 6 10 3 6 4 3 6 3 6 6 6 7 3 4 6 7 6
10 4 10 3 10 5 2 9 2
 [55] 9 5 5 2 5 8 9 8 1 2 5 9 5 2 5 8 1 5 8 2 8
8 5 5 8 1 1 5 8 9 9 8 5 2 5 8 2 2 9 2 8 2 8 2 8
9
Within cluster sum of squares by cluster:
 [1] 0.09842712 0.23620192 0.47286373 0.30604945 0.21233870 0.47824982
0.36380678 0.58063931 0.67803464 0.28407093
 (between_SS / total_SS = 94.6 %)
Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.
withinss" "betweenss" "size" "iter" "ifault"

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[12]

If we look at the results, we find some interesting data points:

•	 The Cluster means shows the breakdown of the means used for the
cluster assignments.

•	 The Clustering vector shows which cluster each of the 100 numbers was
assigned to.

•	 The Cluster sum of squares shows the totss value, as described in
the output.

•	 The percentage value is the betweenss value divided as a percentage of the
totss value. At 94.6 percent, we have a very good fit.

We chose an arbitrary cluster size of 10, but we should verify that this is a good
number to use. If we were to run the kmeans function a number of times using a
range of cluster sizes, we would end up with a graph that looks like the one in the
following example.

For example, if we ran the following code and recorded the results, the output will
be as follows:

results <- matrix(nrow=14, ncol=2, dimnames=list(2:15,c("clusters","s
umsquares")))
for(i in 2:15) {
 fit <- kmeans(x,i)
 results[i-1,1] <- i
 results[i-1,2] <- fit$totss
}
plot(results)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

If the data were more distributed, there would be a clear demarcation about the
maximum number of clusters, as further clustering will show no improvement
in the sum of squares. However, since we used very smooth data for the test,
the number of clusters could be allowed to increase.

Once your clusters have been determined, you should be able to gather a visual
representation, as shown in the following plot:

K-medoids clustering
K-medoids clustering is another method of determining the clusters in a dataset. A
medoid is an entity of the dataset that represents the group to which it was inserted.
K-means works with centroids, which are artificially created to represent a cluster.
So, a medoid is actually part of the dataset. A centroid is a derived amount.

When partitioning around medoids, make sure that the following points are taken
care of:

•	 Each entity is assigned to only one cluster
•	 Each entity is assigned to the medoid that defines its cluster
•	 Exactly k clusters are defined

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[14]

The algorithm has two phases with several steps:

•	 Build phase: During the build phase, we come up with initial estimates for
the clusters:

1.	 Choose random k entities to become medoids (the k entities may be
provided to the algorithm).

2.	 Calculate the dissimilarity matrix (compute all the pairwise
dissimilarities (distances) between observations in the dataset)
so that we can find the distances.

3.	 Assign every entity to the closest medoid.

•	 Swap phase: In the swap phase, we fine-tune our initial estimates given the
rough clusters determined in the build phase:

1.	 Search each cluster for the entity that lowers the average dissimilarity
coefficient the most and therefore makes it the medoid for the cluster.

2.	 If any medoid has changed, start from step 3 of the build phase again.

Usage
K-medoid clustering is calculated in R programming with the pam function:

pam(x, k, diss, metric, medoids, stand, cluster.only, do.swap, keep.
diss, keep.data, trace.lev)

The various parameters of the pam function are explained in the following table:

Parameter Description
x This is the data matrix or dissimilarity matrix (based on the diss flag)
k This is the number of clusters, where 0 is less than k which is less than

the number of entities
diss The values are as follows:

•	 FALSE if x is a matrix
•	 TRUE if x is a dissimilarity matrix

metric This is a string metric to be used to calculate the dissimilarity matrix. It
can be of the following types:

•	 euclidean for Euclidean distance
•	 manhattan for Manhattan distance

medoids If the NULL value is assigned, it means a set of medoids is to be
developed. Otherwise, it is a set of initial medoids.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Parameter Description
stand If x is the data matrix, then measurements in x will be standardized

before computing the dissimilarity matrix.
cluster.only If the value set is TRUE, then only clustering will be computed and

returned.
do.swap This contains a Boolean value to decide whether swap should occur.
keep.diss This contains a Boolean value to decide whether dissimilarity should be

kept in the result.
keep.data This contains a Boolean value to decide whether data should be kept in

the result.
trace.lev This contains an integer trace level for diagnostics, where 0 means no

trace information.

The results returned from the pam function can be displayed, which is rather difficult
to interpret, or the results can be plotted, which is intuitively more understandable.

Example
Using a simple set of data with two (visually) clear clusters as follows, as stored in a
file named medoids.csv:

Object x y
1 1 10
2 2 11
3 1 10
4 2 12
5 1 4
6 3 5
7 2 6
8 2 5
9 3 6

Let's use the pam function on the medoids.csv file as follows:

load pam function
> library(cluster)

#load the table from a file

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[16]

> x <- read.table("medoids.csv", header=TRUE, sep=",")

#execute the pam algorithm with the dataset created for the example
> result <- pam(x, 2, FALSE, "euclidean")
Looking at the result directly we get:
> result
Medoids:
 ID Object x y
[1,] 2 2 2 11
[2,] 7 7 2 6
Clustering vector:
[1] 1 1 1 1 2 2 2 2 2
Objective function:
 build swap
1.564722 1.564722
Available components:
 [1] "medoids" "id.med" "clustering" "objective" "isolation"
[6] "clusinfo" "silinfo" "diss" "call" "data"

Evaluating the results we can see:

•	 We specified the use of two medoids, and row 3 and 6 were chosen
•	 The rows were clustered as presented in the clustering vector (as

expected, about half in the first medoid and the rest in the other medoid)
•	 The function did not change greatly from the build phase to the swap

phase (looking at the Objective function values for build and swap
of 1.56 versus 1.56)

Using a summary for a clearer picture, we see the following result:

> summary(result)
Medoids:
 ID Object x y
[1,] 2 2 2 11
[2,] 7 7 2 6
Clustering vector:
[1] 1 1 1 1 2 2 2 2 2
Objective function:
 build swap
1.564722 1.564722

Numerical information per cluster:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

sizemax_dissav_diss diameter separation
[1,] 4 2.236068 1.425042 3.741657 5.744563
[2,] 5 3.000000 1.676466 4.898979 5.744563

Isolated clusters:
 L-clusters: character(0)
 L*-clusters: [1] 1 2

Silhouette plot information:
 cluster neighbor sil_width
2 1 2 0.7575089
3 1 2 0.6864544
1 1 2 0.6859661
4 1 2 0.6315196
8 2 1 0.7310922
7 2 1 0.6872724
6 2 1 0.6595811
9 2 1 0.6374808
5 2 1 0.5342637
Average silhouette width per cluster:
[1] 0.6903623 0.6499381
Average silhouette width of total data set:
[1] 0.6679044

36 dissimilarities, summarized :
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.4142 2.3961 6.2445 5.2746 7.3822 9.1652
Metric : euclidean
Number of objects : 9

Available components:
 [1] "medoids" "id.med" "clustering" "objective" "isolation"
 [6] "clusinfo" "silinfo" "diss" "call" "data"

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

The summary presents more details on the medoids and how they were selected.
However, note the dissimilarities as well.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Data Mining Patterns

[18]

Plotting the data, we can see the following output:

#plot a graphic showing the clusters and the medoids of each cluster
> plot(result$data, col = result$clustering)

The resulting plot is as we expected it to be. It is good to see the data clearly broken
into two medoids, both spatially and by color demarcation.

Hierarchical clustering
Hierarchical clustering is a method to ascertain clusters in a dataset that are in
a hierarchy.

Using hierarchical clustering, we are attempting to create a hierarchy of clusters.
There are two approaches of doing this:

•	 Agglomerative (or bottom up): In this approach, each entity starts as its own
cluster and pairs are merged as they move up the hierarchy

•	 Divisive (or top down): In this approach, all entities are lumped into one
cluster and are split as they are moved down the hierarchy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

The resulting hierarchy is normally displayed using a tree/graph model of
a dendogram.

Hierarchical clustering is performed in R programming with the hclust function.

Usage
The hclust function is called as follows:

hclust(d, method = "complete", members = NULL)

The various parameters of the hclust function are explained in the following table:

Parameter Description
d This is the matrix.
method This is the agglomeration method to be used. This should be (a distinct

abbreviation of) one of these methods: ward.D, ward.D2, single,
complete, average (= UPGMA), mcquitty (= WPGMA), median (=
WPGMC), or centroid (= UPGMC).

members This could be NULL or d, the dissimilarity matrix.

Example
We start by generating some random data over a normal distribution using the
following code:

> dat <- matrix(rnorm(100), nrow=10, ncol=10)

> dat
 [,1] [,2] [,3] [,4] [,5]
[,6]
 [1,] 1.4811953 -1.0882253 -0.47659922 0.22344983 -0.74227899
0.2835530
 [2,] -0.6414931 -1.0103688 -0.55213606 -0.48812235 1.41763706
0.8337524
 [3,] 0.2638638 0.2535630 -0.53310519 2.27778665 -0.09526058
1.9579652
[4,] -0.50307726 -0.3873578 -1.54407287 -0.1503834
Then, we calculate the hierarchical distribution for our data as
follows:
> hc <- hclust(dist(dat))
> hc

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[20]

Call:
hclust(d = dist(dat))

Cluster method : complete
Distance : euclidean
Number of objects: 10

The resulting data object is very uninformative. We can display the hierarchical
cluster using a dendogram, as follows:

>plot(hc)

The dendogram has the expected shape. I find these diagrams somewhat unclear, but
if you go over them in detail, the inference will be as follows:

•	 Reading the diagram in a top-down fashion, we see it has two distinct
branches. The implication is that there are two groups that are distinctly
different from one another. Within the two branches, we see 10 and 3
as distinctly different from the rest. Generally, it appears that we have
determined there are an even group and an odd group, as expected.

•	 Reading the diagram bottom up, we see closeness and similarity
over a number of elements. This would be expected from a simple
random distribution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Expectation-maximization
Expectation-maximization (EM) is the process of estimating the parameters in a
statistical model.

For a given model, we have the following parameters:

•	 X: This is a set of observed data
•	 Z: This is a set of missing values
•	 T: This is a set of unknown parameters that we should apply to our model to

predict Z

The steps to perform expectation-maximization are as follows:

1.	 Initialize the unknown parameters (T) to random values.
2.	 Compute the best missing values (Z) using the new parameter values.
3.	 Use the best missing values (Z), which were just computed, to determine a

better estimate for the unknown parameters (T).
4.	 Iterate over steps 2 and 3 until we have a convergence.

This version of the algorithm produces hard parameter values (Z). In practice, soft
values may be of interest where probabilities are assigned to various values of the
parameters (Z). By hard values, I mean we are selecting specific Z values. We could
instead use soft values where Z varies by some probability distribution.

We use EM in R programming with the Mclust function from the mclust library.
The full description of Mclust is the normal mixture modeling fitted via EM
algorithm for model-based clustering, classification, and density estimation,
including Bayesian regularization.

Usage
The Mclust function is as follows:

Mclust(data, G = NULL, modelNames = NULL,
 prior = NULL, control = emControl(),
 initialization = NULL, warn = FALSE, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[22]

The various parameters of the Mclust function are explained in the following table:

Parameter Description
data This contains the matrix.
G This contains the vector of number of clusters to use to compute BIC.

The default value is 1:9.
modelNames This contains the vector of model names to use.
prior This contains the optional conjugate prior for means.
control This contains the list of control parameters for EM. The default value

is List.
initialization This contains NULL or a list of one or more of the following

components:
•	 hcPairs: This is used to merge pairs
•	 subset: This is to be used during initialization
•	 noise: This makes an initial guess at noise

warn This contains which warnings are to be issued. Default is none.

List of model names
The Mclust function uses a model when trying to decide which items belong to a
cluster. There are different model names for univariate, multivariate, and single
component datasets. In each, the idea is to select a model that describes the data, for
example, VII will be used for data that is spherically displaced with equal volume
across each cluster.

Model Type of dataset
Univariate mixture
E equal variance (one-dimensional)
V variable variance (one-dimensional)
Multivariate mixture
EII spherical, equal volume
VII spherical, unequal volume
EEI diagonal, equal volume and shape
VEI diagonal, varying volume, equal shape
EVI diagonal, equal volume, varying shape
VVI diagonal, varying volume and shape
EEE ellipsoidal, equal volume, shape, and orientation
EEV ellipsoidal, equal volume and equal shape

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

Model Type of dataset
VEV ellipsoidal, equal shape
VVV ellipsoidal, varying volume, shape, and orientation
Single component
X univariate normal
XII spherical multivariate normal
XXI diagonal multivariate normal
XXX ellipsoidal multivariate normal

Example
First, we must load the library that contains the mclust function (we may need to
install it in the local environment) as follows:

> install.packages("mclust")
> library(mclust)

We will be using the iris data in this example, as shown here:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")

Now, we can compute the best fit via EM (note capitalization of Mclust) as follows:

> fit <- Mclust(data)

We can display our results as follows:

> fit
'Mclust' model object:
 best model: ellipsoidal, equal shape (VEV) with 2 components

> summary(fit)
--
Gaussian finite mixture model fitted by EM algorithm
--
Mclust VEV (ellipsoidal, equal shape) model with 2 components:

 log.likelihood n df BIC ICL
 -121.1459 149 37 -427.4378 -427.4385

Clustering table:
 1 2
 49 100

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[24]

Simple display of the fit data object doesn't tell us very much, it shows just what
was used to compute the density of the dataset.

The summary command presents more detailed information about the results,
as listed here:

•	 log.likelihood (-121): This is the log likelihood of the BIC value
•	 n (149): This is the number of data points
•	 df (37): This is the distribution
•	 BIC (-427): This is the Bayesian information criteria; this is an optimal value
•	 ICL (-427): Integrated Complete Data Likelihood—a classification version

of the BIC. As we have the same value for ICL and BIC we classified the
data points.

We can plot the results for a visual verification as follows:

> plot(fit)

You will notice that the plot command for EM produces the following four plots
(as shown in the graph):

•	 The BIC values used for choosing the number of clusters
•	 A plot of the clustering
•	 A plot of the classification uncertainty
•	 The orbital plot of clusters

The following graph depicts the plot of density.

The first plot gives a depiction of the BIC ranges versus the number of components by
different model names; in this case, we should probably not use VEV, for example:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

This second plot shows the comparison of using each of the components of the data
feed against every other component of the data feed to determine the clustering that
would result. The idea is to select the components that give you the best clustering
of your data. This is one of those cases where your familiarity with the data is key to
selecting the appropriate data points for clustering.

In this case, I think selecting X5.1 and X1.4 yield the tightest clusters, as shown in the
following graph:

.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[26]

The third plot gives another iteration of the clustering affects of the different choices
highlighting the main cluster by eliminating any points from the plot that would be
applied to the main cluster, as shown here:

The final, fourth plot gives an orbital view of each of the clusters giving a highlight
display of where the points might appear relative to the center of each cluster, as
shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

Density estimation
Density estimation is the process of estimating the probability density function of
a population given in an observation set. The density estimation process takes your
observations, disperses them across a number of data points, runs a FF transform to
determine a kernel, and then runs a linear approximation to estimate density.

Density estimation produces an estimate for the unobservable population
distribution function. Some approaches that are used to produce the density
estimation are as follows:

•	 Parzen windows: In this approach, the observations are placed in a window
and density estimates are made based on proximity

•	 Vector quantization: This approach lets you model the probability density
functions as per the distribution of observations

•	 Histograms: With a histogram, you get a nice visual showing density (size of
the bars); the number of bins chosen while developing the histogram decide
your density outcome

Density estimation is performed via the density function in R programming. Other
functions for density evaluation in R are:

Function Description
DBSCAN This function determines clustering for fixed point clusters
OPTICS This function determines clustering for wide distribution clusters

Usage
The density function is invoked as follows:

density(x, bw = "nrd0", adjust = 1,
 kernel = c("gaussian", "epanechnikov",
 "rectangular",
 "triangular", "biweight",
 "cosine", "optcosine"),
 weights = NULL, window = kernel, width,
 give.Rkern = FALSE,
 n = 512, from, to, na.rm = FALSE, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[28]

The various parameters of the density function are explained in the following table:

Parameter Description
x This is the matrix.
bw This is the smoothing bandwidth to be used.
adjust This is the multiplier to adjust bandwidth.
kernel This is the smoother kernel to be used. It must be one of the following

kernels:
•	 gaussian

•	 rectangular

•	 triangular

•	 epanechnikov

•	 biweight

•	 cosine

•	 optcosine

weights This is a vector of observation weights with same length as x.
window This is the kernel used.
width This is the S compatibility parameter.
give.Rkern If the value of this parameter is TRUE, no density is estimated.
N This is the number of density points to estimate.
from, to These are the left and right-most points to use.
na.rm If the value of this parameter is TRUE, missing values are removed.

The available bandwidths can be found using the following commands:

bw.nrd0(x)

bw.nrd(x)

bw.ucv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax, tol = 0.1 *
lower)

bw.bcv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax, tol = 0.1 *
lower)

bw.SJ(x, nb = 1000, lower = 0.1 * hmax, upper = hmax, method =
 c("ste", "dpi"), tol = 0.1 * lower)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

The various parameters of the bw function are explained in the following table:

Parameter Description
x This is the dataset
nb This is the number of bins
lower, upper This is the range of bandwidth which is to be minimized
method The ste method is used to solve the equation or the dpi method is

used for direct plugin
tol This is the convergence tolerance for ste

Example
We can use the iris dataset as follows:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")
The density of the X5.1 series (sepal length) can be computed as
follows:
> d <- density(data$X5.1)
> d
Call:
density.default(x = data$X5.1)
Data: data$X5.1 (149 obs.); Bandwidth 'bw' = 0.2741
 x y
 Min.:3.478 Min. :0.0001504
 1st Qu.:4.789 1st Qu.:0.0342542
 Median :6.100 Median :0.1538908
 Mean :6.100 Mean :0.1904755
 3rd Qu.:7.411 3rd Qu.:0.3765078
 Max. :8.722 Max. :0.3987472

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[30]

We can plot the density values as follows:

> plot(d)

The plot shows most of the data occurring between 5 and 7. So, sepal length averages
at just under 6.

Anomaly detection
We can use R programming to detect anomalies in a dataset. Anomaly detection
can be used in a number of different areas, such as intrusion detection, fraud
detection, system health, and so on. In R programming, these are called outliers. R
programming allows the detection of outliers in a number of ways, as listed here:

•	 Statistical tests
•	 Depth-based approaches
•	 Deviation-based approaches
•	 Distance-based approaches
•	 Density-based approaches
•	 High-dimensional approaches

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

Show outliers
R programming has a function to display outliers: identify (in boxplot).

The boxplot function produces a box-and-whisker plot (see following graph). The
boxplot function has a number of graphics options. For this example, we do not
need to set any.

The identify function is a convenient method for marking points in a scatter plot.
In R programming, box plot is a type of scatter plot.

Example
In this example, we need to generate a 100 random numbers and then plot the points
in boxes.

Then, we mark the first outlier with it's identifier as follows:

> y <- rnorm(100)
> boxplot(y)
> identify(rep(1, length(y)), y, labels = seq_along(y))

Notice the 0 next to the outlier in the graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[32]

Example
The boxplot function automatically computes the outliers for a set as well.

First, we will generate a 100 random numbers as follows (note that this data is
randomly generated, so your results may not be the same):

> x <- rnorm(100)

We can have a look at the summary information on the set using the following code:

> summary(x)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.12000 -0.74790 -0.20060 -0.01711 0.49930 2.43200

Now, we can display the outliers using the following code:

> boxplot.stats(x)$out
[1] 2.420850 2.432033

The following code will graph the set and highlight the outliers:

> boxplot(x)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

Notice the 0 next to the outlier in the graph.

We can generate a box plot of more familiar data showing the same issue with
outliers using the built-in data for cars, as follows:

boxplot(mpg~cyl,data=mtcars, xlab="Cylinders", ylab="MPG")

Another anomaly detection example
We can also use box plot's outlier detection when we have two dimensions. Note
that we are forcing the issue by using a union of the outliers in x and y rather than an
intersection. The point of the example is to display such points. The code is as follows:

> x <- rnorm(1000)
> y <- rnorm(1000)
> f <- data.frame(x,y)
> a <- boxplot.stats(x)$out
> b <- boxplot.stats(y)$out
> list <- union(a,b)
> plot(f)
> px <- f[f$x %in% a,]

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[34]

> py <- f[f$y %in% b,]
> p <- rbind(px,py)
> par(new=TRUE)
> plot(px, py,cex=2,col=2)

While R did what we asked, the plot does not look right. We completely fabricated
the data; in a real use case, you would need to use your domain expertise to determine
whether these outliers were correct or not.

Calculating anomalies
Given the variety of what constitutes an anomaly, R programming has a mechanism
that gives you complete control over it: write your own function that can be used to
make a decision.

Usage
We can use the name function to create our own anomaly as shown here:

name <- function(parameters,…) {
 # determine what constitutes an anomaly
 return(df)
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

Here, the parameters are the values we need to use in the function. I am assuming
we return a data frame from the function. The function could do anything.

Example 1
We will be using the iris data in this example, as shown here:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")

If we decide an anomaly is present when sepal is under 4.5 or over 7.5, we could use
a function as shown here:

> outliers <- function(data, low, high) {
> outs <- subset(data, data$X5.1 < low | data$X5.1 > high)
> return(outs)
>}

Then, we will get the following output:

> outliers(data, 4.5, 7.5)
 X5.1 X3.5 X1.4 X0.2 Iris.setosa
8 4.4 2.9 1.4 0.2 Iris-setosa
13 4.3 3.0 1.1 0.1 Iris-setosa
38 4.4 3.0 1.3 0.2 Iris-setosa
42 4.4 3.2 1.3 0.2 Iris-setosa
105 7.6 3.0 6.6 2.1 Iris-virginica
117 7.7 3.8 6.7 2.2 Iris-virginica
118 7.7 2.6 6.9 2.3 Iris-virginica
122 7.7 2.8 6.7 2.0 Iris-virginica
131 7.9 3.8 6.4 2.0 Iris-virginica
135 7.7 3.0 6.1 2.3 Iris-virginica

This gives us the flexibility of making slight adjustments to our criteria by passing
different parameter values to the function in order to achieve the desired results.

Example 2
Another popular package is DMwR. It contains the lofactor function that can
also be used to locate outliers. The DMwR package can be installed using the
following command:

> install.packages("DMwR")
> library(DMwR)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[36]

We need to remove the species column from the data, as it is categorical against it
data. This can be done by using the following command:

> nospecies <- data[,1:4]

Now, we determine the outliers in the frame:

> scores <- lofactor(nospecies, k=3)

Next, we take a look at their distribution:

> plot(density(scores))

One point of interest is if there is some close equality amongst several of the outliers
(that is, density of about 4).

Association rules
Association rules describe associations between two datasets. This is most commonly
used in market basket analysis. Given a set of transactions with multiple, different
items per transaction (shopping bag), how can the item sales be associated? The
most common associations are as follows:

•	 Support: This is the percentage of transactions that contain A and B.
•	 Confidence: This is the percentage (of time that rule is correct) of cases

containing A that also contain B.
•	 Lift: This is the ratio of confidence to the percentage of cases containing B.

Please note that if lift is 1, then A and B are independent.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

Mine for associations
The most widely used tool in R from association rules is apriori.

Usage
The apriori rules library can be called as follows:

apriori(data, parameter = NULL, appearance = NULL, control = NULL)

The various parameters of the apriori library are explained in the following table:

Parameter Description
data This is the transaction data.
parameter This stores the default behavior to mine, with support as 0.1,

confidence as 0.8, and maxlen as 10. You can change parameter values
accordingly.

appearance This is used to restrict items that appear in rules.
control This is used to adjust the performance of the algorithm used.

Example
You will need to load the apriori rules library as follows:

> install.packages("arules")
> library(arules)

The market basket data can be loaded as follows:

> data <- read.csv("http://www.salemmarafi.com/wp-content/
uploads/2014/03/groceries.csv")

Then, we can generate rules from the data as follows:

> rules <- apriori(data)

parameter specification:
confidenceminvalsmaxaremavaloriginalSupport support minlenmaxlen
target
 0.8 0.1 1 none FALSE TRUE 0.1 1
10 rules
 ext
 FALSE

algorithmic control:
 filter tree heap memopt load sort verbose

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[38]

 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[655 item(s), 15295 transaction(s)] done [0.00s].
sorting and recoding items ... [3 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 done [0.00s].
writing ... [5 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

There are several points to highlight in the results:

•	 As you can see from the display, we are using the default settings
(confidence 0.8, and so on)

•	 We found 15,000 transactions for three items (picked from the 655 total
items available)

•	 We generated five rules

We can examine the rules that were generated as follows:

> rules

set of 5 rules
> inspect(rules)

lhsrhs support confidence lift
1 {semi.finished.bread=} => {margarine=} 0.2278522 1
2.501226
2 {semi.finished.bread=} => {ready.soups=} 0.2278522 1
1.861385
3 {margarine=} => {ready.soups=} 0.3998039 1
1.861385
4 {semi.finished.bread=,
 margarine=} => {ready.soups=} 0.2278522 1
1.861385
5 {semi.finished.bread=,
 ready.soups=} => {margarine=} 0.2278522 1
2.501226

The code has been slightly reformatted for readability.

Looking over the rules, there is a clear connection between buying bread, soup, and
margarine—at least in the market where and when the data was gathered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[39]

If we change the parameters (thresholds) used in the calculation, we get a different
set of rules. For example, check the following code:

> rules <- apriori(data, parameter = list(supp = 0.001, conf = 0.8))

This code generates over 500 rules, but they have questionable meaning as we now
have the rules with 0.001 confidence.

Questions
Factual

•	 How do you decide whether to use kmeans or kdemoids?
•	 What is the significance of the boxplot layout? Why does it look that way?
•	 Describe the underlying data produced in the outliers for the iris data,

given the density plot.
•	 What are the extract rules for other items in the market dataset?

When, how, and why?

•	 What is the risk of not vetting the outliers that are detected for the specific
domain? Shouldn't the calculation always work?

•	 Why do we need to exclude the iris category column from the outlier
detection algorithm? Can it be used in some way when determining outliers?

•	 Can you come up with a scenario where the market basket data and rules we
generated were not applicable to the store you are working with?

Challenges

•	 I found it difficult to develop test data for outliers in two dimensions that
both occurred in the same instance using random data. Can you develop a
test that would always have several outliers in at least two dimensions that
occur in the same instance?

•	 There is a good dataset on the Internet regarding passenger data on the
Titanic. Generate the rules regarding the possible survival of the passengers.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Patterns

[40]

Summary
In this chapter, we discussed cluster analysis, anomaly detection, and association
rules. In cluster analysis, we use k-means clustering, k-medoids clustering, hierarchical
clustering, expectation-maximization, and density estimation. In anomaly detection,
we found outliers using built-in R functions and developed our own specialized
R function. For association rules, we used the apriori package to determine the
associations amongst datasets.

In the next chapter, we will cover data mining for sequences.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences
Data mining is frequently used to detect sequences or patterns in data. In this chapter,
we are looking for the data to follow a pattern where one event or series of events
predicts another data point in a consistent manner.

This chapter describes the different ways to find patterns in your dataset:

•	 Patterns to look for
•	 Find patterns in data
•	 Constraints

We can find patterns in many large datasets. This can range across a number of
areas, such as population mix changes, frequency of cell phone use, deterioration of
highways, accidents due to age, and so on. It really feels like there are many patterns
and sequences just waiting to be discovered.

We can find these patterns using a number of tools in R programming. Most patterns
are limited in their extent by constraints, such as time over which the sequence will
be meaningful.

Patterns
We will go over several methods of determining patterns in data:

Type of model How the model works
eclat This model is used for itemset pattern detection, often used for

shopping carts
arules This model determines the co-occurrence of items in a dataset
apriori This model learns the association rules in a dataset
TraMineR This is an R package for mining sequences

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[42]

Eclat
The Eclat algorithm is used for frequent itemset mining. In this case, we are looking
for similar patterns in behavior, as opposed to looking for irregularities (like we did
in other data mining approaches).

This algorithm uses intersections in the data to compute the support of candidates
for events that frequently occur together, such as shopping cart items. The frequent
candidates are then tested to confirm the pattern in the dataset.

Usage
Eclat is used in R programming with the eclat function in the arules package.
The R programming usage of the Eclat algorithm follows this convention:

> eclat(data,
 parameter = NULL,
 control = NULL)

The various parameters of the eclat function are explained in the following table:

Parameter Description
data This is the data matrix that will be analyzed
parameter This is the object of ECParameter or list
control This is the object of ECControl or list

The common ECParameters are as follows:

Parameter Description
support This parameter defines the minimal support of an itemset

(default value is 0.1)
minlen This parameter contains the minimum size of an itemset

(default value is 1)
maxlen This parameter contains the maximum size of an itemset

(default value is 10)
target This parameter defines the type of association to be mined:

•	 Frequent itemsets
•	 Maximally frequent itemsets
•	 Closed frequent itemsets

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

The common ECControl values are as follows:

Parameter Description
sort This parameter can have one of the following values:

•	 1 implies ascending
•	 -1 implies descending
•	 0 implies do not sort
•	 2 implies ascending
•	 -2 implies descending with respect to transaction size sum

verbose This parameter shows the display progress information

Calling the eclat function returns the frequent itemsets found in the data.

The eclat implementation includes the Adult dataset. The Adult dataset includes
approximately 50,000 rows from Census Bureau data.

Using eclat to find similarities in adult behavior
Use the following code to find the similarities in adult behavior:

> library("arules")
> data("Adult")
> dim(Adult)
[1] 48842 115
> summary(Adult)
transactions as itemMatrix in sparse format with
 48842 rows (elements/itemsets/transactions) and
 115 columns (items) and a density of 0.1089939
most frequent items:
capital-loss=None capital-gain=None
46560 44807
native-country=United-States race=White
43832 41762
workclass=Private (Other)
33906 401333

element (itemset/transaction) length distribution:
sizes
 9 10 11 12 13
 19 971 2067 15623 30162

 Min. 1st Qu. Median Mean 3rd Qu. Max.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[44]

 9.00 12.00 13.00 12.53 13.00 13.00

includes extended item information - examples:
 labels variables levels
1 age=Young age Young
2 age=Middle-aged age Middle-aged
3 age=Senior age Senior

includes extended transaction information - examples:
 transactionID
1 1
2 2
3 3

Looking over the summary result, we notice these details:

•	 As you can see from the summary, we have 48,842 rows and 115 columns
•	 Also, we have listed the common items of the White race
•	 There are a number of descriptors, such as age=Young

Finding frequent items in a dataset
Given a dataset, mine the frequent itemsets present using the following code:

> data("Adult")
> itemsets <- eclat(Adult)
parameter specification:
 tidLists support minlenmaxlen target ext
 FALSE 0.1 1 10 frequent itemsets FALSE
algorithmic control:
 sparse sort verbose
 7 -2 TRUE
eclat - find frequent item sets with the eclat algorithm
version 2.6 (2004.08.16) (c) 2002-2004 Christian Borgelt
createitemset ...
set transactions ...[115 item(s), 48842 transaction(s)] done [0.03s].
sorting and recoding items ... [31 item(s)] done [0.00s].
creating bit matrix ... [31 row(s), 48842 column(s)] done [0.02s].
writing ... [2616 set(s)] done [0.00s].
Creating S4 object ... done [0.00s].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

The default values have discovered 2,600 frequent sets. If we look for the top-five
sets, we will see the following output:

> itemsets.sorted <- sort(itemsets)
> itemsets.sorted[1:5]
 items support
1 {capital-loss=None} 0.9532779
2 {capital-gain=None} 0.9173867
3 {native-country=United-States} 0.8974243
4 {capital-gain=None,
 capital-loss=None} 0.8706646
5 {race=White} 0.8550428

Here are the observations made on the preceding output:

•	 Most of the people in the census data did not claim a capital loss or a capital
gain (this kind of financial tax event will not be a normal condition)

•	 Most of the people are from the US
•	 Most of the people are of the white race

An example focusing on highest frequency
To further prove out the data, we can narrow down to the highest frequency
occurring in the dataset (I did this by adjusting the minlen parameter until
I ended up with just one set):

> itemsets <- eclat(Adult, parameter=list(minlen=9))
> inspect(itemsets)
 items support
1 {age=Middle-aged,
 workclass=Private,
 marital-status=Married-civ-spouse,
 relationship=Husband,
 race=White,
 sex=Male,
 capital-gain=None,
 capital-loss=None,
 native-country=United-States} 0.1056673

As expected, we have a married, native US, working male filling out the census
data form.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[46]

arulesNBMiner
In R, arulesNBMiner is a package that will look for the co-occurrence of two or
more items of a set. The underlying model, the negative binomial model, allows
highly skewed frequency distributions that would have otherwise made it difficult to
determine a minimum itemset size. We are looking for frequent itemsets in the larger
dataset being mined. When deciding to use arulesNBMiner, you should have some
indication that frequency of itemsets is occurring in subsets of the data.

Usage
arulesNBMiner is implemented as a package that must be installed into your R
programming environment. A random dataset that can be used to learn how to
use the tool is included with the model/function, as shown here:

> results <-NBMiner(data, parameter, control = NULL)

The various parameters of the NBMiner function are explained in the following table:

Parameter Description
data This is the data matrix that will be analyzed.
parameter This is the list of parameters (automatically converted to object of

type NBMinerParameters).
control This is the list of controls to apply (automatically converted to

NBMinerControl). Currently, only the verbose and debug
logicals are available.

NBMinerParameters is the parameter block that is used to call NBMiner. It is
constructed as follows:

NBMinerParameters(data, trim = 0.01, pi = 0.99,
 theta = 0.5, minlen = 1, maxlen = 5, rules = FALSE,
 plot = FALSE, verbose = FALSE, getdata = FALSE)

The values of NBMinerParameters are as follows:

Parameter Description
data These are the transactions
trim This is the fraction of incidences that will be trimmed off the tail of the

frequency distribution of the data
pi This is the precision threshold π
theta This is the pruning parameter θ

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

Parameter Description
minlen This is the minimum number of items found in the itemsets (default

value is 1)
maxlen This is the maximum number of items found in the itemsets (default

value is 5)
rules This contains a Boolean value to determine whether to mine NB-precise

rules instead of NB-frequent itemsets
plot This contains a Boolean value to determine whether to plot the model
verbose This verbose output is used for the estimation procedure
getdata This is used to get the observed and estimated counts also

The Agrawal data in the package is available directly. Note that the Agrawal data
was synthetically generated specifically in order to gather transactions. The code is
as follows:

> data(Agrawal)
> summary(Agrawal.db)

transactions as itemMatrix in sparse format with
 20000 rows (elements/itemsets/transactions) and
 1000 columns (items) and a density of 0.00997795

most frequent items:
item540 item155 item803 item741 item399 (Other)
 1848 1477 1332 1295 1264 192343
element (itemset/transaction) length distribution:
sizes
 1 2 3 4 5 6 7 8 9 10 11 12 13
 15 88 204 413 737 1233 1802 2217 2452 2444 2304 1858 1492
 14 15 16 17 18 19 20 21 22 23 24 25
1072 706 431 233 138 83 46 19 10 1 1 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 8.000 10.000 9.978 12.000 25.000

includes extended item information - examples:
 labels
1 item1
2 item2
3 item3

includes extended transaction information - examples:
 transactionID

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[48]

1 trans1
2 trans2
3 trans3
> summary(Agrawal.pat)
set of 2000 itemsets

most frequent items:
item399 item475 item756 item594 item293 (Other)
 29 29 29 28 26 3960
element (itemset/transaction) length distribution:sizes
 1 2 3 4 5 6
702 733 385 134 34 12
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 1.00 2.00 2.05 3.00 6.00

summary of quality measures:
pWeightspCorrupts
Min.:2.100e-08 Min. :0.0000
 1st Qu.:1.426e-04 1st Qu.:0.2885
 Median :3.431e-04 Median :0.5129
 Mean :5.000e-04 Mean :0.5061
 3rd Qu.:6.861e-04 3rd Qu.:0.7232
 Max. :3.898e-03 Max. :1.0000

includes transaction ID lists: FALSE

Here are the observations made on the preceding output:

•	 There are 20,000 rows of 1,000 columns
•	 All columns are named like item399, item475, and so on
•	 There are 2,000 itemsets skewed towards low numbers of transactions

(for example there are 702 of size 1, 733 of size 2, and so on)

Mining the Agrawal data for frequent sets
If we take the Agrawal data and use it in an example, we get the following output:

> mynbparameters <- NBMinerParameters(Agrawal.db)
> mynbminer <- NBMiner(Agrawal.db, parameter = mynbparameters)
> summary(mynbminer)
set of 3332 itemsets

most frequent items:
item540 item615 item258 item594 item293 (Other)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

 69 57 55 50 46 6813

element (itemset/transaction) length distribution:sizes
 1 2 3 4 5
1000 1287 725 259 61

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.000 1.000 2.000 2.128 3.000 5.000

summary of quality measures:
 precision
 Min.:0.9901
 1st Qu.:1.0000
 Median :1.0000
 Mean :0.9997
 3rd Qu.:1.0000
 Max. :1.0000

Here are the observations made on the preceding output:

•	 Items are approximately evenly distributed
•	 There is a large skew towards itemset length of 1 or 2

Apriori
Apriori is a class algorithm that helps to learn association rules. It works against
transactions. The algorithm attempts to find subsets that are common within a dataset.
A minimum threshold must be met in order for the association to be confirmed.

The concept of support and confidence for apriori is of particular interest. The
apriori method will return associations of interest from your dataset, such as
X when we have Y. Support is the percent of transactions containing X and Y.
Confidence is the percentage of transactions that contain X and also contain Y.
The default values are 10 percent for support and 80 percent for confidence.

Usage
The apriori method can be used as follows:

apriori(data, parameter = NULL, appearance = NULL, control = NULL)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[50]

The various parameters of the apriori function are explained in the following table:

Parameter Description
data This is the dataset to draw upon.
parameter This is the list of parameters to control behavior of the process. The default

value for support is 0.1, for confidence it's 0.8, and for maxlen it's 10.
appearance This controls which data values are used.
control This controls the performance of the algorithm, specifically sorting.

Evaluating associations in a shopping basket
We are looking for associations among the items purchased in a typical shopping
basket at the food market. For this, we will perform the following steps:

1.	 Load the arules package as follows:
> install.packages("arules")
> library(arules)

2.	 Load our transactions, that is, the Belgian grocery retail data:
> tr <- read.transactions("http://fimi.ua.ac.be/data/retail.dat",
format="basket")

3.	 Get an overview of what the data looks like:
> summary(tr)

transactions as itemMatrix in sparse format with
 88162 rows (elements/itemsets/transactions) and
 16470 columns (items) and a density of 0.0006257289

most frequent items:
 39 48 38 32 41 (Other)
 50675 42135 15596 15167 14945 770058

element (itemset/transaction) length distribution:
sizes
 1 2 3 4 5 6 7 8 9 10 11 12 13
3016 5516 6919 7210 6814 6163 5746 5143 4660 4086 3751 3285 2866
 14 15 16 17 18 19 20 21 22 23 24 25 26
2620 2310 2115 1874 1645 1469 1290 1205 981 887 819 684 586
 27 28 29 30 31 32 33 34 35 36 37 38 39
 582 472 480 355 310 303 272 234 194 136 153 123 115
 40 41 42 43 44 45 46 47 48 49 50 51 52
 112 76 66 71 60 50 44 37 37 33 22 24 21

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

 53 54 55 56 57 58 59 60 61 62 63 64 65
 21 10 11 10 9 11 4 9 7 4 5 2 2
 66 67 68 71 73 74 76
 5 3 3 1 1 1 1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 4.00 8.00 10.31 14.00 76.00

includes extended item information - examples:
 labels
1 0
2 1
3 10

The following are the observations made on the preceding output:
°° We have 80,000 baskets of 16,000 items
°° A couple of items are very popular (50,000 of item 39)

4.	 Let's look at the top frequency items:
> itemFrequencyPlot(tr, support=0.1)

Again, we see a few items with frequency that is higher than normal.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[52]

5.	 Now, build some rules on the associations in place:
> rules <- apriori(tr, parameter=list(supp=0.5,conf=0.5))

parameter specification:
confidenceminvalsmaxaremavaloriginalSupport support minlen
 0.5 0.1 1 none FALSE TRUE 0.5 1
 maxlen target ext
 10 rules FALSE

algorithmic control:
 filter tree heap memopt load sort verbose
 0.1 TRUE TRUE FALSE TRUE 2 TRUE

apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[16470 item(s), 88162 transaction(s)] done
[0.13s].
sorting and recoding items ... [1 item(s)] done [0.01s].
creating transaction tree ... done [0.02s].
checking subsets of size 1 done [0.00s].
writing ... [1 rule(s)] done [0.00s].
creating S4 object ... done [0.01s].

6.	 After that, we end up with one rule. Look at a summary of the rule(s):
> summary(rules)

set of 1 rules

rule length distribution (lhs + rhs):sizes
1
1

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1 1 1 1 1 1

summary of quality measures:
 support confidence lift
 Min.:0.5748 Min. :0.5748 Min. :1
 1st Qu.:0.5748 1st Qu.:0.5748 1st Qu.:1
 Median :0.5748 Median :0.5748 Median :1
 Mean :0.5748 Mean :0.5748 Mean :1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

 3rd Qu.:0.5748 3rd Qu.:0.5748 3rd Qu.:1
 Max. :0.5748 Max. :0.5748 Max. :1

mining info:
datantransactions support confidence
 tr 88162 0.5 0.5

The rule has strong support and weak confidence.

7.	 Let's check what the rule is:
> inspect(rules)
lhsrhs support confidence lift
1 {} => {39} 0.5747941 0.5747941 1

As we would have guessed, most people have item 39 in their basket.

8.	 We can look for further information on the rule to get a full idea of its impact:
> interestMeasure(rules, c("support", "chiSquare", "confidence",
"conviction", "cosine", "leverage", "lift", "oddsRatio"), tr)
 sapply(method, FUN = function(m) interestMeasure(x, m,
transactions, reuse, ...))
support 0.5747941
chiSquareNaN
confidence 0.5747941
conviction 1.0000000
cosine 0.7581518
leverage 0.0000000
lift 1.0000000
oddsRatioNaN

These measures are showing complete confidence in the one rule that
was derived.

Determining sequences using TraMineR
The TraMineR package is to mine and visualize sequences. The idea is to discover
sequences. Graphical devices that produce plots for sequence distribution, sequence
frequency, turbulence, and much more are built into the package. Again, there are
many naturally occurring items where the data has a repeated sequence, for example,
there are many social science venues where the data has naturally recurring items.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[54]

In this document, I will walk you through TraMineR to produce a series of sequence
discovery tools. Which of these tools you select in your mining operation will be up
to you.

The TraMineR package comes with a couple of built-in datasets for your use:

Dataset Description
actcal This dataset contains the individual monthly activity statuses from the year 2000
biofam This dataset contains the individual family life states between ages 15 and 30
mvad This dataset contains the individual monthly activity status data

Usage
The seqdef function is used to determine the sequences present in your data:

seqdef(data, var=NULL, informat="STS", stsep=NULL,
 alphabet=NULL, states=NULL, id=NULL, weights=NULL,
 start=1, left=NA, right="DEL", gaps=NA,
 missing=NA, void="%", nr="*", cnames=NULL,
 xtstep=1, cpal=NULL, missing.color="darkgrey",
 labels=NULL, ...)

The various parameters of the seqdef function are explained in the following table:

Parameter Description
data This is your matrix.
var This will have a list of columns containing the sequences, or NULL meaning

all columns are present.
informat This contains the format of the original data. It could be any of the following

formats:
•	 STS

•	 SPS

•	 SPELL

stsep This is the separator.
alphabet This is the list of all possible states.
states This contains the short state labels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Determining sequences in training and careers
In this example, we will look at the sequence of events in people's lives as they
progress from training to becoming fully employed. We are expecting to see a
progression from unemployed and untrained to becoming trained, and finally
moving to full-time employment.

There are several useful functions in the TraMineR package for sequence analysis.
We use seqdef to create a sequence data object for further use by other functions.
This is used to set up or hold parameters for the other methods as follows:

seqdef(data, var=NULL, informat="STS", stsep=NULL,
 alphabet=NULL, states=NULL, id=NULL, weights=NULL, start=1,
 left=NA, right="DEL", gaps=NA, missing=NA, void="%", nr="*",
 cnames=NULL, xtstep=1, cpal=NULL, missing.color="darkgrey",
 labels=NULL, ...)

Most of the arguments can be used with defaults.

As you can see, the seqdata object is the first argument to the plot functions. Instead
of XXX, you will use the actual desired plot function, such as seqiplot used in the
following code:

seqXXXplot(seqdata, group=NULL, type="i", title=NULL,
 cpal=NULL, missing.color=NULL,
 ylab=NULL, yaxis=TRUE, axes="all", xtlab=NULL, cex.plot=1,
 withlegend="auto", ltext=NULL, cex.legend=1,
 use.layout=(!is.null(group) | withlegend!=FALSE),
 legend.prop=NA, rows=NA, cols=NA, ...)

Most of the arguments are standard graphical enhancements you might want in a
plot; for example, ylab is the label for the y axis.

First, we have to get TraMineR loaded into your environment using the following code:

> install.packages("TraMineR")
> library ("TraMineR")

We will use the inbuilt mvad dataset of the TraMineR package. The mvad dataset
tracks 700 individuals in the 1990s as they progress from training to employment.
We can use the mvad dataset as follows:

> data(mvad)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[56]

A summary of the data is as follows:

> summary(mvad)

 id weight male catholic Belfast
 Min.: 1.0 Min.:0.1300 no :342 no :368 no :624
 1st Qu.:178.8 1st Qu.:0.4500 yes:370 yes:344 yes: 88
 Median :356.5 Median :0.6900
 Mean :356.5 Mean :0.9994
 3rd Qu.:534.2 3rd Qu.:1.0700
 Max. :712.0 Max. :4.4600

 N.EasternSouthern S.Eastern Western Grammar funemp
 no :503 no :497 no :629 no :595 no :583 no :595
 yes:209 yes:215 yes: 83 yes:117 yes:129 yes:117

gcse5eqfmprlivboth Jul.93
 no :452 no :537 no :261 school :135
 yes:260 yes:175 yes:451 FE : 97
 employment :173
 training :122
 joblessness:185
 HE : 0

We can see standard identifiers for weight, sex, religion, and so on.

Picking off the sequence data (we are using columns 17 through 86, as they apply to
that person's state at the different points of the data survey) and applying that part
of the data to the sequence determiner function, we can see the following:

> myseq <- seqdef(mvad, 17:86)

 [>] 6 distinct states appear in the data:
 1 = employment
 2 = FE
 3 = HE
 4 = joblessness
 5 = school
 6 = training
 [>] state coding:
 [alphabet] [label] [long label]
1 employmentemploymentemployment
2 FEFEFE
3 HEHEHE
4 joblessnessjoblessnessjoblessness

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

5 schoolschoolschool
6 trainingtrainingtraining
 [>] 712 sequences in the data set
 [>] min/max sequence length: 70/70

This appears to be correct; we are seeing the states (joblessness, school, training,
and employment) that we expected from the raw sequence data.

There are several built-in plots that we can use to visualize the sequences that were
determined. They are as follows:

•	 seqiplot: This is the index plot
•	 seqfplot: This is the frequency plot
•	 seqdplot: This is the distribution plot

Let's try the index plot:

> seqiplot(myseq)

You can see the definite transitions between states of the individuals over time.
It makes sense that something like training occurs over several contiguous months.
You should verify that the display corresponds with your understanding of your
sequence data.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[58]

Now, let's try the frequency plot:

> seqfplot(myseq)

Now, we see the frequency of the sequences over time. Again, it would make sense
that we would see sets of people with the same sequences, such as a period of training
followed by a period of employment.

Now, we will try the distribution plot:

> seqdplot(myseq)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

Here, we see the distribution of sequence states over time. On average, people went
through school or training and started working. Makes sense!

We can look at the entropy of the sequences using the following command:

> seqHtplot(myseq)

There is a slight increase followed by a marked decline in entropy over time. This
corresponds to different people making different choices initially (many states),
such as school or training, and then moving into the workforce with employment
(one state).

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[60]

An interesting idea is turbulence of the data. Turbulence shows how many different
subsequent sequences can be derived from a specific sequence instance that we see
in the data. We can visualize turbulence with the seqST function. The seqST function
takes the sequence data as its argument and returns turbulence data. Let's continue
with our example:

> myturbulence <- seqSt(myseq)
> hist(myturbulence)

We see an almost standard distribution with a long tail. Most of the states fall into a
handful of subsequent states and a few outliers with many or few states.

Similarities in the sequence
The TraMineR package also has the functionality to determine metrics about
sequences, such as dissimilarities between different sequences:

•	 Longest common prefix (LCP): We can compare the longest sequence
prefixes that are the same to determine similarity

•	 Longest common subsequence (LCS): We can look at the longest subsequence,
internal to the sequences, that is the same between two sequences for similarity
as well

•	 Optimal matching (OM) distance: This is the optimal edit distance for cost
in terms of inserts and deletes to produce one sequence from another

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

All of these functionalities are available using the seqdist function in TraMineR.

Sequence metrics
We can compute the LCP with seqdist.

Usage
The seqdist function can be used as follows:

seqdist(seqdata, method, refseq=NULL, norm=FALSE,
 indel=1, sm=NA, with.missing=FALSE, full.matrix=TRUE)

The various parameters of the seqdist function are explained in the following table:

Parameter Description
seqdata This is the state sequence (defined using seqdef)
method This contains the LCP method to be used
refseq This is the optional reference sequence
norm This will normalize the distances
indl This is only used for OM
sm This is the substitution matrix (ignored for LCP)
with.missing This value is TRUE if missing gaps are present
full.matrix If this value is TRUE, a full matrix is returned

Example
Let's see an example of the usage of the seqdist function:

1.	 Use the famform sequence data that is built into the package:
> data(famform)

2.	 Define the sequence object we can use:
> seq <- seqdef(famform)
 [>] found missing values ('NA') in sequence data
 [>] preparing 5 sequences
 [>] coding void elements with '%' and missing values with '*'
 [>] 5 distinct states appear in the data:
 1 = M
 2 = MC
 3 = S
 4 = SC
 5 = U

www.it-ebooks.info

http://www.it-ebooks.info/

Data Mining Sequences

[62]

 [>] state coding:
 [alphabet] [label] [long label]
1 MMM
2 MCMCMC
3 SSS
4 SCSCSC
5 UUU
 [>] 5 sequences in the data set
 [>] min/max sequence length: 2/5
> seq
 Sequence
[1] S-U
[2] S-U-M
[3] S-U-M-MC
[4] S-U-M-MC-SC
[5] U-M-MC

3.	 Determine the LCP that is using sequence 3 and 4:
> seqLLCP(seq[3,],seq[4,])
[1] 4

We get four prefix matches (S-U-M-MC compared to S-U-M-MC-SC)

4.	 We can compute the LCS metric directly:
> seqLLCS(seq[1,],seq[2,])
[1] 2

We find the common sequence at 2.

5.	 The OMD is also determined directly as follows:
> cost <- seqsubm(seq, method="CONSTANT", cval=2)
 [>] creating 5x5 substitution-cost matrix using 2 as constant
value
> cost
 M-> MC-> S-> SC-> U->
M-> 0 2 2 2 2
MC-> 2 0 2 2 2
S-> 2 2 0 2 2
SC-> 2 2 2 0 2
U-> 2 2 2 2 0

The OMD is just 2 (these are very minor sequences that are used to show
the concepts).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Questions
Factual

•	 How will you exclude white people from the eclat results?
•	 Describe the different transitions that occur in the sequence plots.
•	 In the TraMineRmvad data summary, there are marked differences in regional

responses. Can you guess why?

When, how, and why?

•	 Describe what is going on with the few outliers in seqiplot. There are
several data points that don't seem to fit.

•	 What would be going on in the data presented in seqHtplot when the line
curves upward?

•	 How will you apply the sequence finding routines discussed?

Challenges

•	 Determine what the item numbers represent in the market basket data.
•	 The TraMineR package includes much more than what was covered in this

chapter. You could investigate the additional functionality further.

Summary
In this chapter, we discussed different methods of determining patterns in data. We
found patterns in a dataset using the eclat function looking for similar patterns in a
population. We used a TraMineR to find frequent sets of items in a market basket. We
used apriori rules to determine associations among items in a market basket. We used
TraMineR to determine sequences of career transition among adults and visualized
the same with extensive graphics features available for sequence data. Finally, we
examined the similarities and differences between the sequences using seqdist.

In the next chapter, we will cover text mining or examining datasets that are
text-based, rather than numerical or categorical.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining
A large amount of data available is in the form of text, and it is unstructured, massive,
and of tremendous variety. In this chapter, we will have a look at the tools available in
R to extract useful information from text.

This chapter describes different ways of mining text. We will cover the
following topics:

•	 Examining the text in various ways
°° Converting text to lowercase
°° Removing punctuation
°° Removing numbers
°° Removing URLs
°° Removing stop words
°° Using the stems of words rather than instances
°° Building a document matrix delineating uses

•	 XML processing, both orthogonal and of varying degrees
•	 Examples

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[66]

Packages
While the standard R system has a number of features and functions available, one
of the better aspects of R is the use of packages to add functionalities. A package
contains a number of functions (and sometimes sample data) that can be used to solve
a particular problem in R. Packages are developed by interested groups for the general
good of all R developers. In this chapter, we will be using the following packages:

•	 tm: This contains text mining tools
•	 XML: This contains XML processing tools

Text processing
R has built-in functions for manipulating text. These include adjustments to the text
to make it more analyzable (such as using word stems or removing punctuation) and
developing a document matrix showing usage of words throughout a document. Once
these steps are done, we can then submit our documents to analysis and clustering.

Example
In this example, we will perform the following steps:

1.	 We will take an HTML document from the Internet.
2.	 We will clean up the document using text processing functions.
3.	 Then, we will generate a document matrix.
4.	 Finally, we will analyze the document matrix.

I think it is easiest to walk through an example directly using the Corpus tools.
In this case, we will use a recent US Federal Treasury Open Market Committee
statement looking for interesting phrases.

I used Barack Obama's latest State of the Union address (which can be found at
http://www.whitehouse.gov/the-press-office/2014/01/28/president-
barack-obamas-state-union-address) and copied it into a local text file that
we read with R:

> path <- "state-of-the-union.txt"

For processing in R, we need to break this up into chunks or lines using the
following code:

> install.packages("tm")
> library(tm)
> text <- readLines(path,encoding="UTF-8")

www.it-ebooks.info

http://www.whitehouse.gov/the-press-office/2014/01/28/president-barack-obamas-state-union-address
http://www.whitehouse.gov/the-press-office/2014/01/28/president-barack-obamas-state-union-address
http://www.it-ebooks.info/

Chapter 3

[67]

The text variable is an array of the lines of the statement. There are a number of
text functions available that can operate directly on the text in the result, such as
converting all the text to lowercase. Some of the common operations include:

•	 Convert to lowercase: This operation allows for cleaner comparisons.
•	 Remove punctuation: This operation is performed to concentrate on the

text involved.
•	 Remove numbers: This operation is used to concentrate on the text involved.
•	 Remove URLs: This operation is used to avoid the complication of words

appearing in the URLs.
•	 Adjust stop words list: This operation is especially useful when working

with an industry-specific text.
•	 Work with word stems: This operation lets you adjust the text so that only

the word stems appear. This helps to concentrate the focus on the true terms
involved in your text rather than the various forms that appear.

R uses a corpus to manipulate text. A corpus can be created from several sources,
including a VectorSource (text stream). The following code converts the raw text
into a corpus for further processing in R:

> vs <- VectorSource(text)
> elem <- getElem(stepNext(vs))
> result <- readPlain(elem, "en", "id1")
> txt <- Corpus(vs)

Creating a corpus
We need to convert these lines into a corpus for use within R. A corpus is a
collection of texts, usually by an author or on a subject. R programming uses
the term to encompass a set of texts that you consider to be related.

Now, the text data is in a format that can be readily handled by the text mining
package. We can perform the functions on the text mentioned earlier.

Converting text to lowercase
In this section, we will use the document in its R corpus format and convert all of the
text to lowercase. This will help to flatten all references to the same usage. The code
is as follows:

> txtlc <- tm_map(txt, tolower)
> inspect(txt[1])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[68]

<<PlainTextDocument (metadata: 7)>>
Mr. Speaker, Mr. Vice President, Members of Congress, my fellow
Americans:
> inspect(txtlc[1])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
[1] mr. speaker, mr. vice president, members of congress, my fellow
americans:

Removing punctuation
Similarly, we can remove all the punctuation from a corpus. This is a common step
when analyzing text to avoid cases where the same word has different punctuation
applied next to it, but is the same word. The code is as follows:

> txtnp <- tm_map(txt, removePunctuation)
> inspect(txt[1])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
Mr. Speaker, Mr. Vice President, Members of Congress, my fellow
Americans:
> inspect(txtnp[1])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
Mr Speaker Mr Vice President Members of Congress my fellow Americans

Removing numbers
We can remove all the numbers from a corpus. In most cases, specific numbers in
text are not comparable. There is no context to apply to decide whether a number
(by itself) is being used in the same manner from one instance to another. The code
is as follows:

> txtnn <- tm_map(txt, removeNumbers)
> inspect(txt[49])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
Of course, to reach millions more, Congress needs to get on board.
Today, the federal minimum wage is worth about twenty percent
less than it was when Ronald Reagan first stood here. Tom Harkin
and George Miller have a bill to fix that by lifting the minimum
wage to $10.10. This will help families. It will give businesses
customers with more money to spend. It doesn<U+0092>t involve any
new bureaucratic program. So join the rest of the country. Say yes.
Give America a raise.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

> inspect(txtnn[49])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
Of course, to reach millions more, Congress needs to get on board.
Today, the federal minimum wage is worth about twenty percent less
than it was when Ronald Reagan first stood here. Tom Harkin and
George Miller have a bill to fix that by lifting the minimum wage
to $.. This will help families. It will give businesses customers
with more money to spend. It doesn<U+393C><U+3E32>t involve any new
bureaucratic program. So join the rest of the country. Say yes.
Give America a raise.

Removing words
There is a function available to remove stop words from a corpus. This is typically used
to remove all the short, English words that bear no additional meaning to your analysis.
However, stop words exist in all languages. Stop words are normally removed so that
you end up with words of particular meaning from the speaker/author. Stop words are
words like "the" and "and"—while necessary, they add no value to your context. You
can adjust the standard stop words for the language of interest by just adding them to
the collection. The code is as follows:

> txtns <- tm_map(txt[1], removeWords, stopwords("english"))
> inspect(txtns)
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
Mr. Speaker, Mr. Vice President, Members Congress, fellow Americans:
> inspect(txt[1])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
Mr. Speaker, Mr. Vice President, Members of Congress, my fellow
Americans:

Removing whitespaces
I think removing whitespaces has little to do with standard text mining; the functions
that you are employing will disregard whitespace already. This function provides
a way to clean up your intermediary results for better presentation. The code is
as follows:

> txtnw <- tm_map(txt[30], stripWhitespace)
> inspect(txtnw)
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[70]

<<PlainTextDocument (metadata: 7)>>
The ideas I<U+393C><U+3E32>ve outlined so far can speed up growth and
create more jobs. But in this rapidly-changing economy, we have to
make sure that every American has the skills to fill those jobs.
> inspect(txt[30])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
The ideas I<U+0092>ve outlined so far can speed up growth and create
more jobs. But in this rapidly-changing economy, we have to make sure
that every American has the skills to fill those jobs.

Note that stripWhitespace also collapsed the punctuation from two extended
characters to one.

Word stems
We can adjust the corpus to use only word stems. A word stem is the base or root of
a word, regardless of the current inflection or usage. For example, the words "wait",
"waiting", "waits", and "waited" all have the same stem:"wait". This allows cleaner
comparison of the text with the different radicals that may appear in usage.

In this process, we will perform the following steps:

1.	 We will need a dictionary for the process to use as a basis for the translation.
We will use the original corpus as the dictionary.

2.	 Create a corpus of the word stem bases.
3.	 Complete the corpus from the stem bases and the dictionary we have stored.

The code is as follows:

> inspect(txt[86])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
My fellow Americans, men and women like Cory remind us that America
has never come easy. Our freedom, our democracy, has never been
easy. Sometimes we stumble; we make mistakes; we get frustrated
or discouraged. But for more than two hundred years, we have put
those things aside and placed our collective shoulder to the wheel
of progress <U+0096> to create and build and expand the possibilities
of individual achievement; to free other nations from tyranny and
fear; to promote justice, and fairness, and equality under the law,
so that the words set to paper by our founders are made real for every
citizen. The America we want for our kids <U+0096> a rising America
where honest work is plentiful and communities are strong; where
prosperity is widely shared and opportunity for all lets us go as far

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[71]

as our dreams and toil will take us <U+0096> none of it is easy. But
if we work together; if we summon what is best in us, with our feet
planted firmly in today but our eyes cast towards tomorrow <U+0096> I
know it<U+0092>s within our reach.
> txtstem <- tm_map(txt, stemDocument)
> inspect(txtstem[86])
<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
My fellow Americans, men and women like Cori remind us that America
has never come easy. Our freedom, our democracy, has never been
easy. Sometim we stumble; we make mistakes; we get frustrat or
discouraged. But for more than two hundr years, we have put those
thing asid and place our collect shoulder to the wheel of progress
<U+393C><U+3E36> to creat and build and expand the possibl of individu
achievement; to free other nation from tyranni and fear; to promot
justice, and fairness, and equal under the law, so that the word set
to paper by our founder are made real for everi citizen. The America
we want for our kid <U+393C><U+3E36> a rise America where honest work
is plenti and communiti are strong; where prosper is wide share and
opportun for all let us go as far as our dream and toil will take us
<U+393C><U+3E36> none of it is easy. But if we work together; if we
summon what is best in us, with our feet plant firm in today but our
eye cast toward tomorrow <U+393C><U+3E36> I know it<U+393C><U+3E32>
within our reach
> txtcomplete <- tm_map(txtstem, stemCompletion, dictionary=txt)
> inspect(txtcomplete[86])

I have highlighted some of the words that have changed to stems in the
following output:

<<VCorpus (documents: 1, metadata (corpus/indexed): 0/0)>>
[[1]]
My fellow Americans, men and women like Cori remind us that America
has never come easy. Our freedom, our democracy, has never been easy.
Sometim we stumble; we make mistakes; we get frustrat or discouraged.
But for more than two hundr years, we have put those thing asid and
place our collect shoulder to the wheel of progress to creat and
build and expand the possibl of individu achievement; to free other
nation from tyranni and fear; to promot justice, and fairness, and
equal under the law, so that the word set to paper by our founder
are made real for everi citizen. The America we want for our kid a
rise America where honest work is plenti and communiti are strong;
where prosper is wide share and opportun for all let us go as far as
our dream and toil will take us none of it is easy. But if we work
together; if we summon what is best in us, with our feet plant firm
in today but our eye cast toward tomorrow I know it within our reach
content
<NA>
meta

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[72]

I understand that this process produces more readily comparable results. However,
the use of stemmed words in a document appears alien when you read the sentences.
It will probably be useless to produce a stemmed document for display purposes.

Document term matrix
One of the more interesting tools is the document term matrix. A document term
matrix describes the frequency of terms that occur in a collection of documents.
So, for each document, it contains the number of times a term occurs within that
document. In our case, it contains the frequency of each of the keywords found
and their occurrence in each of the documents (or lines/paragraphs).

Once we have a document term matrix, we can then more easily apply statistical
analysis to the text that we are analyzing. The document term matrix walks through
the text and counts the usage of terms throughout and serves as a holder for these
counts. The code is as follows::

> dtm <- DocumentTermMatrix(txt)
> dtm
<<DocumentTermMatrix (documents: 87, terms: 2130)>>
Non-/sparse entries: 4615/180695
Sparsity : 98%
Maximal term length: 19
Weighting : term frequency (tf)

As you look through the matrix, you can see a lot of meaningless words as well, such
as "the." You can remove these from the count by transforming the initial dataset.

First, we create a corpus of the text lines we loaded. Then, we can run a transformation
function to remove unwanted words from a list from the corpus. As you can tell from
the syntax, there are a number of transformations that can be applied to your data:

> txt <- tm_map(txt, removeWords, stopwords("English"))

We can also reduce the sparsity of the matrix by using the tm package function to
remove sparse terms. Notice that we went from 4,600 nonsparse terms down to
1,700. This is a drastic reduction to have an effect. The reduction in sparse entries
from 180,000 to 9,000 is also very significant! The code for the tm package function
is as follows:

> dtm2 <- removeSparseTerms(dtm, 0.94)
> inspect(dtm2)
<<DocumentTermMatrix (documents: 87, terms: 127)>>
Non-/sparse entries: 1719/9330
Sparsity : 84%
Maximal term length: 11

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[73]

Weighting : term frequency (tf)
…
 Terms
Docs and any are because been believe build business businesses
 1 0 0 0 0 0 0 0 0 0
 2 1 0 0 0 0 0 0 0 0
 3 1 0 0 0 0 0 0 0 1
 4 1 0 0 0 0 0 0 0 0
 5 3 0 0 0 0 0 0 0 0
 6 0 0 0 0 0 0 0 0 0
 7 1 0 1 0 0 0 0 1 0
 8 1 1 0 0 0 1 0 0 0
 9 1 0 2 0 1 0 0 0 0
…

There are still several thousand nonsparse terms at work in the matrix. This is
just a few of them. I think it is useful to look over the matrix to visually scan for
unexpected cases of larger use. In many cases, some of the more frequent words
may be surprising at first, but then upon contemplation they fit the context.

We can look for associations of different words as they appear, as shown in the
following example:

> findAssocs(dtm, "work", 0.15)
 work
and 0.45
most 0.45
hard 0.41
want 0.41
future 0.39
but 0.38
are 0.36
the 0.35
who 0.35
help 0.33
years, 0.33
create 0.32
our 0.32
new 0.31
build 0.29

Looks like Obama wants us to work hard for our future.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[74]

Using VectorSource
Now that you have seen some of the functions of the tm package in action, we can
examine their usage more closely. In R programming, when we are dealing with text,
the text must have a source. A source is the raw text stream that we are analyzing. In
this case, we will use a VectorSource instance that takes the text and aligns it into
a vector (as in a math vector) of words that appear in the source. Once we have a
VectorSource, it is used for further R processing:

VectorSource(x, encoding = "unknown")

Here, x is the vector and encoding stores the assumed encoding for input strings.

The getElem function establishes the source passed for further data access in R:

getElem(source)

The stepNext function updates the position of the source for further use:

stepNext(source)

A Corpus is a collection of data source that can be used for further processing:

Corpus(source)

A DocumentTermMatrix shows the usage of terms across a corpus:

dtm <- DocumentTermMatrix(x, control=)

The terms appearing in the preceding command are explained as follows:

•	 x: This is the corpus.
•	 control: This is the named list of control options. Some options are specific

to further uses. The global options available are:
°° bounds: This is the range of corpus to be used
°° weighting: This has the weighting function to be used for the

terms encountered

The tm_map function is an interface that is used to apply transformations to a corpus:

tm_map(x, FUN, …, lazy=TRUE)

The terms appearing in the preceding command are explained as follows:

•	 x: This is the corpus to which the transformations will be applied
•	 FUN: This is the transformation to be applied
•	 lazy: If this is set as TRUE, it allows lazy data access to be performed

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[75]

The removeWords function will remove the words provided from a text document:

removewords

The stopWords set is a list of common English stop words:

stopWords

The removeSparseTerms function is used to remove sparsely populated terms for a
document matrix:

removeSparseTerms(x, sparse)

The terms appearing in the preceding command are explained as follows:

•	 x: This is the corpus.
•	 sparse: This contains the value for maximum sparsity to be allowed.

It ranges from greater than 0 to less than 1.

The findAssocs function is used to find associations between words in a
document matrix:

findAssocs(x, terms, corlimit)

The terms appearing in the preceding command are explained as follows:

•	 x: This is the corpus
•	 terms: These are the terms for which we have to find associations
•	 corlimit: This contains the lower correlation limits to explore

So, we took some raw text (pretty much straight from the Internet); cleaned up
the usage, numbers, and punctuation; drew out the roots of the words; produced a
vector of the uses; and performed some preliminary analysis in several fairly short,
clear steps.

Text clusters
We can use the same clustering techniques that we saw in Chapter 2, Data Mining
Sequences, against our text to look for relationships. Clustering is typically used in
numerical analysis where we are trying to group together like observations based
on commonality or closeness of the observation data points. In text analysis, we are
repeating the same operation with clusters: trying to determine the relationships
between word usage across a document.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[76]

We are using k-means clustering in this example. K-means clustering reduces the
sum of squares differences between relationships and group/cluster words where
the distances are minimized to the thresholds specified, in this case, the number of
clusters specified.

We can implement k-means clustering as follows:

> library(stats)
> mymeans <- kmeans(dtm,5)
> mymeans
K-means clustering with 5 clusters of sizes 9, 33, 14, 21, 10

Cluster means:
 about access all america\u0092samerica
1 0.11111111 0.22222222 0.55555556 0.00000000 0.55555556
2 0.06060606 0.06060606 0.09090909 0.03030303 0.09090909
3 0.14285714 0.00000000 0.28571429 0.21428571 0.28571429
4 0.09523810 0.09523810 0.19047619 0.04761905 0.23809524
5 0.10000000 0.00000000 0.30000000 0.10000000 0.10000000
americanamericans and any are because
1 0.3333333 0.0000000 7.888889 0.11111111 1.00000000 0.33333333
2 0.1212121 0.1818182 0.969697 0.03030303 0.03030303 0.09090909
3 0.2142857 0.5714286 3.642857 0.00000000 0.28571429 0.21428571
4 0.3809524 0.2857143 2.428571 0.04761905 0.47619048 0.19047619
5 0.2000000 0.2000000 3.500000 0.30000000 0.40000000 0.20000000

… (many more cluster displays)

Clustering vector:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 2 2 2 2 4 2 4 2 4 4 4 2 3 3 1 4 2 2 3 5 4 5
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 4 2 5 3 5 1 1 2 4 3 2 2 4 3 2 2 1 2 4 4 3 4
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
 3 2 3 3 4 3 4 2 2 2 2 2 2 4 4 2 4 5 2 3 5 5
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
 1 5 1 1 3 5 4 2 1 4 4 5 2 2 2 2 3 2 2 1 2

Within cluster sum of squares by cluster:
[1] 407.3333 377.6970 507.1429 723.1429 287.1000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[77]

 (between_SS / total_SS = 33.6 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"
[5] "tot.withinss" "betweenss" "size" "iter"
[9] "ifault"

If you look at the summary data, you will see that we need to remove the sparse
entries (600 centers!):

> summary(mymeans)
 Length Class Mode
cluster 87 -none- numeric
centers 635 -none- numeric
totss 1 -none- numeric
withinss 5 -none- numeric
tot.withinss 1 -none- numeric
betweenss 1 -none- numeric
size 5 -none- numeric
iter 1 -none- numeric
ifault 1 -none- numeric

We can find the most frequently used terms (mentioned at least 10 times) (which still
have stop words, such as ".", "and", and so on):

> freq <- findFreqTerms(dtm,10)

> freq

[1] "all" "america" "american" "americans"
 [5] "and" "are" "because" "businesses"
 [9] "but" "can" "congress" "country"
[13] "every" "first" "for" "from"
[17] "get" "give" "has" "have"
[21] "help" "here" "his" "it\u0092s"
[25] "jobs" "just" "keep" "know"
[29] "last" "let\u0092s" "like" "make"
[33] "more" "new" "not" "one"
[37] "opportunity" "our" "over" "people"
[41] "reform" "some" "states" "support"
[45] "than" "that" "that\u0092s" "the"
[49] "their" "they" "this" "those"
[53] "time" "we\u0092re" "what" "when"
[57] "who" "will" "with" "work"
[61] "working" "you"

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[78]

We can plot the cluster dendogram for a picture of the relationships:

> m2 <- as.matrix(dtm)
> dm <- dist(scale(m2))
> fit <- hclust(dm, method="ward")
> plot(fit)

It is interesting that the words line up into two groups. I had expected a
wider distribution.

Word graphics
In this section, we will use FED Open Market comment (FOMC) text (where the
previous steps have been performed).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[79]

We can plot the (top 10) frequent terms (with a minimum of five uses) and their
relationships as they appear in the corpus:

> source("http://bioconductor.org/biocLite.R")
> biocLite("Rgraphviz")
> plot(dtm, terms = findFreqTerms(dtm, lowfreq = 5)[1:10],
corThreshold = 0.5)

You can see the key concepts: inflation, economic, conditions, employment, and
the FOMC. This makes sense. This is exactly what you would expect the FOMC to
talk about.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[80]

We can see a bar graph of the frequent words (with counts over 10) using R:

> library(ggplot)
I had renamed the word frequency object, freq, to wf to make this
example clearer
> p <- ggplot(subset(wf, freq>10), aes(word,freq))
> p <- p + geom_bar(stat="identity")
> p <- p + theme(axis.text.x=element_text(angle=45, hjust=1))
> p

Again, we still have stop words ("and" and "the"). The occurrence of "committee" and
"inflation" is significant. This is consistent with prior results.

We can generate a word cloud of the frequent words:

> install.packages("wordcloud")
> library(wordcloud)
> wordcloud(names(wf), freq, min.freq=10)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[81]

In this case, we have such a small dataset that we don't see terms that are of
much interest. It is curious that the word "market" showed up frequently
enough to warrant display.

Analyzing the XML text
In this section, we use R to process XML data. For testing purposes, I am using the
sample books' XML, which can be found at http://msdn.microsoft.com/en-us/
library/ms762271%28v=vs.85%29.aspx and stored in a local XML file.

So, let's load the XML data into R:

> install.packages("XML")
> library(XML)
> url <- "books.xml"
> data <- xmlParse(url)

The XML package works as and when required. As the source XML file may be large,
the functions will not load much data until required. You may find that the data
object has no content at this point.

Have the XML package parse the entire XML stream and convert it to a list:

> df <- xmlToDataFrame(data)

Look at the first row in the list (so we can get the column headings):

> colnames(df)
[1] "author" "title" "genre"
[4] "price" "publish_date" "description"

In this case we had a consistent XML, so the XML converted readily to a data frame.
For example, we can compute the average book price using the following code:

> mean(as.numeric(df$price))
[1] 3.416667

Another interesting case is where the data is not consistent and cannot be easily
transformed to a data frame. In this example case, we can use the course listing
from the University of Washington (http://www.cs.washington.edu/research/
xmldatasets/data/courses/uwm.xml).

When working with XML, we need to move into the actual data in the document.
This is done by accessing the root of the document as follows:

> root <- xmlRoot(data)

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ms762271%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms762271%28v=vs.85%29.aspx
http://www.cs.washington.edu/research/xmldatasets/data/courses/uwm.xml
http://www.cs.washington.edu/research/xmldatasets/data/courses/uwm.xml
http://www.it-ebooks.info/

Text Mining

[82]

At this point, root maps directly to the XML. The root field we have is a collection
of the subjects offered, as shown in the following display for the first course offering:

> root[1]
$course_listing
<course_listing>
 <note>#</note>
 <course>216-088</course>
 <title>NEW STUDENT ORIENTATION</title>
 <credits>0</credits>
 <level>U</level>
 <restrictions>; ; REQUIRED OF ALL NEW STUDENTS. PREREQ: NONE</
restrictions>
 <section_listing>
 <section_note/>
 <section>Se 001</section>
 <days>W</days>
 <hours>
 <start>1:30pm</start>
 <end/>
 </hours>
 <bldg_and_rm>
 <bldg>BUS</bldg>
 <rm>S230</rm>
 </bldg_and_rm>
 <instructor>Gusavac</instructor>
 <comments>9 WKS BEGINNING WEDNESDAY, 9/6/00 </comments>
 </section_listing>
 <section_listing>
 <section_note/>
 <section>Se 002</section>
 <days>F</days>
 <hours>
 <start>11:30am</start>
 <end/>
 </hours>
 <bldg_and_rm>
 <bldg>BUS</bldg>
 <rm>S171</rm>
 </bldg_and_rm>
 <instructor>Gusavac</instructor>
 <comments>9 WKS BEGINNING FRIDAY, 9/8/00 </comments>
 </section_listing>
</course_listing>

attr(,"class")
[1] "XMLInternalNodeList" "XMLNodeList"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[83]

We can get a list of the fields that appear in each XML node:

> fields <- xmlApply(root, names)
> fields
$course_listing
 note course title
 "note" "course" "title"
 credits level restrictions
 "credits" "level" "restrictions"
 section_listing
"section_listing"

… (2000 more)

So, as expected, every class has a note, title, and so on. Looking at the data, we can
see there is a variety of section_listing entries depending on how many sections
are offered for a particular subject. The section_listing entry is a whole new
subtree; hence, it is shown in quotations in the previous code example.

We can verify there are significant differences by checking the XML:

> table(sapply(fields, identical, fields[[1]]))
FALSE TRUE
 1779 333

It looks like over 300 subjects have a number of sections offered. This precludes
our easily porting the XML tree into a matrix and/or data frame, as the data
is not consistent from one node to another.

We can make sure we have the right list of fields (rather than the cursory
glance earlier):

> unique(unlist(fields))
[1] "note" "course" "title"
[4] "credits" "level" "restrictions"
[7] "section_listing"

So, we want to categorize the data in some manner. What are the different levels that
are available for the courses? Let's find out:

> unique(xpathSApply(data,"//*/level",xmlValue))
[1] "U" "G" "U/G"

A standard mechanism of extracting information from XML is the use of a path.
A path describes the direction you want to take from the node used as a starting
point down to the specific test in mind.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[84]

In the case of the previous command, we tell R to start with data or the base of the
XML document. From there, go down two levels (the first level is taken up by the base
of the document and the second level would be course_listing). You should be able
to follow along the path specified in the previous sample output. We then look for
instances of the level field. Each value of the level field are put into a result. All of
the results are put into a uniqueness test and the output is placed on screen.

We see three levels of classes: graduate (G), undergraduate (U), and something that
appears to be offered as graduate or undergraduate (U/G), probably depending on
the student taking the subject.

What is the breakdown between the levels? A standard technique in R is to take the
raw values found in the path and add them to a table. As the same values are found
when added to the table, a simple counter is expanded:

> table(xpathSApply(data,"//*/level",xmlValue))
 G U U/G
 511 1154 447

I think this breakdown is probably consistent with other schools: the majority of
the subjects are at the undergraduate level. It is interesting that the undergraduate
classes almost outnumber the graduate classes.

Which instructor is teaching the most? We use the same approach, following the path
down to the instructor and putting the results in a table:

> instructors <- table(xpathSApply(data,"///*/instructor",xmlValue))
>instructors
 … PeteringSurerus
 1
 Peterson
 42
 PetersonFaculty
 1
 Pevnick
 2
 Phillabaum
 9
 Phillips
 10 …
> which.max(instructors)
 TA
1108
> which.min(instructors)
Abler
 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[85]

There are built-in mechanisms to get the maximum and minimum values from a
table. It is interesting that TA is mentioned the most number of times; maybe there
are many subjects that are possible, but not probable.

What course has the most sections? This can be found out by using the
following command:

> sections <- table(xpathSApply(data,"//*/section_listing",xmlValue))
> which.max(sections)
Se 101To be ArrangedFaculty
 3739

It appears that a majority of the sections are TA. That seems odd.

If we look at the credits offered in various subjects, we see the following result:

> credits <- table(xpathSApply(data,"//credits",xmlValue))

> credits

 0 0-1 0@ 1 1-12 1-2 1-3 1-4 1-5 1-5H 1-6 1-9 1-9H 1@
 4 2 2 233 84 12 84 27 1 1 51 7 2 16
 12 1H1or2 2 2-10 2-12 2-3 2-4 2-6 2or32or4 3 3-4 3-5
 1 1 5 182 1 2 22 9 7 8 1 1204 1 3
 3-6 3@ 3H3or43or6 4 5 6 8 9
 8 1 10 2 9 76 8 23 1 1

> xpathSApply(data,"//*[credits=12]",xmlValue)
[1] "+930-401THERAPEUTIC RECREATION INTERNSHIP AND SEMINAR12U; ;
PREREQ: MUST HAVE COMPLETED ALL COURSE WORK IN THE THERRECMAJORSe001W9
:00am10:40amEND953Thomas"

When we display the generated credits table, we see that a large number of subjects
appear to be offered with a range of credits. We also see a standard problem with
large data: bad data, such as the 0@ credits.

There is one subject offered with 12 credits, which we can use a slightly different
path to find. Here, we move down two levels again, find the credits field, and
look for a value of 12. The entirety is returned as a result of the apply function.

The field values are displayed one after another irrespective
of field names.

www.it-ebooks.info

http://www.it-ebooks.info/

Text Mining

[86]

Questions
Factual

•	 How does using lowercase help in analyzing text?
•	 Why are there so many sparse entries? Does this number make sense?
•	 Determine how to order the instructors matrix.

When, how, and why?

•	 How would you remove the Unicode sequences from the text?
•	 In what list of terms would you be interested in finding associations?
•	 How could you adjust the course credits to be inclusive of the ranges

of credits?

Challenges

•	 Can you determine the benefit of using word stems in the analysis?
•	 Can you figure out how to display the actual text words in the dendogram

rather than their index point?
•	 Is there a way to convert a non-heterogeneous XML dataset to a matrix?

Summary
In this chapter, we discussed different methods of mining against a text source.
We took a raw document, cleaned it up using built-in R functions, and produced a
corpus that allowed analysis. We were able to remove sparse terms and stop words
to be able to focus on the real value of the text.

From the corpus, we were able to generate a document term matrix that holds all of
the word references in a source.

Once the matrix was available, we organized the words into clusters and plotted
the data/text accordingly. Similarly, once in clusters, we could perform standard
R clustering techniques to the data.

Finally, we looked at using raw XML as the text source for our processing and
examined some of the XML processing features available in R.

In the next chapter, we will be covering regression analysis.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression
Analysis

Regression analysis is one of the first tools used when analyzing your dataset.
It involves estimating the relationship between variables, and often it will give
you an immediate insight into the organization of your data.

In this chapter, we will look at tools available in R for regression analysis:

•	 Simple regression
•	 Multiple regression
•	 Multivariate regression
•	 Robust regression

Packages
In R, there are several packages available that provide the programmer with the
regression functionality. We will be using the following packages in the examples:

•	 chemometrics: This package has tools to analyze chemometric
data (multivariate)

•	 MASS: This package offers modern applied statistics with S

Simple regression
In simple regression, we try to determine whether there is a relationship between
two variables. It is assumed that there is a high degree of correlation between the
two variables chosen for use in regression.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[88]

For this section, we will be using the iris dataset. The iris dataset has observations
of the different characteristics of iris plants. For regression, we are seeing if there is
a relationship between one characteristic of iris plants and others. As mentioned,
the characteristics tested will have a high degree of correlation. The iris dataset
is as follows:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")

Let's also clean up the data so as to be more readable:

>colnames(data) <- c("sepal_length", "sepal_width", "petal_length",
"petal_width", "species")

Now, let's look at a summary to get an overall picture:

> summary(data)
sepallength sepal_width petal_length
 Min. :4.300 Min. :2.000 Min. :1.000
 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
 Median :5.800 Median :3.000 Median :4.400
 Mean :5.848 Mean :3.051 Mean :3.774
 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
 Max. :7.900 Max. :4.400 Max. :6.900
petal_width species
 Min. :0.100 Iris-setosa :49
 1st Qu.:0.300 Iris-versicolor:50
 Median :1.300 Iris-virginica :50
 Mean :1.205
 3rd Qu.:1.800
 Max. :2.500

We can look at plots of the data points to try to determine what variables appear to
be related:

> plot(data)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

What if we were to use petal length to predict petal width? The two plots show a nice
linear relationship. The only concern would be that there appears to be two clusters.
Intuitively, there should be a strong relationship between the two. We can check this
using R:

>cor(data$petal_length,data$petal_width)
[1] 0.9623143

And we see a high correlation between the two. If we go ahead and determine the
regression between the two, we see:

> fit <- lm(data$petal_length ~ data$petal_width)
> fit
Call:
lm(formula = data$petal_length ~ data$petal_width)

Coefficients:
 (Intercept) data$petal_width
 1.093 2.224

We can display the fit information. The fit information displays four charts:
Residuals vs Fitted, Normal Q-Q, Scale-Location, and Residuals vs Leverage.

If you remember, the residuals are the difference between the observed data and the
fitted or projected values from the model. So, for the Residuals vs Fitted plot, we see
some variance.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[90]

The Qs stand for quantile, the normalized quantile of the data point versus the
actual. I think the Normal Q-Q graphic is very typical for plots I have seen—majority
of the data is in the same quantile, with some degree of variation at the foot and the
head of the plot.

The Scale-Location plot shows the square root of the standardized residuals as a
function of the fitted values. You can see columns of data points, as there is not
enough data to cover a wider area. There is a pretty big variety in the fitted values.

Leverage is the importance of a data point in determining the regression result. The
Residuals vs Leverage graphic is overlayed with Cook's distance—another measure
of importance of a data point. Overall, we see consistent importance of the data
points at all levels.

Let's display the fit information:

>par(mfrow=c(2,2)) # set the plot area to 2 plots by 2 plots
> plot(fit)

We can use the regression variables in predicting a formula (ordered in the standard
y = mx + c format):

petal_length = petal_width * 2.224 + 1.093

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

We can look at the differences between the observed values and the fitted values
using the residuals() function:

> residuals(fit)
 1 2 3 4
-0.138259922 -0.238259922 -0.038259922 -0.138259922
 5 6 7 8
-0.283118763 -0.360689343 -0.038259922 -0.138259922
 9 10 11 12
 0.184169498 -0.038259922 0.061740078 0.084169498
…

There are differences for every data point with valid data (149 data points). A rough
scan doesn't reveal any outliers. However, a summary produces meaty results:

> summary(fit)

Call:
lm(formula = data$petal_length ~ data$petal_width)

Residuals:
 Min 1Q Median 3Q Max
-1.33171 -0.30741 -0.01956 0.25988 1.39259

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.09340 0.07384 14.81 <2e-16 ***
data$petal_width 2.22429 0.05184 42.91 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4801 on 147 degrees of freedom
Multiple R-squared: 0.926, Adjusted R-squared: 0.9255
F-statistic: 1841 on 1 and 147 DF, p-value: <2.2e-16

The summary shows us several points about the regression:

•	 First, it shows what the model is based on (petal length and width).
•	 It shows the range of residuals. The residuals appear to be in a small range. It

is interesting that the upper and lower bounds have the same absolute range.
•	 The coefficients' (in this case, we are only using one variable, so coefficient)

values are presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[92]

•	 We see an intercept of 1. I think that is reasonable looking back at the data.
The standard error is pretty low. The probability greater than t value is very
low. I think there is confidence in the estimate.

•	 We see a petal width estimate of 2.2. Again, this looks good as seen in
the raw data, with a similar low standard error and very low estimate
of the difference.

The residuals vary from -1 to +1, which appears to be a broad range. Here is the
raw data:

sepal_
length

sepal_
width

petal_
length

petal_
width

species

1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
5 5.4 3.9 1.7 0.4 Iris-setosa
(more)
95 5.7 3.0 4.2 1.2 Iris-versicolor
96 5.7 2.9 4.2 1.3 Iris-versicolor
97 6.2 2.9 4.3 1.3 Iris-versicolor
98 5.1 2.5 3.0 1.1 Iris-versicolor
99 5.7 2.8 4.1 1.3 Iris-versicolor
100 6.3 3.3 6.0 2.5 Iris-virginica
101 5.8 2.7 5.1 1.9 Iris-virginica
102 7.1 3.0 5.9 2.1 Iris-virginica

We can see that such residual values are too extreme, at least for Iris-setosa. The
other two varieties might show a better fit or at least different regressions. We can
remove the setosa observations from the data with the following command:

> data2<- subset(data, data$species!='Iris-setosa')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

We can see how the various plots look:

> plot(data2)

We can see a more clustered relationship between petal length and petal width.
The setosa data was definitely responsible for the extra cluster that appeared in
the earlier plots. Unfortunately, the data does appear to be more scattered.

Let's run the regression against the subset produced:

>cor(data2$petal_length,data2$petal_width)

[1] 0.8233476

> fit <- lm(data2$petal_length ~ data2$petal_width)

> summary(fit)

Call:
lm(formula = data2$petal_length ~ data2$petal_width)

Residuals:
 Min 1Q Median 3Q Max
-0.9842 -0.3043 -0.1043 0.2407 1.2755

Coefficients:
 Estimate Std. Error t value Pr(>|t|)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[94]

(Intercept) 2.2240 0.1926 11.55 <2e-16 ***
data2$petal_width 1.6003 0.1114 14.36 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4709 on 98 degrees of freedom
Multiple R-squared: 0.6779, Adjusted R-squared: 0.6746
F-statistic: 206.3 on 1 and 98 DF, p-value: <2.2e-16

The correlation dropped from 0.96 to 0.82—this is not good.

While the residual standard error has not changed, we have reduced our degrees
of freedom from 147 to 98. Reducing the standard error on the regression is a good
thing—it means we are closer to the observed data points with our modeled data.
However, the R-squared dropped significantly from 0.926 to 0.6779.

The f-statistic dropped from 1800 to 200 with the p-value unchanged with a good,
small value. Overall, I don't think we can exclude setosa from the evaluation.

I think it is important to try to test different subsets of your data to make sure they
are all truly in agreement.

Multiple regression
In multiple regression, we are using more than one predictor to predict a variable.

For the multiple regression, we will be using obesity data from the Austrian
Department of Public Health, which can be found at http://www.biostat.au.dk/
teaching/postreg/AllData.htm.

First, let's load the data into R. We start with the Excel file at http://www.biostat.
au.dk/teaching/postreg/obese.xls, save it locally as a CSV file, and then read
the CSV file in normally to R:

> data <- read.csv("obese.csv")

We should always get an idea of the data ranges with a summary:

> summary(data)

 sex sbp dbp
 Min. :1.000 Min. : 80.0 Min. : 40.00
 1st Qu.:1.000 1st Qu.:116.0 1st Qu.: 74.00
 Median :2.000 Median :130.0 Median : 80.00
 Mean :1.564 Mean :132.8 Mean : 82.53
 3rd Qu.:2.000 3rd Qu.:144.0 3rd Qu.: 90.00

www.it-ebooks.info

http://www.biostat.au.dk/teaching/postreg/AllData.htm
http://www.biostat.au.dk/teaching/postreg/AllData.htm
http://www.biostat.au.dk/teaching/postreg/obese.xls
http://www.biostat.au.dk/teaching/postreg/obese.xls
http://www.it-ebooks.info/

Chapter 4

[95]

 Max. :2.000 Max. :270.0 Max. :148.00

scl age bmi id
 Min. :115.0 Min. :30.00 Min. :16.20 Min. : 1
 1st Qu.:197.0 1st Qu.:39.00 1st Qu.:22.80 1st Qu.:1174
 Median :225.0 Median :45.00 Median :25.20 Median :2350
 Mean :228.3 Mean :46.03 Mean :25.63 Mean :2349
 3rd Qu.:255.0 3rd Qu.:53.00 3rd Qu.:28.00 3rd Qu.:3524
 Max. :568.0 Max. :66.00 Max. :57.60 Max. :4699
 NA's :32

 obese
 Min. :0.0000
 1st Qu.:0.0000
 Median :0.0000
 Mean :0.1281
 3rd Qu.:0.0000
 Max. :1.0000

We have six possible variables to predict obesity (where 1 is for obese and 0 is for
not obese):

•	 sex: 1 represents male and 2 represents female
•	 sbp: This represents systolic blood pressure
•	 dbp: This represents dystolic blood pressure
•	 scl: This represents serum cholesterol level
•	 age: This represents the age of the patient
•	 bmi: This represents body mass index

Assuming all these variables have an effect on obesity, we create a model based on
the variables:

> model <- lm(data$obese ~ data$sex + data$sbp + data$dbp + data$scl +
data$age + data$bmi)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[96]

Let's look at the standard x/y plots for the various data items:

> plot(data)

Most of the data looks like a large blob covering all data points. The only correlation
appears to exist with sbp and dbp.

Let's look at the summary statistics for a quick check:

> summary(model)

Call:
lm(formula = data$obese ~ data$sex + data$sbp + data$dbp + data$scl +
data$age + data$bmi)

Residuals:
 Min 1Q Median 3Q Max
-1.01539 -0.16764 -0.03607 0.11271 0.68603

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.389e+00 3.390e-02 -40.970 <2e-16 ***
data$sex 6.479e-02 7.118e-03 9.101 <2e-16 ***
data$sbp 1.030e-04 2.630e-04 0.392 0.6954
data$dbp -7.374e-06 4.562e-04 -0.016 0.9871
data$scl -1.229e-04 8.258e-05 -1.488 0.1368
data$age -1.121e-03 4.625e-04 -2.425 0.0154 *

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

data$bmi 5.784e-02 9.287e-04 62.285 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2382 on 4651 degrees of freedom
 (32 observations deleted due to missingness)
Multiple R-squared: 0.4922, Adjusted R-squared: 0.4915
F-statistic: 751.2 on 6 and 4651 DF, p-value: <2.2e-16All of the
coefficients are very small; large degrees of freedom; small standard
error; small f-statistic p-value: looks ok.

We will gather some more statistics on the relationship.

The residuals look mixed. The range is varying from about -1 to 1. The planned data
should only be from 0 to 1. We can take a look at the residual as follows:

>resid(model)

-0.3593690076 -0.0520330610 -0.1306809185 -0.0785678149
 4656 4657 4658 4659
-0.0475088136 -0.3754792745 -0.0542681627 -0.3179715071
 4661 4662 4663 4664
-0.0710123758 0.0397175807 0.5118121778 -0.3075321204
 4665 4666 4667 4668
-0.1689782711 -0.1014993845 0.4396866832 0.6248164103
 4669 4670 4671 4672
(more)

Similarly, the fitted predictions are not particularly accurate either:

>fitted(model)

0.0710123758 -0.0397175807 0.4881878222 0.3075321204
 4665 4666 4667 4668
 0.1689782711 0.1014993845 0.5603133168 0.3751835897
 4669 4670 4671 4672
 0.2272450653 0.2090975000 -0.1165723642 0.2486420151
 4673 4674 4675 4676
-0.0950795821 0.0363646586 -0.3369085204 1.0129235885
 4677 4678 4679 4680
(more)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[98]

The graphs for the fit look like this:

>par(mfrow=c(2,2))

> plot(model)

We see the scale-location standardized residual versus fitted values has an unusual
shape. This is due to the predicted value, obesity, being just 0 or 1.

Similarly, the Residual vs Fitted graph points to the binary obesity value.

The Normal Q-Q graph does not show much of interest.

The Residuals vs Leverage graph is very heavily weighted towards small values, as
we saw with the previous small coefficients.

I think we don't have a great regression to predict obesity using all the variables.

What happens if we just use the blood pressure values? Let's find out:

> model <- lm(data$obese ~ data$sbp + data$dbp)

> summary(model)

Call:
lm(formula = data$obese ~ data$sbp + data$dbp)

Residuals:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[99]

 Min 1Q Median 3Q Max
-0.60924 -0.15127 -0.10049 -0.04029 1.02968

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4299333 0.0314876 -13.654 <2e-16 ***
data$sbp 0.0012021 0.0003334 3.605 0.000315 ***
data$dbp 0.0048283 0.0005972 8.085 7.85e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3234 on 4687 degrees of freedom
Multiple R-squared: 0.06419, Adjusted R-squared: 0.06379
F-statistic: 160.7 on 2 and 4687 DF, p-value: <2.2e-16

We see a similar standard error and f-statistic. Most importantly, the R-squared
value has dropped from about one half to 0.06. I think we are on the right track
using just these two values.

Plotting the fit gives more credence to this assumption:

> plot(model)

We see the Residuals vs Leverage graph is lining up directly on the 0 and 1 obesity
scores. We also see similar reinforcement with the concentrations in the Residuals
vs Fitted graph and the Scale-Location graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[100]

My issue is the small coefficients. We end up with the formula:

obesity = -0.43 + 0.001 * sbp + 0.004 * dbp

I think that these are not the variables needed to predict obesity.

We tried using the entire dataset and we also tried narrowing down the dataset to
likely candidates. The result was unexpected.

Multivariate regression analysis
Multivariate regression is a technique that estimates a single regression model with
more than one outcome variable.

For multivariate regression, we will be using the chemometrics package.
Chemometrics is the science of extracting information from chemical systems
using the data present. However, the data normally has a small number of
observations with a large number of variables.

There are three problems in using chemometrics:

1.	 We can only graph three of the n variables as this is a limitation of the package.
2.	 The variables are all highly correlated, which eliminates the possibility of

using statistics to separate out the more interesting values.
3.	 Again, there are a small number of observations to work with.

So, let us load the chemometrics package into R:

>install.packages('chemometrics')

>library('chemometrics')

This is a large package that loads a number of dependencies.

We will be using the Auto MPG dataset from University of California, Irvine,
data archive. This data is taken from the link http://archive.ics.uci.edu/ml/
datasets/Auto+MPG. The summary is as follows:

>data <- read.table("http://archive.ics.uci.edu/ml/machine-learning-
databases/auto-mpg/auto-mpg.data")
> colnames(data) <- c("mpg", "cylinders", "displacement",
"horsepower", "weight", "acceleration", "model.year", "origin", "car.
name")

>summary(data)

www.it-ebooks.info

http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://archive.ics.uci.edu/ml/datasets/Auto+MPG
http://www.it-ebooks.info/

Chapter 4

[101]

 mpg cylinders displacement horsepower
 Min. : 9.00 Min. :3.000 Min. : 68.0 150 : 22
 1st Qu.:17.50 1st Qu.:4.000 1st Qu.:104.2 90 : 20
 Median :23.00 Median :4.000 Median :148.5 88 : 19
 Mean :23.51 Mean :5.455 Mean :193.4 110 : 18
 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:262.0 100 : 17
 Max. :46.60 Max. :8.000 Max. :455.0 75 : 14
 (Other):288
 weight acceleration model.year origin
 Min. :1613 Min. : 8.00 Min. :70.00 Min. :1.000
 1st Qu.:2224 1st Qu.:13.82 1st Qu.:73.00 1st Qu.:1.000
 Median :2804 Median :15.50 Median :76.00 Median :1.000
 Mean :2970 Mean :15.57 Mean :76.01 Mean :1.573
 3rd Qu.:3608 3rd Qu.:17.18 3rd Qu.:79.00 3rd Qu.:2.000
 Max. :5140 Max. :24.80 Max. :82.00 Max. :3.000

car.name
 ford pinto : 6
amc matador : 5
 ford maverick : 5
toyota corolla: 5
amc gremlin : 4
amc hornet : 4
 (Other) :369

We can see the following details from the summary:

•	 A wide range of mpg
•	 It is interesting that some cars had three cylinders
•	 The cars range from year 1970 to 1982
•	 The displacement varies a lot
•	 The weight also varies tremendously

We will be trying to predict the values for mpg, acceleration, and horsepower using
the other data values present. We will use R to produce our model and the results.

So, first we specify the model using the variables in the observation we want to apply:

> m <- lm(cbind(data$mpg,data$acceleration,data$horsepower) ~
data$cylinders + data$displacement + data$weight + data$model.year)

> summary(m)
Response data$mpg :

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[102]

The summary reiterates our model variables:

Call:
lm(formula = `data$mpg` ~ data$cylinders + data$displacement +
data$weight + data$model.year)

We see a range of residuals from -9 to 14. This is a large divergence from the mpg we
are trying to model:

Residuals:
 Min 1Q Median 3Q Max
-8.9756 -2.3327 -0.1833 2.0587 14.3889

Some of the estimate values are very small; they are not particularly applicable to
our model.

Also, some of the probabilities > t are significant; this is again not a good indicator
for a model:

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.371e+01 4.052e+00 -3.383 0.000789 ***
data$cylinders -2.516e-01 3.285e-01 -0.766 0.444212
data$displacement 4.739e-03 6.707e-03 0.707 0.480223
data$weight -6.751e-03 5.716e-04 -11.811 <2e-16 ***
data$model.year 7.595e-01 5.061e-02 15.007 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.441 on 393 degrees of freedom
Multiple R-squared: 0.8082, Adjusted R-squared: 0.8062
F-statistic: 413.9 on 4 and 393 DF, p-value: <2.2e-16

Response data$acceleration :

Call:
lm(formula = `data$acceleration` ~ data$cylinders + data$displacement
+
data$weight + data$model.year)

Residuals:
 Min 1Q Median 3Q Max
-5.7550 -1.5625 -0.1788 1.1564 7.6315

Coefficients:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[103]

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.7368193 2.6069139 4.119 4.65e-05 ***
data$cylinders 0.0867985 0.2113795 0.411 0.682
data$displacement -0.0314665 0.0043155 -7.291 1.70e-12 ***
data$weight 0.0021690 0.0003678 5.897 7.97e-09 ***
data$model.year 0.0526444 0.0325637 1.617 0.107

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.214 on 393 degrees of freedom
Multiple R-squared: 0.3621, Adjusted R-squared: 0.3556
F-statistic: 55.77 on 4 and 393 DF, p-value: <2.2e-16

Response data$horsepower :

Call:
lm(formula = `data$horsepower` ~ data$cylinders + data$displacement +
data$weight + data$model.year)

Residuals:
 Min 1Q Median 3Q Max
-71.033 -6.323 3.624 13.999 68.302

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 160.507707 29.361062 5.467 8.17e-08 ***
data$cylinders -15.329261 2.380718 -6.439 3.51e-10 ***
data$displacement 0.144583 0.048605 2.975 0.00311 **
data$weight -0.006605 0.004142 -1.595 0.11160
data$model.year -0.445283 0.366758 -1.214 0.22544

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 24.93 on 393 degrees of freedom
Multiple R-squared: 0.3132, Adjusted R-squared: 0.3062
F-statistic: 44.79 on 4 and 393 DF, p-value: <2.2e-1

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[104]

We told R to predict the three variables so that it produced results of the predictions
for each of these variables:

•	 For all three variables, we get a wide range of residuals
•	 For mpg, the errors are very small
•	 For acceleration, we see the same small errors
•	 For horsepower, we have a high standard error; there appears to be a

mismatch, except that the true horsepower value can be pretty large

To get a better picture of the fit, we can use the manova function. The manova
function measures the multivariate analysis of variance when we have more than
one dependent variable. We generate the manova instance, mm, using the existent
regression model we developed already, m:

> mm <- manova(m)

> mm
Call:
manova(m)

Terms:
data$cylinders data$displacement data$weight
resp 1 14581.60 1133.12 1219.53
resp 2 771.23 125.33 183.81
resp 3 103934.57 4639.37 1895.38
Deg. of Freedom 1 1 1
data$model.year Residuals
resp 1 2666.07 4652.25
resp 2 12.81 1925.94
resp 3 916.33 244304.99
Deg. of Freedom 1 393

Residual standard errors: 3.440609 2.213731 24.93273
Estimated effects may be unbalanced

> summary(mm)
Df Pillai approx F num Df den Df Pr(>F)
data$cylinders 1 0.78618 479.21 3 391 <2.2e-16
data$displacement 1 0.24844 43.08 3 391 <2.2e-16
data$weight 1 0.27474 49.37 3 391 <2.2e-16
data$model.year 1 0.37086 76.83 3 391 <2.2e-16
Residuals 393

data$cylinders ***

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[105]

data$displacement ***
data$weight ***
data$model.year ***
Residuals

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Looking at the manova results, we find the following details:

•	 We see very large initial manova result residuals of 3, 2, and 24
•	 The degrees of freedom show a good fit for all variables
•	 The only bigger Pillai's trace is for the number of cylinders
•	 Also, we see a very large F statistic for the number of cylinders

The results are still very rough, but we do have a model for predicting the outcomes.

If we drop the car's model name, car.name (so we just have numeric data in the
data frame), we can produce a correlation matrix:

data$car.name<- NULL

Also, we need to account for the missing horsepower values by coercing them to NA:

>data$horsepower[data$horsepower=='?'] <- NA

>data$horsepower<- as.numeric(data$horsepower)

Now, we can generate some statistics:

>cor(data)
 mpg cylinders displacement horsepower
mpg 1.0000000 -0.7753963 -0.8042028 NA
cylinders -0.7753963 1.0000000 0.9507214 NA
displacement -0.8042028 0.9507214 1.0000000 NA
horsepower NA NA NA 1
weight -0.8317409 0.8960168 0.9328241 NA
acceleration 0.4202889 -0.5054195 -0.5436841 NA
model.year 0.5792671 -0.3487458 -0.3701642 NA
origin 0.5634504 -0.5625433 -0.6094094 NA

 weight acceleration model.year origin
mpg -0.8317409 0.4202889 0.5792671 0.5634504
cylinders 0.8960168 -0.5054195 -0.3487458 -0.5625433
displacement 0.9328241 -0.5436841 -0.3701642 -0.6094094

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[106]

horsepower NA NA NA NA
weight 1.0000000 -0.4174573 -0.3065643 -0.5810239
acceleration -0.4174573 1.0000000 0.2881370 0.2058730
model.year -0.3065643 0.2881370 1.0000000 0.1806622
origin -0.5810239 0.2058730 0.1806622 1.0000000

As expected (with the data used for most multivariate regressions), most of the
values are highly correlated to each other.

Similarly, we can generate the covariance values:

>cov(data)

 mpg cylinders displacement weight
mpg 61.089611 -10.3089111 -655.40232 -5505.2117
cylinders -10.308911 2.8934154 168.62321 1290.6956
displacement -655.402318 168.6232137 10872.19915 82368.4232
weight -5505.211745 1290.6955749 82368.42324 717140.9905
acceleration 9.058930 -2.3708422 -156.33298 -974.8990
model.year 16.741163 -2.1934990 -142.71714 -959.9463
origin 3.532185 -0.7674772 -50.96499 -394.6393

 acceleration model.year origin
mpg 9.0589297 16.7411630 3.5321849
cylinders -2.3708422 -2.1934990 -0.7674772
displacement -156.3329756 -142.7171373 -50.9649887
weight -974.8990108 -959.9463438 -394.6393302
acceleration 7.6048482 2.9381049 0.4553536
model.year 2.9381049 13.6724428 0.5357898
origin 0.4553536 0.5357898 0.6432920

We see strong negative covariance between mpg, displacement, and weight. This
makes sense; as the vehicle size increases, the mpg would decrease. There is some
positive covariance with year the vehicle was made. I assume this is the influence of
the government on manufacturers to increase mpg. It is interesting that acceleration
has a positive covariance, but I am not sure why that would occur.

Robust regression
With multivariate data, we need to trim down to the primary predictors. In R,
we can use the prcomp function. The prcomp function will determine the measure
of the importance of a variable in predicting the result.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[107]

I removed the horsepower column first as the NA values threw errors. The columns
we end up with are mpg, cylinders, and so on, corresponding to PC1 to PC7 in the
original data:

> data <- subset(data, select = -c('horsepower'))

>prcomp(data)

Standard deviations:
[1] 852.4479181 37.3631951 4.9556049 2.3653826 2.1999725
[6] 0.6098103 0.5167486

Rotation:
 PC1 PC2 PC3
mpg 0.0076298796 0.01595015 -0.823189547
cylinders -0.0017911340 -0.01431314 0.001739055
displacement -0.1143223782 -0.99241700 -0.028635762
weight -0.9934108142 0.11443292 -0.003865543
acceleration 0.0013574785 0.03157265 -0.051883472
model.year 0.0013349862 0.02327853 -0.564552619
origin 0.0005475619 0.00395091 -0.010461439
 PC4 PC5 PC6
mpg -0.565406878 0.010097475 0.0434064695
cylinders 0.007700936 -0.005506178 -0.2872920842
displacement 0.010966214 -0.029120056 -0.0016527831
weight -0.004479662 0.002214055 0.0003840199
acceleration 0.053644868 -0.994906897 -0.0556398264
model.year 0.820238828 0.077102184 -0.0412980324
origin -0.066677775 0.056836279 -0.9543452938
PC7
mpg -1.937340e-02
cylinders -9.576860e-01
displacement 1.574545e-02
weight -2.328483e-05
acceleration 2.227407e-02
model.year 1.716564e-02
origin 2.853479e-01

We can see that the origin value has no correlation with the rest of the data. All of the
other variables have some cross-correlation that works. So, we didn't find anything
unexpected that should be dropped from our model (from the previous code, m <-
lm(cbind(data$mpg,data$acceleration,data$horsepower) ~ data$cylinders
+ data$displacement + data$weight + data$model.year).

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[108]

We can further analyze the data for Cook's distance. Cook's distance measures the
influence of a data point on our regression. Using the R cooks.distance function,
we can analyze the data as follows:

>d1<- cooks.distance(m)
>d1
 [,1] [,2]
1 2.436506e-03 3.581308e-04
2 4.833923e-04 2.656062e-04
3 1.732134e-03 8.401681e-04

Now, we can look at the regression points that could be used:

> r <- stdres(m)

> a <- cbind(data, d1, r)

> a[d1> 4/398,]

 mpg cylinders displacement weight acceleration model.year
6 15.0 8 429 4341 10.0 70
7 14.0 8 454 4354 9.0 70
8 14.0 8 440 4312 8.5 70
9 14.0 8 455 4425 10.0 70
14 14.0 8 455 3086 10.0 70
(more)
 origin 1 2 r
6 1 0.0316915655 1.450126e-03 1.1988501
7 1 0.0124784451 1.405378e-03 0.9504220
8 1 0.0216278941 7.612076e-03 0.8921663
9 1 0.0153827261 1.326945e-04 1.0686089
14 1 0.1542750769 4.265531e-02 -1.2473311
40 1 0.0119925188 4.304444e-04 0.9951620
43 1 0.0121565950 2.303933e-03 1.3432769
44 1 0.0200318228 6.303327e-04 1.2192432
(more)

We can now move towards a robust regression analysis:

>rlm(data$mpg ~ data$cylinders + data$displacement + data$weight +
data$model.year)

Call:
rlm(formula = data$mpg ~ data$cylinders + data$displacement +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[109]

data$weight + data$model.year)

Converged in 6 iterations

Coefficients:
 (Intercept) data$cylinders data$displacement
 -9.870815146 -0.363931540 0.006499224
data$weight data$model.year
 -0.006625956 0.705663002

Degrees of freedom: 398 total; 393 residual
Scale estimate: 3.15

We started out with the previous formula:

> m <- lm(cbind(data$mpg,data$acceleration,data$horsepower) ~
data$cylinders + data$displacement + data$weight + data$model.year)

We removed acceleration, horsepower, displacement, and vehicle weight. Now we
can derive a simplified formula:

mpg = -9.8 – cylinders / 3 + .7 * the model year

The intercept is about -9.8. The cylinders correlation is about – 1/3. The model year
coefficient is about 0.7.

This just says that if we wait long enough, the government's directions to the auto
industry will force better mileage. Surprising!

We can also use Modern Applied Statistics in S+ (MASS) methods for robust
regression. The idea is that we have larger errors than expected, but still want to
try and use the data points we have. We try using the rlm (which stands for robust
fitting of linear models) function:

> library(MASS)
> m <- rlm(mpg ~ cylinders + displacement + weight + model.year, data)

> m
Call:
rlm(formula = mpg ~ cylinders + displacement + weight + model.year,
 data = data)
Converged in 6 iterations

Coefficients:
 (Intercept) cylinders displacement weight
-9.870815146 -0.363931540 0.006499224 -0.006625956

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[110]

model.year
 0.705663002

Degrees of freedom: 398 total; 393 residual
Scale estimate: 3.15

We end up with the following formula:

mpg = - cylinders/3 + .7 * model year

Some change to account for the cylinders, but the time effect of government
intervention is still the overwhelming factor.

We can also try the ltsreg (which stands for least trim squares) function in MASS.
This method is normally used when there are a lot of outlier values in the data.
We aren't really in that state here, but just to try it out.

Note, the method is nondeterministic, so in our case I ran the function three times:

>m2<- ltsreg(mpg ~ cylinders + displacement + weight + model.year,
data)
>m2
Call:
lqs.formula(formula = mpg ~ cylinders + displacement + weight +
model.year, data = data, method = "lts")

Coefficients:
 (Intercept) cylinders displacement weight
 -0.787503 -1.230076 0.011049 -0.003729
model.year
 0.503659

Scale estimates 2.787 2.870

(run second time)
>ltsreg(mpg ~ cylinders + displacement + weight + model.year, data)
Call:
lqs.formula(formula = mpg ~ cylinders + displacement + weight +
model.year, data = data, method = "lts")

Coefficients:
 (Intercept) cylinders displacement weight
 2.079872 -0.901353 0.002364 -0.004555
model.year

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[111]

 0.505625

Scale estimates 2.789 2.783

(run third time)
>ltsreg(mpg ~ cylinders + displacement + weight + model.year, data)
Call:
lqs.formula(formula = mpg ~ cylinders + displacement + weight +
model.year, data = data, method = "lts")

Coefficients:
 (Intercept) cylinders displacement weight
 13.899925 -1.023310 0.019264 -0.005873
model.year
 0.366595

Scale estimates 2.670 2.725

You can see different values for each iteration:

Intercept cylinders displacement weight model.year
-.8 -1.2 0.01 0 0.5
2 -0.9 0 0 0.5
13.9 -1 0.01 0 0.3

Weight and displacement are consistently unimportant, while model year and cylinders
are definite coefficients. Curiously, the intercept varies widely between iterations.

The data we use does not really have a large number of outliers in the results.
I was using both robust methods to test whether the two factors, displacement
and weight, were really not important to the calculation. We have proved this.

We also verified that cylinders are a factor. This makes sense: a car with more
cylinders will get less mileage. It is interesting that the robust methods assign
slightly less importance to government intervention.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Regression Analysis

[112]

Questions
Factual

•	 What is the best way to handle NA values when performing a regression?
•	 When will the quantiles graph for a regression model not look like a nice line

of fit?
•	 Can you compare the anova versus manova results? Aside from the multiple

sections, is there really a difference in the calculations?

When, how, and why?

•	 Why does the Residuals vs Leverage graph show such a blob of data?
•	 Why do we use 4 as a rounding number in the robust regression?
•	 At what point will you feel comfortable deciding that the dataset you are

using for a regression has the right set of predictors in use?

Challenges

•	 Are there better predictors available for obesity than those used in
the chapter?

•	 How can multilevel regression be used for either the obesity or mpg datasets?
•	 Can you determine a different set of predictors for mpg that does not reduce

it to simple government fiat?

Summary
In this chapter, we discussed how to perform regression analysis using R. We
performed simple regression and analyzed fit, residuals, and other factors. We used
multiple regression, including selecting and using a set of predictor values. We tried
to determine a set of values from predictors using multivariate regression. Lastly, we
used robust regression to overcome possible problems in the predictors and to build
a reliable model. In the next chapter, we will be covering correlation.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation
Correlation is a good technique to use on your dataset. Correlation helps us to
establish basic relationships between data items.

In this chapter, we look at tools available in R for correlation:

•	 A basic correlation
•	 Visualizing correlations
•	 Covariance
•	 Pearson correlation
•	 Polychoric correlation
•	 Tetrachoric correlation
•	 A heterogeneous correlation matrix
•	 Partial correlation

Packages
In R, there are several packages that provide the correlation functionality to the
programmer. We will be using the following packages in this chapter:

•	 corrgram: This is the tool to graphically display correlations
•	 Hmisc: This contains a variety of miscellaneous R functions
•	 polycor: This contains functions to compute polychoric correlations
•	 ggm: This contains functions for analyzing and fitting graphical Markov models

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[114]

Correlation
Basic correlation is performed in R using the cor function. The cor function is
defined as follows:

cor(x, y = NULL,
 use = "everything",
 method = c("pearson", "kendall", "spearman"))

The various parameters of this function are described in the following table:

Parameter Description
x This is the dataset.
y This is the dataset that is compatible with x.
use This is the optional method for computing the covariance of missing values

assigned. The choices are:
•	 everything

•	 all.obs

•	 complete.obs

•	 na.or.complete

•	 pairwise.complete.obs

method This parameter stores which correlation method is to be used in order to
estimate a rank-based measure of the associations computed. The choices are:

•	 pearson

•	 kendall (Kendall's tau)
•	 spearman (Spearman's rho)

Example
Let's use the historical data of stock, bonds, and treasuries' returns from NYU, which
is available at http://people.stern.nyu.edu/adamodar/New_Home_Page/data.
html. We produce a dataset that we can load in as follows:

> install.packages("xlsx")
> library(xlsx)
> url <- "http://www.stern.nyu.edu/~adamodar/pc/datasets/histretSP.
xls"
> download.file(url, destfile="histretSP.xls")
> data <- read.xlsx("histretSP.xls", 1, startRow=12, endRow=98,
headers=TRUE)

www.it-ebooks.info

http://people.stern.nyu.edu/adamodar/New_Home_Page/data.html
http://people.stern.nyu.edu/adamodar/New_Home_Page/data.html
http://www.it-ebooks.info/

Chapter 5

[115]

We can take a cursory look at the data items with a summary command:

> summary(data)

 Year SP500 TBill3Mos
 Min. :1928 Min. :-43.840 Min. : 0.030
 1st Qu.:1949 1st Qu.: -1.205 1st Qu.: 1.022
 Median :1970 Median : 14.520 Median : 3.135
 Mean :1970 Mean : 11.505 Mean : 3.573
 3rd Qu.:1992 3rd Qu.: 25.720 3rd Qu.: 5.228
 Max. :2013 Max. : 52.560 Max. :14.300

 TBond10Year
 Min. :-11.120
 1st Qu.: 1.012
 Median : 3.450
 Mean : 5.213
 3rd Qu.: 8.400
 Max. : 32.810

The data has columns for the following elements:

•	 Year
•	 S&P 500 returns for that year (in percentage)
•	 3-month T-Bill returns
•	 10-year T-Bond returns

We can see wildly fluctuating returns for stocks and bonds over the years.

Graphing the data points against each other produces a variety of scatter plots using
the splom() (scatter plot matrices) function. The splom() function has a number of
optional arguments:

splom(x,
 data,
 auto.key = FALSE,
 aspect = 1,
 between = list(x = 0.5, y = 0.5),
 panel = lattice.getOption("panel.splom"),
 prepanel,
 scales,
 strip,
 groups,
 xlab,
 xlim,

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[116]

 ylab = NULL,
 ylim,
 superpanel = lattice.getOption("panel.pairs"),
 pscales = 5,
 varnames = NULL,
 drop.unused.levels,
 ...,
 lattice.options = NULL,
 default.scales,
 default.prepanel = lattice.getOption("prepanel.default.splom"),
 subset = TRUE)

The various parameters of the splom function are described in the following table:

Parameter Description
x This is the object to be affected, usually a data frame
data This contains formula method values
… Many more options

Once we have loaded the library, we can invoke the splom function:

> library(lattice)

> splom(~data[2:4])

There is no apparent relationship between the data points so far. Although, there are
congregations of data points around central points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

Similarly, we can use the scatterplotMatrix() function to draw out the different
datasets. The scatterplotMatrix function automatically adds trendlines, as shown
in the following output:

> install.packages("car")
> library(car)

> scatterplotMatrix(data)

In these plots, we at least start to see some trending in the data as compared to a
plain scatter diagram.

A standard correlation test produces the following output:

> cor(data)
 Year SP500 TBill3Mos TBond10Year
Year 1.00000000 0.03968668 0.34819233 0.23669464
SP500 0.03968668 1.00000000 -0.03139095 -0.02981359
TBill3Mos 0.34819233 -0.03139095 1.00000000 0.29873018
TBond10Year 0.23669464 -0.02981359 0.29873018 1.00000000

You can see that the data points have perfect correlation against themselves with the
1.0 values. I had expected a strong relationship between stock and bond returns. The
results show a high relationship between T-Bills and T-Bonds; this makes sense as
they are similar investments. There is a slightly negative correlation between stocks
and bonds. This probably makes sense as well, as people will favor one or the other
depending on the investment climate at the time.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[118]

Visualizing correlations
We can visualize a correlation using the corrgram() function:

> install.packages('corrgram')

> library(corrgram)
> corrgram(data)

The results are color-coded to distinguish correlations: red for negative and blue
for positive. In this case, the strong blue points (T-Bills and T-Bonds) are highly
correlated. The red color is used to show negative correlation, so the pink shows
some degree of negative correlation for S&P 500 and T-Bills and T-Bonds.

Let's look at a scatter plot of the bill and bond returns:

> plot(data$SP500,data$TBill3Mos)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

As you can tell from the previous graph, there is really no clearly distinguished
relationship between the 3-month T Bill rate and the 10-year T Bond rate.

We could use regression to try to see the relationship better by adding a regression
line to the graphic:

> abline(lm(data$TBill3Mos ~ data$TBond10Year))

At least we can now visualize the relationship between the two.

There is another R package that has a correlation graphing function; the chart.
Correlation() function is available in the PerformanceAnalytics package.
The function call is shown in the following code:

chart.Correlation(R,
 histogram = TRUE,
 method = c("pearson", "kendall", "spearman"),
...)

The various parameters of the chart.Correlation function are described in the
following table:

Parameter Description
R This contains the correlation values that will be plotted
histogram This has a Boolean value to denote whether the chart includes

a histogram

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[120]

Parameter Description
method This will contain one of the following methods:

•	 pearson

•	 kendall

•	 spearman

… Any other pass through arguments to the pairs function

We load the PerformanceAnalytics package, load our dataset, and produce a chart
of the correlations using the following code:

> install.packages("PerformanceAnalytics")

> library(PerformanceAnalytics)

> data <- read.csv("returns.csv")

> chart.Correlation(cor(data), histogram=TRUE)

The following graph provides a lot of information about the correlation in one
nice plot:

•	 Along the diagonal, we have a smoothed plot of the data points
•	 Along the lower-left corner, we have (x,y) scatter plots of the fields
•	 The top-right corner just displays the correlation between the fields, and the

size of the numeric is indicative of the amount of correlation present between
the two fields

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

Covariance
As a further test, we can measure the covariance of the data elements using the cov
function. Correlation and covariance are very similar terms. Correlation tells you the
degree to which variables change together. Covariance measures how two variables
change together (assuming they were random), whether positive (in the same
direction) or negative. The cov function operates similar to the cor function:

> cov(data)
 Year SP500 TBill3Mos TBond10Year
Year 623.50000 19.835706 26.578824 46.387059
SP500 19.83571 400.653816 -1.920823 -4.683701
TBill3Mos 26.57882 -1.920823 9.345373 7.167499
TBond10Year 46.38706 -4.683701 7.167499 61.599953

As a rough measure of the scale, we can see a large number for year against itself—
perfect covariance. In contrast, we find covariance values less than 10 for stocks and
bonds. Again, we see very little of a relationship between the data values.

We can prove the correlation between two of the factors using the cor.test
function. The cor.test function tests for an association between paired samples:

cor.test(x, y,
 alternative = c("two.sided", "less", "greater"),
 method = c("pearson", "kendall", "spearman"),
 exact = NULL, conf.level = 0.95, continuity = FALSE, ...)

The various parameters of the cor.test function are described in the following table:

Parameter Description
x This is a numerical vector
y This is a numerical vector
alternative This is the alternative hypothesis and it must be one of these:

•	 two.sided

•	 greater

•	 less

method This contains the correlation coefficient to be used:
•	 pearson

•	 kendall (Kendall's tau)
•	 spearman (Spearman's rho)

exact This defines the exact p-value to be used
continuity If this is set to TRUE, continuity correction is used
… These are the pass through arguments to subordinate functions

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[122]

We can use two of the preceding factors in our dataset:

> cor.test(data$SP500, data$TBill3Mos)

 Pearson's product-moment correlation

data: data$SP500 and data$TBill3Mos
t = -0.2878, df = 84, p-value = 0.7742
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.2416590 0.1816928
sample estimates:
 cor
-0.03139095

The 95 percent confidence level for a correlation between the S&P 500 returns and
the 3-month T-Bill returns ranges from -0.24 to 0.18. We have a high p-value. The
correlation estimate was -0.03, so we do have a correlation!

We can plot the various relationships at once using the pairs function. The pairs
function plots each variable against every other variable on one graph:

> pairs(data)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

From these graphs, we can see a few points of interest:

•	 3-month T Bills appear to have a marked relationship over time
•	 T Bonds have some kind of relationship with bills
•	 There is some relationship between bonds and S&P
•	 There doesn't appear to be any other relationships at all, and the other graphs

are very scattered

Pearson correlation
We can also use the rcorr function in the Hmisc package to produce the set of
Pearson correlations between all pairs. The Pearson correlation is a measure of
the linear correlation between two variables ranging from -1 to 1, where -1 is pure
negative, 1 is pure positive, and 0 meaning none. The only slight hiccup is the rcorr
function expects a matrix rather than a data frame. The function call looks like:

rcorr(x, y, type=c("pearson","spearman"))

The various parameters of the rcorr function are described in the following table:

Parameter Description
x This is a numeric matrix with at least five rows and two columns

(if y is absent).
y This is a numeric vector or matrix that will be concatenated to x.

If y is omitted for rcorr, x must be a matrix.
type This specifies the type of correlations to compute. Spearman

correlations are the Pearson linear correlations computed on the
ranks of elements present, using midranks for ties.

… These are the pass through arguments for the function.

We first load the package and library, and then we can invoke the function:

> install.packages('Hmisc')

> library(Hmisc)

> rcorr(as.matrix(data))
 Year SP500 TBill3Mos TBond10Year
Year 1.00 0.04 0.35 0.24
SP500 0.04 1.00 -0.03 -0.03
TBill3Mos 0.35 -0.03 1.00 0.30

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[124]

TBond10Year 0.24 -0.03 0.30 1.00

n= 86

P
 Year SP500 TBill3Mos TBond10Year
Year 0.7168 0.0010 0.0282
SP500 0.7168 0.7742 0.7852
TBill3Mos 0.0010 0.7742 0.0052
TBond10Year 0.0282 0.7852 0.0052

We see the same 1.0 correlation values in the axes. The correlation values have
similar low correlations across the set. You can see there were 86 data points.

The p-values show the slightly negative relationship between S&P 500 returns and
bills or bonds. The strong relationship between the bonds and bills is also shown in
the p-values.

Polychoric correlation
R programming also provides a polychoric correlation function in the polycor
package. Polychoric correlation is an estimate of the correlation between two
normally distributed, continuous variables from two observed ordinal variables.

Polychoric correlation is used when the data items have a small number of options.
The smaller the number of responses available, the more the correlation between the
continuous variables.

We are using the self-esteem responses for online personality tests, which is available
at http://personality-testing.info/_rawdata/. There are a few steps that are
necessary to make the data readable in R. The top entry in the previous table references
a ZIP file located at http://personality-testing.info/_rawdata/16PF.zip.
Download this file to your workspace and extract the data.csv file as poly.csv in
your workspace. Subjects were rated based on their replies for questions like, "I am a
person of worth" on a scale from 1 (strongly disagree) to 4 (strongly agree). The code is
as follows:

> data <- read.table("poly.csv", sep="\t")
> library(psych)
> result <- polychoric(data)
> plot(data)

www.it-ebooks.info

http://personality-testing.info/_rawdata/
http://personality-testing.info/_rawdata/16PF.zip
http://www.it-ebooks.info/

Chapter 5

[125]

In this example, we are measuring the correlation between the first two questions in
the survey:

•	 I feel that I am a person of worth, at least on an equal plane with others.
•	 I feel that I have a number of good qualities.

In the following graph, we can see that most of the data points are matched with every
other data point between the two factors. This just shows that we have clean data.

Again, to make sure that we have a good idea of what the data looks like, let's take a
look at the histograms of the two questions:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[126]

We see remarkable similarities between the responses for the two questions: a
majority of people picked option 3, followed by 4, 2, and then 1. It is unfortunate
that the survey questions were worded so similarly.

I thought it was interesting that the counts appeared to be very close between the two.

First, we need to load the polycor package:

> install.packages('polycor')

> library('polycor')

If we run a simple correlation between the two, we get a very high correlation value:

> cor(data$q1, data$q2)
[1] 0.6609112

Running polychor against the same values reveals an even higher correlation.
Remember, the polychoric correlation takes into account the small number of
possible options available.

The polychor function can take some time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

The polychor function is as follows:

polychor(x,
smooth=TRUE,
global=TRUE,
polycor=FALSE,
ML = FALSE,
 std.err=FALSE,
weight=NULL,
progress=TRUE,
na.rm=TRUE,
delete=TRUE)

The various parameters of the polychor function are described in the following table:

Parameter Description
x This is the input, and normally this is a 2 x 2 matrix
smooth If this is set to TRUE and the tetrachoric matrix is not positively definite,

then apply a simple smoothing algorithm using cor.smooth
global This defines whether to use global values or local values
polycor This defines whether to use the polychor function
ML This defines whether to compute maximum likelihood
std.err This defines whether to report standard error
weight This contains weights for observations
progress This defines whether to show the progress bar
na.rm This defines whether to delete the missing data
delete This defines whether to delete cases with no variance

We can now run a polychoric correlation between the two using the following code:

> polychor(data$q1, data$q2)
[1] 0.7514105

Lastly, we run a full test using a maximum likelihood (ML = TRUE) estimate and
return the estimated variance of the correlation (std.err=TRUE):

> polychor(data$q1, data$q2, ML=TRUE, std.err=TRUE)

Polychoric Correlation, ML est. = 0.7589 (0.002599)
Test of bivariate normality: Chisquare = 4875, df = 15, p = 0

 Row Thresholds
 Threshold Std.Err.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[128]

1 -2.741 0.027410
2 -1.499 0.008698
3 -0.695 0.006135
4 0.465 0.006006

 Column Thresholds
 Threshold Std.Err.
1 -2.3130 0.016130
2 -1.6450 0.009412
3 -0.9196 0.006595
4 0.4464 0.005983

We have a maximum likelihood estimate of 0.7589, which is very close to our
polychor correlation of 0.7514.

With the high chi-square and large number of degrees of freedom, we cannot reject
the null hypothesis. This makes sense; we estimated a high degree of correlation
between the two, so we could predict one value using the other.

The thresholds for each variable are estimated along with the maximum likelihood.
However, the threshold values computed are a large portion of the possible values.
On the other hand, the standard errors are very small.

Overall, it looks like we really do have a high correlation between the two factors.

Tetrachoric correlation
Tetrachoric correlation is used for binary data in the same manner as polychoric
correlation (covered in the previous section of this chapter) is used for categorical values.

For this test, we are using the Titanic survival information from the site http://
biostat.mc.vanderbilt.edu/wiki/Main/DataSets. The binary data used is the
survival characteristic. Various attributes of the passengers, such as age, ticket class,
sex, and so on, are included in the dataset.

Once the dataset is loaded, we can view a summary:

> data <- read.csv("titanic3.csv")

> summary(data)

 pclass survived
 Min. :1.000 Min. :0.000
 1st Qu.:2.000 1st Qu.:0.000
 Median :3.000 Median :0.000
 Mean :2.295 Mean :0.382

www.it-ebooks.info

http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
http://www.it-ebooks.info/

Chapter 5

[129]

 3rd Qu.:3.000 3rd Qu.:1.000
 Max. :3.000 Max. :1.000

 name sex
 Connolly, Miss. Kate : 2 female:466
 Kelly, Mr. James : 2 male :843
 Abbing, Mr. Anthony : 1
 Abbott, Master. Eugene Joseph : 1
 Abbott, Mr. Rossmore Edward : 1
 Abbott, Mrs. Stanton (Rosa Hunt): 1
 (Other) :1301

 age sibsp parch
 Min. : 0.17 Min. :0.0000 Min. :0.000
 1st Qu.:21.00 1st Qu.:0.0000 1st Qu.:0.000
 Median :28.00 Median :0.0000 Median :0.000
 Mean :29.88 Mean :0.4989 Mean :0.385
 3rd Qu.:39.00 3rd Qu.:1.0000 3rd Qu.:0.000
 Max. :80.00 Max. :8.0000 Max. :9.000
 NA's :263

 ticket fare cabin
 CA. 2343: 11 Min. : 0.000 :1014
 1601 : 8 1st Qu.: 7.896 C23 C25 C27 : 6
 CA 2144 : 8 Median : 14.454 B57 B59 B63 B66: 5
 3101295 : 7 Mean : 33.295 G6 : 5
 347077 : 7 3rd Qu.: 31.275 B96 B98 : 4
 347082 : 7 Max. :512.329 C22 C26 : 4
 (Other) :1261 NA's :1 (Other) : 271

 embarked boat body
 : 2 :823 Min. : 1.0
 C:270 13 : 39 1st Qu.: 72.0
 Q:123 C : 38 Median :155.0
 S:914 15 : 37 Mean :160.8
 14 : 33 3rd Qu.:256.0
 4 : 31 Max. :328.0
 (Other):308 NA's :1188

 home.dest
 :564
 New York, NY : 64
 London : 14

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[130]

 Montreal, PQ : 10
 Cornwall / Akron, OH: 9
 Paris, France : 9
 (Other) :639

To run the tetrachoric correlation, we need to load the psych package:

> install.packages("psych")

> library(polycor)

The tetrachoric function is as follows

tetrachoric(x,
 y=NULL,
 correct=TRUE,
 smooth=TRUE,
 global=TRUE,
 weight=NULL,
 na.rm=TRUE,
 delete=TRUE)

The various parameters of the tetrachoric function are described in the
following table:

Parameter Description
x This is the input, which is usually a 2 x 2 matrix
y This contains discrete scores
correct If this is set to TRUE, continuity correction is used
smooth This is used to apply a smoothing algorithm
global This defines whether to use global values or local
weight This contains weights that will be applied
na.rm This is used to delete missing values
delete This is used to delete cases with missing covariance

The tetrachoric correlation is based on a 2 x 2 matrix of the applicable data points. In
this case, we are looking at those who survived and what sex they were. We can use
the subset and nrow functions to gather these counts:

> nrow(subset(data, survived==1 & sex=='male'))
[1] 161
> nrow(subset(data, survived==1 & sex=='female'))
[1] 339
> nrow(subset(data, survived==0 & sex=='male'))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

[1] 682
> nrow(subset(data, survived==0 & sex=='female'))
[1] 127

Now, we have the data needed to run the tetrachoric correlation. Let's run the
tetrachoric correlation:

> tetrachoric(matrix(c(161,339,682,127),2,2))

Call: tetrachoric(x = matrix(c(161, 339, 682, 127), 2, 2))
tetrachoric correlation
[1] -0.75

 with tau of
[1] 0.37 -0.30

We can get a visual of the correlation with the draw.tetra function using the
following command:

> draw.tetra(-0.75, 0.37, -0.30)

We can see that the data is localized to the lower-left corner of the positive quadrant
in the graph. As we only had values of 0, 1, and 2, that was expected. The function
also highlighted the apparent alignment of the data into a normal distribution (as you
can see from the highlighted section of the normal distribution graphics on the top
and right hand side of the tetra diagram).

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[132]

A heterogeneous correlation matrix
We can also generate a heterogeneous correlation matrix using R. (This example is
right out of the manual, but shows the actual data points.) We are using random data,
so set the seed and generate the correlations and the data in a normal distribution.

To generate a heterogeneous correlation matrix, we perform the following steps:

1.	 We are using random numbers here. So, in order to reproduce the results,
we set the random number seed to a specific value:
> set.seed(12345)

2.	 We will create a 4 x 4 matrix of zeroes:
> R <- matrix(0, 4, 4)

3.	 Then, we generate random numbers in a uniform distribution:
> R[upper.tri(R)] <- runif(6)

4.	 Let's set the diagonal of the matrix to 1s:
> diag(R) <- 1

5.	 Now, we'll compute the correlation matrix:
> R <- cov2cor(t(R) %*% R)
> round(R, 4) # population correlations

 [,1] [,2] [,3] [,4]
[1,] 1.0000 0.5848 0.5718 0.6233
[2,] 0.5848 1.0000 0.7374 0.6249
[3,] 0.5718 0.7374 1.0000 0.5923
[4,] 0.6233 0.6249 0.5923 1.0000

> data <- rmvnorm(1000, rep(0, 4), R)
> round(cor(data), 4)
 [,1] [,2] [,3] [,4]
[1,] 1.0000 0.5577 0.5648 0.5948
[2,] 0.5577 1.0000 0.7410 0.6203
[3,] 0.5648 0.7410 1.0000 0.5959
[4,] 0.5948 0.6203 0.5959 1.0000

6.	 So, we have the parameters needed to invoke the function:
> x1 <- data[,1]
> x2 <- data[,2]
> y1 <- cut(data[,3], c(-Inf, .75, Inf))
> y2 <- cut(data[,4], c(-Inf, -1, .5, 1.5, Inf))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

> data <- data.frame(x1, x2, y1, y2)
> hetcor(data)

Two-Step Estimates

Correlations/Type of Correlation:
 x1 x2 y1 y2
x1 1 Pearson Polyserial Polyserial
x2 0.5577 1 Polyserial Polyserial
y1 0.5538 0.7479 1 Polychoric
y2 0.6299 0.627 0.6051 1

Standard Errors:
 x1 x2 y1
x1
x2 0.02181
y1 0.03286 0.02288
y2 0.01992 0.01991 0.03484

n = 1000

P-values for Tests of Bivariate Normality:
 x1 x2 y1
x1
x2 0.9934
y1 0.8882 0.5964
y2 0.765 0.4645 0.5452

The standard error values are pretty low, the correlations are solid, and
the normality numbers are spot on. We generated highly correlated data
points—this was expected.

7.	 We can generate the ML estimate as well:
> hetcor(x1, x2, y1, y2, ML=TRUE)

Maximum-Likelihood Estimates

Correlations/Type of Correlation:
 x1 x2 y1 y2
x1 1 Pearson Polyserial Polyserial
x2 0.5577 1 Polyserial Polyserial
y1 0.5537 0.7484 1 Polychoric

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Correlation

[134]

y2 0.6301 0.6274 0.6052 1

Standard Errors:
 x1 x2 y1
x1
x2 0.02181
y1 0.03299 0.023
y2 0.02044 0.02043 0.03593

n = 1000

P-values for Tests of Bivariate Normality:
 x1 x2 y1
x1
x2 0.9934
y1 0.8861 0.5878
y2 0.7558 0.4649 0.5485

Partial correlation
We can produce a partial correlation between the variables in R as well. Partial
correlation is the degree of association between random variables removing the
controlling variables from the following equation:

> install.packages('ggm')

> library(ggm)

> pcor(c("SP500","TBill3Mos"),var(data))
[1] -0.03139095

This exactly matches the previous correlation matrix value.

Excluding the 10-year bond makes little difference in the results:

> pcor(c("SP500","TBill3Mos","TBond10Year"),var(data))
[1] -0.02357104

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Questions
Factual

•	 How can you decide whether to use Pearson, Kendall, or Spearman as a
method for correlation?

•	 When would you want to see a small degree of freedom in the
correlation results?

•	 Most of the examples used common default parameters. Explore the same
examples with nondefault parameters.

When, how, and why?

•	 Why do the polychoric functions take so long to process?
•	 Why are the values chosen in the polychoric responses correlated?
•	 Explain the threshold values that were calculated.

Challenges

•	 Is there an easier way to develop the 2 x 2 matrix needed as input to the
tetrachoric function?

•	 How could you account for trends in investment vehicles when analyzing
stock market returns versus fixed instruments?

Summary
In this chapter, we discussed different aspects of correlation using R. We determined
the correlations between datasets using several methods and generated the
corresponding graphics to display the correlation values. We were able to determine
the correlations among binary data observations. Similarly, we computed the
correlations between observations with a small number of responses. Lastly, we
determined partial correlations.

In the next chapter, we will learn about clustering.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering
Clustering is the process of trying to make groups of objects that are more similar to
each other than objects in other groups. Clustering is also called cluster analysis.

R has several tools to cluster your data (which we will investigate in this chapter):

•	 K-means, including optimal number of clusters
•	 Partitioning Around Medoids (PAM)
•	 Bayesian hierarchical clustering
•	 Affinity propagation clustering
•	 Computing a gap statistic to estimate the number of clusters
•	 Hierarchical clustering

Packages
For R, there are several packages available that provide clustering functionality for
the programmer. We will use the following packages in the examples:

•	 NbClust: This is the number of cluster indices
•	 fpc: This contains flexible procedures for clustering
•	 vegan: This is the Community Ecology Package
•	 apcluster: This package performs affinity propagation clustering
•	 pvclust: This package performs hierarchical clustering

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[138]

K-means clustering
K-means is the process of assigning objects to groups so that the sum of the squares
of the groups is minimized. R has the kmeans function available for cluster analysis.
K-means is a method of determining clusters based on partitioning the data and
assigning items in the dataset to the nearest cluster.

K-means clustering is done in R using the kmeans function. The kmeans function is
defined as follows:

kmeans(x, centers, iter.max = 10, nstart = 1,
 algorithm = c("Hartigan-Wong", "Lloyd", "Forgy","MacQueen"),
trace=FALSE)

The various parameters of this function are described in the following table:

Parameter Description
x This is the dataset.
centers This contains the number of centers/clusters to find.
iter.max This stores the maximum number of iterations allowed.
nstart This contains the number of random clusters to find.
algorithm This contains the algorithm to be used to determine clusters. Hartigan-

Wong is the default. Lloyd and Forgy are the same algorithm.
trace This parameter produces trace information on algorithm progress to

determine centers. This is only applicable to Hartigan-Wong.

Example
In our example of k-means clustering, I am using the wine quality data from
UCI Machine Learning Repository at http://www.ics.uci.edu/~mlearn/
MLRepository.html.

First, we load the data (note that this is not a standard CSV file; it uses the semicolon
as a column separator) as follows:

> data <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-
databases/wine-quality/winequality-white.csv", sep=";")

www.it-ebooks.info

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.it-ebooks.info/

Chapter 6

[139]

There are close to 5,000 observations in the dataset. Here's a summary of the data
that provides an overview:

> summary(data)

 fixed.acidityvolatile.aciditycitric.acid
 Min. : 3.800 Min. :0.0800 Min. :0.0000
 1st Qu.: 6.300 1st Qu.:0.2100 1st Qu.:0.2700
 Median : 6.800 Median :0.2600 Median :0.3200
 Mean : 6.855 Mean :0.2782 Mean :0.3342
 3rd Qu.: 7.300 3rd Qu.:0.3200 3rd Qu.:0.3900
 Max. :14.200 Max. :1.1000 Max. :1.6600

 residual.sugar chlorides free.sulfur.dioxide
 Min. : 0.600 Min. :0.00900 Min. : 2.00
 1st Qu.: 1.700 1st Qu.:0.03600 1st Qu.: 23.00
 Median : 5.200 Median :0.04300 Median : 34.00
 Mean : 6.391 Mean :0.04577 Mean : 35.31
 3rd Qu.: 9.900 3rd Qu.:0.05000 3rd Qu.: 46.00
 Max. :65.800 Max. :0.34600 Max. :289.00

 total.sulfur.dioxide density pH
 Min. : 9.0 Min. :0.9871 Min. :2.720
 1st Qu.:108.0 1st Qu.:0.9917 1st Qu.:3.090
 Median :134.0 Median :0.9937 Median :3.180
 Mean :138.4 Mean :0.9940 Mean :3.188
 3rd Qu.:167.0 3rd Qu.:0.9961 3rd Qu.:3.280
 Max. :440.0 Max. :1.0390 Max. :3.820

 sulphates alcohol quality
 Min. :0.2200 Min. : 8.00 Min. :3.000
 1st Qu.:0.4100 1st Qu.: 9.50 1st Qu.:5.000
 Median :0.4700 Median :10.40 Median :6.000
 Mean :0.4898 Mean :10.51 Mean :5.878
 3rd Qu.:0.5500 3rd Qu.:11.40 3rd Qu.:6.000
 Max. :1.0800 Max. :14.20 Max. :9.000

I am not a wine connoisseur, but these sound like reasonable attributes that can be
used to determine wine quality. It is surprising that the range of the data is so great.
Several of the attributes vary from close to zero to a two- or three-digit number.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[140]

We can plot the data to get a bird's-eye view of the apparent relationships present.
Here's how the plotted data looks:

> plot(data)

There appear to be many strong relationships among the attributes present—as can
be seen by the wide, dark areas present in almost every subgraph.

The kmeans function returns an object that provides details on the clusters and the
object assignments that are being prescribed, such as which cluster each item is
assigned, the total number of squares, and the iterations that took place.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

Our first k-means cluster analysis reveals the following:

> kmeans(data,5)

K-means clustering with 5 clusters of sizes 993, 718, 392, 1276, 1519

Cluster means:
 fixed.acidityvolatile.aciditycitric.acidresidual.sugar
1 6.960524 0.2855388 0.3537160 8.824018
2 6.813370 0.2799025 0.3158357 3.450557
3 7.010969 0.3073980 0.3557908 10.033801
4 6.840321 0.2724726 0.3359326 7.006975
5 6.777090 0.2700066 0.3230678 4.734200

 chlorides free.sulfur.dioxidetotal.sulfur.dioxide density
1 0.05114804 47.02971 179.05690 0.9959135
2 0.04015042 18.86212 77.53482 0.9918326
3 0.05228571 55.29847 221.74617 0.9968072
4 0.04732367 37.70415 145.32367 0.9944275
5 0.04193153 28.24753 113.13989 0.9927783

 pH sulphates alcohol quality
1 3.183112 0.5075831 9.831101 5.629406
2 3.175864 0.4691086 11.255687 5.903900
3 3.178265 0.5180357 9.541582 5.522959
4 3.198770 0.4855643 10.397542 5.938088
5 3.191257 0.4843779 10.959480 6.069124

Clustering vector:
 [1] 1 5 5 1 1 5 4 1 5 5 2 5 2 4 1 5 5 2 1 4 2 5 5 1 4 3 4 4 5
 [30] 5 4 2 5 5 1 5 4 4 4 4 1 1 4 4 4 1 3 3 4 4 1 5 2 5 4 1 3 4
 [59] 2 5 5 4 4 2 5 5 5 1 5 5 3 3 1 2 5 5 2 2 5 5 5 1 1 3 4 4 4
 [88] 3 4 4 4 3 4 4 4 3 4 2 2 4 1 1 1 1 1 5 1 1 1 1 1 3 1 4 4 5
 [117] 4 2 1 1 2 4 4 4 4 4 5 3 1 1 2 3 3 1 3 1 5 4 5 2 2 4 5 5 2
 [146] 5 1 2 2 5 4 4 5 5 2 1 1 5 5 5 5 4 2 1 3 1 1 5 4 5 4 2 2 4
 [175] 1 4 2 1 5 1 1 1 1 3 3 3 1 5 5 3 3 1 5 5 1 1 1 3 3 3 1 3 3
 [204] 4 5 4 5 5 2 1 2 5 5 5 5 4 1 4 1 4 1 1 5 4 4 4 1 3 1 4 4 1
... (many more lines of data)
[4873] 1 5 5 5 5 2 2 1 1 5 4 4 1 1 5 2 5 5 5 5 5 2 1 5 5 5

Within cluster sum of squares by cluster:
[1] 394416.5 241930.9 388646.0 381855.0 346222.3
 (between_SS / total_SS = 83.1 %)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[142]

Running the same analysis using 10 clusters yields a much smaller sum of squares (and
we also increased our percentage of between versus total from 83 to 90), as follows:

> kmeans(data,10)
…
Within cluster sum of squares by cluster:
 [1] 69530.92 86524.22 101918.82 224437.86 80365.61 114842.79
 [7] 112139.31 89575.63 83942.30 100867.45
 (between_SS / total_SS = 89.8 %)
Using 15 we see a further movement:
> kmeans(data,15)

…
Within cluster sum of squares by cluster:
 [1] 47054.21 19357.85 43750.34 44484.13 73327.35 43978.19
 [7] 53886.56 47845.73 39506.90 32966.08 184764.12 58340.23
[13] 53868.83 33703.61 35534.54
 (between_SS / total_SS = 92.2 %)

And lastly, at 20 clusters, we see the following:

> kmeans(data,20)
Within cluster sum of squares by cluster:
 [1] 37184.486 47160.578 32028.939 7341.079 28065.158 31830.439
 [7] 35303.537 25278.525 28224.605 21418.290 33523.032 62025.326
[13] 15794.070 37469.911 37145.145 21650.444 36625.103 22344.633
[19] 29586.005 23591.604
 (between_SS / total_SS = 94.1 %)

I think running the analysis using somewhere near 10 clusters yields the most
useful data, as beyond 10 we get a marginal improvement in the sum of squares,
but the data should not have such a wide number of cases. Beyond that, the data
appears to be very fractured.

We can use the data from five clusters in order to evaluate the results:

•	 For each of the attributes, we get cluster values.
•	 The cluster values are in the order of association with data points rather than

the numerical order. That makes sense. For some reason, I just expect things
to be in numerical order in such a table.

•	 It is interesting that a couple of the attributes, sugar and dioxides, have larger
clusters that are not evenly distributed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

Optimal number of clusters
We can have R figure out the optimal number of clusters using the NbClust package.
The NbClust function runs over each of the number of clusters proposed using a
series of indices (30) that measure the centers and distances, tallying a vote of each
index set for a preferred number of clusters. The results clearly point to a majority
decision, such as "n indices recommend m clusters."

The NbClust function looks like the following:

NbClust(data, diss = NULL, distance = "euclidean",
min.nc = 2, max.nc =15,
 method = "ward.D2", index = "all", alphaBeale = 0.1)

The various parameters of this function are described in the following table:

Parameter Description
data This is the dataset.
diss This is the dissimilarity matrix. The default is NULL.
distance This is the distance metric to be used.
min.nc This is the minimum number of clusters.
max.nc This is the maximum number of clusters.
method This is the cluster method to be used. It must be one of the following

methods: ward, single, complete, average, mcquitty, median,
centroid, or kmeans.

index This is the index to be calculated. Many choices are available.
alphaBeale This contains a significance value for the Beale index.

We can run the function against our dataset as the following code. We ask NbClust
to run through all of the cluster sizes from 10 to 15 and provide a recommendation
for the number of clusters to use. The function will use the kmeans method to
determine the optimal number, as follows:

> install.packages("NbClust")
> library(NbClust)
> set.seed(2365)
> nc <- NbClust(data, min.nc=10, max.nc=15, method="kmeans")

We set the seed for random selection. The process is not deterministic.
Providing a specific seed for random functionality allows the process
to be reproducible. Also, this process might take a while depending on
the range of minimum and maximum that you provide.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[144]

All 4,898 observations were used. Here's the result of running the code:

* Among all indices:
* 2 proposed 10 as the best number of clusters
* 14 proposed 11 as the best number of clusters
* 2 proposed 13 as the best number of clusters
* 2 proposed 14 as the best number of clusters
* 3 proposed 15 as the best number of clusters

 ***** Conclusion *****

* According to the majority rule, the best number of clusters is 11

We can see the results a little clearer with a histogram of the clusters:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

The function automatically generates the following graphs (showing clearly the best
choice for the specified number of clusters):

In the graph, we usually look for the elbow. Above and below that point, it is not
efficient to use that number of clusters. In this case, we can take the lowest value
from the second difference graph as the primary motivator for the selected number
of clusters, as that corresponds to the elbow that appears slightly in the top-left
corner of the first graph.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[146]

Medoids clusters
There is another package available to estimate the number of clusters using
medoids, called fpc. Medoids use minimal dissimilarity to all objects in a cluster
as the determinant (as opposed to distance in kmeans). The pamk function looks
like the following:

pamk(data, krange=2:10, criterion="asw", usepam=TRUE,
 scaling=FALSE, alpha=0.001, diss=inherits(data, "dist"),
 critout=FALSE, ns=10, seed=NULL, ...)

The various parameters of this function are described in the following table:

Parameter Description
data This is the dataset.
krange This is the number of clusters compared to the average silhouette. The

default range is 2 to 10.
criterion This is the average silhouette method. This should be one of the following:

asw, multiasw, or ch. The default is asw.
usepam This is a logical flag. We can use pam if set to TRUE, else clara. clara is

recommended for large datasets. The default value is TRUE.
scaling This is a logical flag. If set to TRUE, then variables are divided by the root

mean square. The default is FALSE.
alpha This is the tuning constant for the dudahart method. The default value is

0.001.
diss This is a logical flag about using the dissimilarity matrix.
critout This is a logical flag about the print criteria for each cluster. The default

value is FALSE.
ns This is a pass through parameter to the distcritmulti function if

criterion="multisaw". The default is 10.
seed This is a pass through parameter to the distcritmulti function if

criterion="multisaw". The default is NULL.

Using the pamk function against our dataset yields the following result:

> install.packages("fpc")
> library(fpc)
> best <- pamk(data)

> best

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

$pamobject
Medoids:
 ID fixed.acidityvolatile.aciditycitric.acid
[1,] 3331 6.7 0.23 0.33
[2,] 1149 7.0 0.17 0.37
 residual.sugar chlorides free.sulfur.dioxide
[1,] 8.1 0.048 45
[2,] 5.7 0.025 29
 total.sulfur.dioxide density pH sulphates alcohol
[1,] 176 0.99472 3.11 0.52 10.1
[2,] 111 0.99380 3.20 0.49 10.8
 quality
[1,] 6
[2,] 6
Clustering vector:
 [1] 1 2 2 1 1 2 2 1 2 2 2 2 2 1 1 2 2 2 1 2 2 2 2 1 2 1 1 2 2
 [30] 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1
 [59] 2 2 2 1 1 2 2 2 2 1 2 2 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1
 [88] 1 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2
 [117] 2 2 1 1 2 2 2 2 1 1 2 1 1 1 2 1 1 1 1 1 2 1 2 2 2 1 2 2 2
…
[4873] 1 2 2 2 2 2 2 1 1 2 1 1 1 1 2 2 2 2 2 2 2 2 1 2 2 2
Objective function:
 build swap
28.42058 24.79196

Available components:
 [1] "medoids" "id.med" "clustering" "objective"
 [5] "isolation" "clusinfo" "silinfo" "diss"
 [9] "call" "data"

$nc
[1] 2

$crit
 [1] 0.0000000 0.5060017 0.3976270 0.3643445 0.3372835 0.2963456
 [7] 0.2724782 0.2885286 0.2923836 0.2898382

Unexpectedly, the pamk method selected two clusters. The results show the breakdown
among the parameters, including which cluster each data point is applied to.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[148]

We can plot the results as well for better visualization, as follows:

> library(cluster)
> plot(pam(data, best$nc))

You can see the two clusters that were categorized by the pam function. This makes
some sense, as it is similar to the original, dense subplots shown here.

The cascadeKM function
We can also use the cascadeKM function within the vegan package. The cascadeKM
function is a wrapper to a kmeans implementation that traverses a range of cluster
sizes and produces results that can be used to determine the optimal cluster size.

The function looks as shown in the following code:

cascadeKM(data, inf.gr, sup.gr, iter = 100, criterion = "calinski")

The various parameters of this function are described in the following table:

Parameter Description
data This is the data matrix.
inf.gr This is the lower bound.
sup.gr This is the upper bound.
iter This is the number of iterations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

Parameter Description
criterion This is the criterion to select clusters. calinski and ssi are the

recommended methods.

We run the function against our data over 100 iterations and plot the results (I ran
into a memory issue running the test 1,000 times):

> install.packages("vegan")
> library(vegan)
> fit <- cascadeKM(scale(data, center=TRUE, scale=TRUE), 10, 15)
> plot(fit, sortg=TRUE, grmts.plot=TRUE)

This is another memory-intensive function. It takes a long
time to run, even over just 100 (the default) iterations.

The result is a graph that shows the number of groups in each partition versus the
number of objects. The idea is to determine the size of the dataset you have and
select the best number of clusters. In this case, we have just about 5,000 observations.
Reading into the (color) graph and over to the calinski criterion graph, we will use
10 clusters.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[150]

Selecting clusters based on Bayesian
information
Another method in R to select clusters is the Mclust function in the mclust package.
The Mclust function selects the optimal cluster size based on Bayesian information
present in the data.

We run the function against our dataset (the white wine data from the previous
section) using the same range of 10 to 15 clusters and then plot the results:

> library(mclust)
> d <- Mclust(as.matrix(data), G=10:15)
> plot(d)

The function produces three different graphs:

•	 The first graph compares the Bayesian information against the number of
clusters (components) as follows:

The graph starts with the lowest point at 10. I am using 10 as optimal as
further breakdown increases BIC.

•	 The second demonstrates each of the subgraphs, comparing each attribute
against each other in a plot, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

Here, we see a similar graph to the previous one, which shows a high degree
of correlation between the components.

•	 The third graph shows log density contour plots for each of the attribute
comparisons, as follows:

The contour graphs show that some of the attributes are of less interest. The
more interesting attributes are more dense (pH versus sulphate versus alcohol).

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[152]

Just looking at the resulting object summary also produces interesting information,
as follows:

> summary(d)
--
Gaussian finite mixture model fitted by EM algorithm
--

MclustVVV (ellipsoidal, varying volume, shape, and orientation) model
with 11 components:

 log.likelihood n dfBIC ICL
 -7739.467 4898 1000 -23975.52 -25496.66

Clustering table:
 1 2 3 4 5 6 7 8 9 10 11
 648 729 1103 483 54 335 540 232 587 139 48

We see the number of observations (4898) and the number of iterations (1000). We
have a Bayesian Information Criterion value of -23975. We will use the BIC computed
with one cluster of a particular size against another cluster size for a comparative
value. The BIC presented in the summary is for the optimal clusters selected.

The clustering table shows optimum at 11 clusters. It is interesting that just 5 clusters
is a close second choice.

Affinity propagation clustering
R programming has a function for affinity propagation clustering, apcluster.
Affinity propagation clustering works by comparing the various values for
information about what cluster to assign. The apcluster function looks as
shown in the next piece of code.

We can run the aplcuster function against the data as follows:

> install.packages("apcluster")
> library(apcluster)
> neg <- negDistMat(data, r=2)
> ap <- apcluster(neg)
> ap

APResult object

Number of samples = 4898

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

Number of iterations = 410
Input preference = -2160.385
Sum of similarities = -214614.5
Sum of preferences = -174991.2
Net similarity = -389605.7
Number of clusters = 81

Exemplars:
 111 163 185 276 400 422 444 460 495 513 658 675 731 747 782 798 814
873 922
 930 1058 1206 1297 1312 1418 1476 1548 1557 1592 1689 1755 1764
1806 1862
 1893 1932 2056 2127 2182 2204 2249 2308 2379 2517 2568 2573 2674
2782 2841
 2892 2919 2955 2983 3037 3073 3196 3248 3380 3496 3497 3523 3598
3600 3752
 3763 3787 3815 3824 4086 4123 4164 4215 4241 4278 4348 4373 4434
4516 4746
 4807 4848
Clusters:
 Cluster 1, exemplar 111:
 41 42 102 107 111 219 348 395 402 480 681 752 852 857 860 1015
1086 1105
 1127 1138 1207 1304 1316 1508 1908 1956 2099 2109 2319 2369 2659
2878
 2976 3214 3266 3428 3511 3599 3794 3898 4067 4069 4073 4177 4227
4301
 4430 4530 4531 4532 4672 4673 4680 4700 4701 4769 4770 4771 4772
4849
 4851 4880 4881 4886
...
> summary(ap)
 Length Class Mode
 81 APResultS4
> length(ap@clusters)
[1] 81

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[154]

So, we end up with a completely different value for the optimal number of clusters:
81!. This implies that the data has high affinity. We can display the affinity data in a
graph (which generates all the subgraphs as in the previous graph). The graph does
show high affinity between most of the variables involved:

I think it is a little amazing that all of the variables involved in the dataset are
so correlated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

Gap statistic to estimate the number of
clusters
Another tool available is the clusGap function in the cluster library. The clusGap
function calculates a goodness-of-clustering measure or gap statistic for a range of
cluster values and reports on the results.

Interestingly, the function will also provide feedback as the algorithm progresses on
its status.

The function call looks as shown in the following code:

clusGap(x, FUNcluster, K.max, B = 100, verbose = interactive(), ...)

The various parameters of this function are described in the following table:

Parameter Description
x This is the dataset.
FUNcluster This is the clustering function.
K.max This is the maximum number of clusters to consider.
B This is the number of Monte Carlo samples to use.
verbose This tells whether to produce progress output.

Execution (using the interactive feature) against the wine dataset produces this output:

> library(cluster)
> clusGap(data, kmeans, 15, B=100, verbose=interactive())
Clustering k = 1,2,..., K.max (= 15): .. done
Bootstrapping, b = 1,2,..., B (= 100) [one "." per sample]:
.. 50
.. 100
Clustering Gap statistic ["clusGap"].
B=100 simulated reference sets, k = 1..15
 --> Number of clusters (method 'firstSEmax', SE.factor=1): 4
logWE.logW gap SE.sim
 [1,] 11.107738 12.39454 1.286797 0.004752362
 [2,] 10.661378 11.96485 1.303473 0.004227228
 [3,] 10.457735 11.79927 1.341531 0.011813389
 [4,] 10.317094 11.69955 1.382453 0.005451640
 [5,] 10.233403 11.60180 1.368400 0.005028345
 [6,] 10.175547 11.50335 1.327803 0.004041562
 [7,] 10.102540 11.43084 1.328297 0.003767100
 [8,] 10.062713 11.37084 1.308128 0.008152799

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[156]

 [9,] 10.000954 11.32524 1.324286 0.005380141
[10,] 9.963436 11.28827 1.324830 0.006042356
[11,] 9.936529 11.25665 1.320121 0.005529404
[12,] 9.898593 11.22739 1.328794 0.004627005
[13,] 9.869964 11.19813 1.328167 0.004508561

From the results, the clusGap function is telling us to use four clusters—as can be
seen by the highest gap between logW and E.logW in the table of results. The first
number in the table is the number of clusters indexed (the function always starts
with two clusters, and we asked it to proceed to 15 and hence the number ranges
from 1 to 13).

If we instead store the results in a variable and graph the results, we can see:

The table display emphasizes 4 as the best number of clusters. It wasn't clear
looking at the data values in the table that there was such a large variance
between the number of clusters at 4 and the other values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

Hierarchical clustering
We can also use the pvclust function for hierarchical clustering. Hierarchical
clustering is available in R using the pvclust function in the pvclust package.
The pvclust function looks like the following code:

pvclust(data, method.hclust="average",
 method.dist="correlation", use.cor="pairwise.complete.obs",
 nboot=1000, r=seq(.5,1.4,by=.1), store=FALSE, weight=FALSE)

The various parameters of this function are described in the following table:

Parameter Description
data This is the matrix or data frame.
method.hclust This is the agglomerative method of hierarchical clustering. This

should be one of the following methods:
•	 average

•	 ward

•	 single

•	 complete

•	 mcquitty

•	 median

•	 centroid

The default is average.
method.dist This is the distance measure to be used. This should be one of the

following values:
•	 correlation

•	 uncentered

•	 abscor

The default is correlation.
use.cor This is the method to be used to compute the correlation for missing

values. This should be one of the following methods:
•	 all.obs

•	 complete.obs

•	 pairwise.complete.obs

nboot This is the number of bootstrap replications. The default is 1000.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[158]

Parameter Description
r This is the relative sample size.
store This is a logical flag about storing bootstraps in the result.
weight This is a logical flag about computing association by the weight vector.

We need to load the package for pvclust, which can be done as follows:

> install.packages("pvclust")
> library(pvclust)

Using the wine data as the source for the function, we see results like the following:

> pv <- pvclust(data)
Bootstrap (r = 0.5)... Done.
Bootstrap (r = 0.6)... Done.
Bootstrap (r = 0.7)... Done.
Bootstrap (r = 0.8)... Done.
Bootstrap (r = 0.9)... Done.
Bootstrap (r = 1.0)... Done.
Bootstrap (r = 1.1)... Done.
Bootstrap (r = 1.2)... Done.
Bootstrap (r = 1.3)... Done.
Bootstrap (r = 1.4)... Done.

The summary is uninteresting, whereas the actual data is meaningful:

> pv

Cluster method: average
Distance : correlation

Estimates on edges:

 au bpse.ause.bp v c pchi
1 1.000 1.000 0.000 0.000 0.000 0.000 0.000
2 1.000 1.000 0.000 0.000 0.000 0.000 0.000
3 1.000 1.000 0.000 0.000 0.000 0.000 0.000
4 1.000 1.000 0.000 0.000 0.000 0.000 0.000
5 1.000 1.000 0.000 0.000 0.000 0.000 0.000
6 0.793 0.999 0.737 0.002 -2.002 -1.184 1.000
7 0.992 0.992 0.005 0.001 -2.415 -0.006 0.653
8 1.000 1.000 0.000 0.000 0.000 0.000 0.000
9 0.992 0.997 0.007 0.001 -2.581 -0.167 0.309
10 0.998 0.994 0.001 0.001 -2.721 0.186 0.854
11 1.000 1.000 0.000 0.000 0.000 0.000 0.000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

The first values (1:11) correspond to the attributes present in the dataset. Most of the
variables have a very high effect on the data except for the sixth—free sulphur dioxide.
This is curious as the said compound is an additive to wine to prevent microbe growth
and oxidation. I wouldn't expect such an additive to add flavor to wine.

And the plot highlights the hierarchy present in the data—we can see the less-affecting
attributes pushed down the hierarchy. The following code plots the data:

> plot(pv)

Questions
Factual

•	 Attempt to use an array of iterations when determining the clusters present.
•	 Try using some of the other, non-default methods to determine clusters.
•	 Which clustering method would work best with your data?

When, how, and why?

•	 From package to package, we arrived at a different number of proposed
clusters. How would you decide the number of clusters to use with your data?

•	 Several of the methods appeared to be overwhelmed by the contributions
of the various data points in the wine data (as can be seen by many of the
subgraphs that are nearly completely filled in). Is there a way to make the
clustering more discriminatory?

www.it-ebooks.info

http://www.it-ebooks.info/

Data Analysis – Clustering

[160]

Challenges

•	 Many of the clustering methods are memory-intensive. It was necessary to
store the data being used in the R format on the disk and reload in order to
free up some space. R does have memory management functions available
that might have made that process easier. Investigate being able to use the
raw CSV file.

•	 With such an array of values available for the wine clustering, we used all of
the data. Investigate using a subset of the values for clustering.

Summary
In this chapter, we discussed different aspects of clustering using R. We used a
couple of different methods to select the number of clusters. We used k-means
clustering, which appears to be the most prevalent tool in use. We used medoids
clustering, another popular choice. We also looked into Bayesian clustering, an
interesting choice for this type of data. Lastly, we looked at affinity clustering.

In the next chapter, we will cover the graphics functionality available in R.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization –
R Graphics

Data visualization in R is typically performed using a graphic to display the
characteristics of the data. As a result, the attributes become easier to understand
or interpret. This chapter focuses on several graphics that can be used in R to
achieve that goal.

R has several tools for visualization. In this chapter, we will cover the following topics:

•	 Interaction with robust graphics packages to manipulate a graphic once it is
created from R

•	 Various mapping tools

Packages
In R, there are several packages that provide the visualization functionality to the
programmer. We will use the following packages in the examples of this chapter:

•	 classIn: This contains univariate class intervals
•	 ggplot2: This has a large number of graphical features
•	 gpclib: This is used for polygon clipping
•	 hexbin: This is used for bivariate data manipulation
•	 latticist: This is an interface between R and the Latticist program
•	 mapdata: This has data that can be added directly to maps
•	 maps: This contains maps of various geographical areas
•	 maptools: This has the access mechanisms to use the maps

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[162]

•	 playwith: This contains the interface between R and other programs,
such as GTK+

•	 RColorBrewer: This is used for map shading
•	 RgoogleMaps: This contains the maps from Google for use in R

Interactive graphics
The R programming system interfaces with the GTK+ toolkit to allow the
programmer to interactively modify a graphic. You can invoke the GTK+ toolkit
using the playwith function. The playwith function is used to pass a number
of parameters from the R programming space to the GTK+ space. The playwith
function is called as follows:

playwith(expr,
new = playwith.getOption("new"),
title = NULL,
labels = NULL,
data.points = NULL,
viewport = NULL,
parameters = list(),
tools = list(),
init.actions = list(),
preplot.actions = list(),
update.actions = list(),
...,
width = playwith.getOption("width"),
height = playwith.getOption("height"),
pointsize = playwith.getOption("pointsize"),
eval.args = playwith.getOption("eval.args"),
on.close = playwith.getOption("on.close"),
modal = FALSE,
link.to = NULL,
playState = if (!new) playDevCur(),
plot.call,
main.function)

The various parameters of the playwith function are described in the following table:

Parameter Description
expr This contains the expression to create a plot.
title This is the optional window title.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[163]

Parameter Description
labels This is a character vector of labels. It will be determined from data if

it is not provided.
data.points This is the vector of data points.
viewport This is the viewport representing the data space.
parameters This contains the simple controls (typing) for data.
tools This is a list of GTK+ tools.
init.actions This is a list of actions to be run at the start.
prepplot.
actions

This is a list of actions to be run before plotting.

update.actions This is a list of actions to be run after plotting.
width This is the initial width of plot device in inches.
height This is the initial height of plot device in inches.
pointsize This is the default point size for text.
eval.args This contains a Boolean value and evaluates the plot.call

arguments.
on.close This has the function to call when user closes the plot window.
modal This contains a Boolean value and determines whether plot window

is modal.
linkto This contains a set of brushed points that will be linked.
playstate This is the object which will store the playstate of the graphic.
plot.call This is the plot call (this can be used instead of expr).
main.function This contains the name of the main function to be used.

The steps required to invoke GTK+ are as follows.

Install and start using the playwith library:

> install.packages("playwith")
> library("playwith")

Now, depending on the operating system you are using to run R, you will be
prompted to install GTK+. You can choose any option as per your requirements.

If you do not install GTK+, then the playwith package will
not work. Also, once you have GTK+ installed, you must
restart R in order to use this functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[164]

Let's load some data to display. This is the same wine quality data we referenced in
the previous chapter:

> data <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-
databases/wine-quality/winequality-white.csv", sep=";")

We display a simple plot of the fixed acidity in the wine samples (for example):

> plot(data$fixed.acidity)

The display will look like this:

Now, we invoke the playwith function passing the plot over as an argument:

> playwith(plot(data$fixed.acidity))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[165]

You should have a display that looks like this:

Now, you can use any of the GTK+ toolkits to manipulate your graphic. GTK+, or
the GIMP toolkit, is a multiplatform toolkit to create graphical user interfaces. You
can perform the following functions in GTK+:

•	 Zoom in and out of the graphic
•	 Rotate the graphic (if it is 3D)
•	 Make annotations
•	 Add arrow markers
•	 Change the scale

There are many more standard graphical devices, labels, fonts, styles, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[166]

The latticist package
The latticist package works just like the GTK+ package in that it provides a
separate interface to manipulate an R graphic. The steps to invoke latticist
are as follows:

> install.packages("latticist")
> library("latticist")
> latticist(data$fixed.acidity)

Note, latticist assumes that a third-party graphical toolkit is available. GTK+
is one of the toolkits that work with latticist (hence, you can see that a very
similarly styled image editor is invoked in the following screenshot).

The resulting latticist display for the same plot is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[167]

The latticist application allows you to manipulate the dataset passed over from R
in the following ways:

•	 Choose variables and expressions for the axes
•	 Build groups (for display)
•	 Make subsets

Note, the latticist package is not compatible with the
current version of R. Given its usefulness, I would expect
the package to be updated to support the user base.

Bivariate binning display
We can use the hexbin function/library to group and organize bivariate data.
The hexbin function looks like this:

hexbin(x, y, xbins = 30, shape = 1,
 xbnds = range(x), ybnds = range(y),
 xlab = NULL, ylab = NULL)

The various parameters of this function are described in the following table:

Parameter Description
x, y These are the vectors of the bivariate data that will be used
xbins This is the number of bins for the x scale
shape This is the shape of the plotting regions, where Shape = y height / x width
xbnds, ybnds These are the horizontal and vertical limits
xlab, ylab These are the optional horizontal and vertical labels

For an example, we will use airport data from the Washington University survey
at http://faculty.washington.edu/kenrice/sisg-adv/airportlocations.
csv. The data contains the longitude and latitude of 13,000 airports. We can use the
hexbin function to collate the coordinates and plot their relative positions:

> data <- read.csv("http://faculty.washington.edu/kenrice/sisg-adv/
airportlocations.csv")

> summary(data)

 locationID Latitude Longitude
 00AK : 1 Min. : 5.883 Min. : 64.80
 00AL : 1 1st Qu.:34.475 1st Qu.: 83.71

www.it-ebooks.info

http://faculty.washington.edu/kenrice/sisg-adv/airportlocations.csv
http://faculty.washington.edu/kenrice/sisg-adv/airportlocations.csv
http://www.it-ebooks.info/

Data Visualization – R Graphics

[168]

 00AZ : 1 Median :39.433 Median : 92.38
 00C : 1 Mean :39.414 Mean : 96.05
 00CA : 1 3rd Qu.:42.993 3rd Qu.:101.89
 00CO : 1 Max. :71.286 Max. :177.38
 (Other):13423

So, the data consists of call signs for the airports and their latitude and longitude.
There are 13,000 entries. (I didn't realize there were that many.)

We install the hexbin package as follows:

> install.packages("hexbin")
> library(hexbin)

Using the coordinates of the airports as our x and y variables, we see that the binning
operation of hexbin produces the following result:

> bin <- hexbin(data$Latitude,data$Longitude)
> bin
'hexbin' object from call: hexbin(x = data$Latitude, y =
data$Longitude)
n = 13429 points in nc = 229 hexagon cells in grid dimensions 36 by
31

Starting with 13,000 data points, we end up with 229 bins in a 36 x 31 matrix. We can
get a visual of the bins using a standard plot:

> plot(bin)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[169]

The plot shows higher density as darker areas on the grid. The highest density
appears to be near 40 degrees latitude and 90 degrees longitude—somewhere
in the far east.

Mapping
There are several packages that provide mapping information for R. We can
produce standard maps using the maps package. To produce a map of USA,
we use the following code:

> install.packages("mapdata")
> map(database="usa", col="gray90", fill=TRUE)

This produces the following plot:

This is a fairly standard plot. There are quite a few additional parameters available
when mapping the map call. The map function is called as follows:

map(database = "world", regions = ".", exact = FALSE,
boundary = TRUE, interior = TRUE, projection = "", parameters = NULL,
orientation = NULL,
 fill = FALSE, col = 1, plot = TRUE, add = FALSE,
namesonly = FALSE, xlim = NULL, ylim = NULL,
wrap = FALSE, resolution = if(plot) 1 else 0,
 type = "l", bg = par("bg"),
mar = c(4.1, 4.1, par("mar")[3], 0.1),
 myborder = 0.01, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[170]

The various parameters of this function are described in the following table:

Parameter Description
database This will contain one of the world, usa, state, or county database. The

default database is world.
regions This is a vector of polygons to draw. It can include multiple polygons

with the following naming convention: north:boston.
exact This takes a Boolean value, where TRUE means only exact region matches

are to be used. The default is FALSE.
boundary This takes a Boolean value, where TRUE means boundaries are to be

drawn. The default is FALSE.
interior This takes a Boolean value, where TRUE means interior segments are

drawn. The default is TRUE.
projection This contains the character string of projection to use. It includes many

options, but the standard is mercator.
parameters These are the parameters for projection.
orientation This is the vector to be used for plotting the map, and it includes latitude,

longitude, and rotation.
fill This takes a Boolean value, where TRUE means filling the map. The

default is FALSE.
col This has the fill color that will be used.
plot This takes a Boolean value, and it is used to determine whether to return

a plot from function call.
add This takes a Boolean value, and it is used to determine whether to add the

plot points of the map to the current plot.
namesonly This takes a Boolean value, and it is used to determine whether to return

vector of region names.
xlim, ylim These are the ranges of longitude and latitude.
wrap This takes a Boolean value, and it is used to determine whether to omit

lines that go off screen.
resolution This is the resolution to be used when drawing the map.
bg This takes a Boolean value, and it is used to determine whether to draw

background.
mar This contains the margins to be used.
myborder This contains a vector of coordinates for border.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[171]

Plotting points on a map
We have maps and we have data (with location information). We can combine the
two using standard map functions.

First, let's load the various packages that are invoked (some invoked indirectly by
our coding):

> library(maps)
> library(maptools)
> library(RColorBrewer)
> install.packages("classInt")
> library(classInt)
> install.packages("gpclib")
> library(gpclib)
> library(mapdata)

Plotting points on a world map
> map("worldHires")

The words "world" and "worldHires" are synonyms. The word "worldHires" was the
name of the company that originally produced the map information.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[172]

Let's plot our airport locations against the map. For this, we use the points function:

> points(data$Longitude,data$Latitude,pch=16,col="red",cex=1)

We can see a pretty solid coverage all over the far east.

The points function looks like this:

points(x, ...)

The various parameters of this function are described in the following table:

Parameter Description
x These are the points to be plotted on the current graphic. It should contain x

and y coordinates of each point.
pch This is used to plot the character to be used for each point. The period

character, ".", specially handles a rectangle of at least one pixel depending on
the cex parameter.

col This is the color of each point.
bg This is the background color of each point.
cex This is the expansion factor, for example, to make some points larger than

others.
lwd This is the line width (used when drawing symbols from pch).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[173]

Let's work to get a map that just shows the areas of interest. For this, we will be using
earthquake data from the quakes library. This data is built into the quakes package.
Load the data, produce a world map, and show earthquakes of interest.
The data appears as follows:

> require(graphics)
> head(quakes)
 lat long depth mag stations
1 -20.42 181.62 562 4.8 41
2 -20.62 181.03 650 4.2 15
3 -26.00 184.10 42 5.4 43
4 -17.97 181.66 626 4.1 19
5 -20.42 181.96 649 4.0 11
6 -19.68 184.31 195 4.0 12
> mean(quakes$mag)
[1] 4.6204

As you can see, the quakes are very localized to the southwest Pacific (further in
the following graphic). Data is verified by multiple stations. All appear to be fairly
strong with an average magnitude of 4.6.

If we display the data on the complete world map, we get the following graph:

> map()
> points(quakes$long,quakes$lat,pch=".",col="red",cex=1)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[174]

As you can see, we only have earthquake data for the southwest Pacific region. If we
change the parameters of the map function call, we can focus on that region in the
display (and ignore anything outside of that region):

> lon <- mean(quakes$lon)
> lat <- mean(quakes$lat)
> orient <- c(lat,lon,0)
> x <- c(min(quakes$lon)/2,max(quakes$lon)*1.5)
> y <- c(min(quakes$lat)-10,max(quakes$lat)+10)
> map(database= "world", ylim=y, xlim=x, col="grey80", fill=TRUE)
> points(quakes$long,quakes$lat,pch=".",col="red",cex=quakes$mag/2)

We localize the boundaries of the map display to be within the range of the quake
data. Adjusting the longitude and latitude is necessary to account for changes in
the area you are dealing with due to the negative numbers present.

I also adjusted the quake magnitude a little to give an indication of the magnitude of
each quake.

The resulting plot looks like this:

Given the previous seismic data graphic, the shapes of eastern Australia, New
Zealand, and Micronesia become more apparently in line with the underlying
geological situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

Google Maps
There is an R package to interface with Google Maps, called RgoogleMaps. Here is
example coding to produce the initial terrain map (note that the maps are produced
directly to file rather than being displayed in the R viewer):

> library(RgoogleMaps)
> terrain <-
GetMap(center=c(lat,lon),zoom=5,maptype="terrain",destfile="terrain.
png",scale=c(320,320)

I have scaled the display to fit within this document. It would have been interesting
to get the undersea terrain map, but that does not appear to be available.

If we were to plot our quake data atop this graphic, we use the following commands:

> markers <- cbind.data.frame(quakes$lat,quakes$long,"small","red","")
> names(markers) <- c("lat","lon","size","col","char")
> terrain <- GetMap.bbox(center=c(lat,lon),z
oom=5,maptype="terrain",destfile="terrain2.
png",lonR=range(quakes$long),latR=range(quakes$lat),markers=markers)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[176]

However, there appears to be severe memory constraints using the Google Maps
product beyond a handful of data points, and I could not get the display to work.
Maybe a later version of the software will be corrected.

The ggplot2 package
The ggplot2 package is one of the standard visualization tools available in R.
We can produce scatter plots using ggplot2. We will use the Fiji quake data
mentioned in the previous section:

> qplot(lat,long,data=quakes,color=mag)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

We can add more information to the graph by making the size of the points
correspond to some other attribute, such as depth:

> qplot(lat,long,data=quakes,color=mag,size=depth)

There is a distinction between the various magnitudes of the quakes—they appear to
be widely distributed in scale.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[178]

We can reduce the effect of the collisions with the globs of color where data points
overlap by adjusting the alpha factor (in this case, we are using 0.5):

qplot(lat,long,data=quakes,color=mag,size=depth, alpha=0.5)

Now, we can more clearly see the independent points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

The ggplot function has other geom (geometric methods available). We can generate
a line graph (using the women dataset) as follows:

qplot(height,weight,data=women,geom="line")

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[180]

A bar chart geom against the MASS dataset of the eighteenth century painters can be
generated using the following code:

> qplot(School,data=painters,geom="bar")

We can draw on facets within the data using the ggplot function. Using wine quality
data referenced earlier, we get the following output:

> ggplot(data, aes(x=residual.sugar, y=alcohol))
Error: No layers in plot

Unlike the other plotting functions in R, ggplot needs to save its plot information
into a variable for further manipulation first, as shown here:

> sa <- ggplot(data, aes(x=residual.sugar, y=alcohol))

Then, we specify the geom we want to apply to the data as follows:

> sa <- sa + geom_line()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

The resulting graph is shown here:

> sa

It looks like most of the data has a value of less than 20 for residual sugar with just
a few outliers. I was curious whether the quality of the wine had any basis for the
sugar/alcohol relationship.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[182]

We can split up the data using one of the characteristics as a facet. In this case, we are
generating separate graphs for the sugar/alcohol relationship based on the quality
level of the wine:

> sa + facet_grid(. ~ quality)

Overall, there appears to be a slightly positive correlation between the alcohol level
and the wine quality level. I am not sure if an alcohol level of 0.11 versus 0.12 is
significant from a taste point of view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

The facet_grid function call can either start with a period or end with a period.
Starting with a period gives a horizontal layout to the graphs. Ending with a period
presents a vertical layout, as shown in the following example:

> sa + facet_grid(quality ~ .)

It is interesting that we can see a decrease in the alcohol level as the sugar value
increases. I had not expected that. Maybe it is a good idea to play with the layouts
of the plots to make sure you are getting all the aspects/information you can out
of your data.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[184]

We can add a visual smoothing factor to our graph as well use the geom_smooth
function:

> sa <- ggplot(data, aes(x=residual.sugar, y=alcohol))
> sa <- sa + geom_line()
> sa <- sa + geom_smooth()
> sa

Now, we can see a pronounced decrease in the alcohol level with the increase in
sugar. The wide tail is due to such sparse data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

We can use ggplot to produce a histogram of the same data:

> ggplot(data, aes(x=residual.sugar)) + geom_histogram(binwidth=.5)

It is interesting that a clear majority of the wines have a very low sugar count, but
notice that the graph goes out to 0.06—almost 20 times the mean value.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[186]

Using the same data, we can produce a density graph using ggplot via the
following code:

> ggplot(data, aes(x=residual.sugar)) + geom_density()

Of course, this graph just mimics the graph we saw just previously with
summary information.

Lastly, we can use the boxplot feature of ggplot (using the same data as the
previous section):

> bp <- ggplot(data, aes(x=residual.sugar, y=alcohol))
> bp <- bp + geom_boxplot()
> bp + facet_grid(. ~ quality)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[187]

You can now see a marked increase in alcohol/sugar levels with the higher quality of
the wines in the box plot graphic.

Questions
Factual

•	 Use of hexbin to manipulate bivariate data has shown several tools.
What bivariate data do you have that would benefit from an application
using hexbin?

•	 The ggplothas function has several other features that I did not explore in
this chapter. Familiarize yourself with them.

When, how, and why?

•	 The map functionality appears to be very robust. How might you
change the map function calls used in the chapter to result in a
clearer graphic presentation?

•	 In the sugar/alcohol graphics, should we exclude the outlier values?

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – R Graphics

[188]

Challenges

•	 Explore the use of the playwith tools to get a good idea about how the
interaction works, especially the transfer of data between the external
tool and R.

•	 It was difficult to get any results from RgoogleMaps without running out of
memory. I have to believe there is something worthwhile there to use.

Summary
In this chapter, we discussed different aspects of visualization using R. We used the
interactive, third-party packages to manipulate a graphics display with GTK+ and
latticist. We saw the display of bivariate data using hexbin. There were built-in
packages and external packages (GoogleMaps) to apply data points to geographical
maps. Finally, we touched upon some of the features of the ggplot toolkit.

In the next chapter, we will discuss plotting.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting
A key visualization technique in R is a plot, whether it is a scatter plot, bar
histogram, or even a word cloud. The R system provides quite an array of plotting
mechanisms, both built into the basic R system and available in a variety of packages.

This chapter will cover plotting in the following ways:

•	 Scatter plots
•	 Bars and histograms
•	 Word clouds

Packages
In R, there are several packages available that provide plotting functionalities to the
programmer. We will use the following packages in the examples:

•	 car: With a name that is an acronym for Companion to Applied Regression,
this package provides the regression tools

•	 lattice: This package provides high-level data visualization
•	 gclus: This package has functions to create scatter plots
•	 MASS: This has support functions and datasets for Venables and Ripley's MASS
•	 ggplot2: This contains the grammar of graphics

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[190]

Scatter plots
A scatter plot is a basic plotting device comparing datasets with two axes. A basic
scatter plot is provided with the plot function built into the R system.

Several objects available in R and packages have their own plot
function in order to effectively portray the data associated.

The plot function looks as follows:

plot(x,
 y,
 type,
 main,
 sub,
 xlab,
 ylab,
 asp)

The various parameters of this function are described in the following table:

Parameter Description
x This is an independent variable.
y This is a dependent variable.
type This defines the type of plot. It should be one of the following types:

•	 p for points
•	 l for lines
•	 b for both
•	 c for the lines part alone of b
•	 o for both overplotted
•	 h for histogram-like (or high-density) vertical lines
•	 s for stair steps
•	 S for other steps, see details below
•	 n for no plotting (not sure why this is a choice as it ends up with no

information plotted)
main This is the title of the plot.
sub This is the subtitle of the plot.
xlab This is the x axis label.
ylab This is the y axis label.
asp This is the aspect ratio.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[191]

In this example, we will portray parts of the iris dataset:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")

Let's also clean up the data so as to make it more readable:

> colnames(data) <- c("sepal_length", "sepal_width", "petal_length",
"petal_width", "species")

Now, let's look at a summary to get an overall picture:

> summary(data)
 sepallength sepal_width petal_length
 Min. :4.300 Min. :2.000 Min. :1.000
 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
 Median :5.800 Median :3.000 Median :4.400
 Mean :5.848 Mean :3.051 Mean :3.774
 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100
 Max. :7.900 Max. :4.400 Max. :6.900

 petal_width species
 Min. :0.100 Iris-setosa :49
 1st Qu.:0.300 Iris-versicolor:50
 Median :1.300 Iris-virginica :50
 Mean :1.205
 3rd Qu.:1.800
 Max. :2.500

For this plot, we will use sepal_length versus petal_length (there should be a
positive relationship):

> plot(data$sepal_length, data$petal_length)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[192]

As expected, it's a very ordinary plot. We can adjust some of the items available
by changing the parameters to the call. Many of the line plots do not really help
visualize this dataset. I thought the choices for step (s) and histogram (h) were
somewhat interesting.

First, let's produce the steps diagram with the following code:

> plot(data$sepal_length, data$petal_length, type="s")

Now, we can also generate a histogram of the data using the following code:

> plot(data$sepal_length, data$petal_length, type="h")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[193]

Regression line
Once we have a plot, we can add a regression line to the plot using the abline
function. The abline function adds a straight line to a current plot. (If you attempt
to just draw the line first, R complains there is no plot currently in use). The function
call looks as shown here:

abline(a=NULL,
 b=NULL,
 untf=FALSE,
 h=NULL,
 v=NULL,
 coef=NULL,
 reg=NULL,
 …)

The parameters for the function call are as follows:

Parameter Description
a This is the intercept. The default value is NULL.
b This is the slope. The default value is NULL.
untf This is a logical flag to determine the "untransforming" of the data. The

default value is FALSE.
h This is to draw Y values for horizontal lines. The default value is NULL.
v This is to draw X values for vertical lines. The default value is NULL.
coef This is the vector containing just the intercept and slope. The default value is

NULL.
reg This is the object from the coef function. The default value is NULL.
… This parameter contains the other values to pass along to the subsidiary

functions. The default value is NULL.

For our plot, we invoke the function providing a linear model to use in order to
define the intercept, as follows:

> abline(lm(data$petal_length~data$sepal_length), col="red")

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[194]

We end up with the regression line (drawn in red as per this command) added at the
top of the scatter plot that we produced earlier. I think using a color really highlights
and distinguishes the line from all the other points in the scatter plot, especially if the
scatter plot is very dense, as shown in the following graph:

A lowess line
A lowess line is a smoothed line calculated using locally weighted polynomial
regression. The lowess function takes the scatter plot data you have and computes
the smoothed coordinates for the regression returned in the result of the call. We can
add a lowess line to an existing plot in a similar fashion using the lines function.
We pass a lowess function call to the lines function and it draws the plot.

The lines function is used to add line segments to a plot. The lines function really
has just one parameter—the x, y coordinates of the line points to be drawn.

In this case, we are using the points from the lowess function. The lowess function
has the following parameters:

Parameter Description
x This is a vector of points to be used.
y These are the Y coordinates. The default value is NULL.
f This is the smoother span. This gives the proportion of points in the plot that

influence the smoothness at each value. Larger values give more smoothness.
The default value is 2/3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[195]

Parameter Description
iter This is the number of iterations to be performed (to smooth the data). The

default value is 3. More iterations take longer.
delta This defines how close the computed values have to be to satisfy the

algorithm. The default value is 1/100th of the range of X.

For our example, we use the following code:

> lines(lowess(data$sepal_length,data$petal_length), col="blue")

We get the following graph as the output:

scatterplot
The car package has a scatterplot function. The scatterplot function of car can
create enhanced scatter plots, including box plots. The function has one required
parameter—the coordinates of the points to draw. There are a number of optional
parameters that can also be specified. The various parameters are as follows:

Parameter Description
x This is the vector of horizontal coordinates.
y This is the vector of vertical coordinates.
formula This is a model formula of the form y ~ x or (to plot by groups) y ~ x |

z, where z evaluates to a factor or other variable, dividing the data into
groups. If x is a factor, then parallel box plots are produced using the
boxplot function.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[196]

Parameter Description
data This is the data frame to be evaluated.
subset This is the subset of the data to be used.
smoother This is a function to draw the smoothing line. The default value is

lowess. Another common function is gamLine (for generalized
additive). Others are available under the ScatterplotSmoothers
package.

smoother.args This contains any additional arguments needed for the smoother
chosen in the previous parameter.

smooth or span If TRUE, then use lossLine. Or else use smoother.args.
spread If TRUE, estimate the square root of the variance function.
reg.line If TRUE, draw a regression line.
boxplots This can be one of the following options:

•	 x: This creates a box plot for x
•	 y: This creates a box plot for y
•	 xy: This creates box plots for both
•	 FALSE: This will not create any box plot

The default value is FALSE.
xlab This is the X label.
ylab This is the Y label.
las This can have either of the following values:

•	 0: This will create tick labels parallel to the axis
•	 1: This will create horizontal labels

lwd This is the width of the linear regression line. The default value is 1.
lty This is the type of linear regression line. The default value is 1 (solid).
id.method,
id.n,
id.cex,
id.col

These are the arguments to label points:
•	 id.n=0 means no points label
•	 col is for colors

labels This is a vector of point labels.
log This determines whether to use the log scale for points.
jitter This is the jitter (noise) factor to apply.
ylim, ylim These are the limits. NULL means determine from data.

There are several more parameters present for this function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[197]

For our example, we have the basic scatter plot using the following code:

> library(car)
> scatterplot(data$sepal_length, data$petal_length)

The resulting plot has much more information than the standard plot
produced previously:

•	 The axes have a built-in box plot showing the distribution of that axis data
•	 A simple regression line (shown in green)
•	 A smoothing line (shown in solid red)
•	 Two dotted red lines showing the upper and lower jittered ranges of the

smoothed data

Here's how the resulting plot looks:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[198]

Scatterplot matrices
There are several scatter plot functions available in R for the matrix data.

The pairs function is built into the standard R system to display matrix data.
The basic pairs function call only requires a matrix to display. There are a
number of options to label and position the parts of the matrix in the display.

To use pairs against the entire iris dataset, we use a command like the following one:

> pairs(data)

We end up with the following graphic:

•	 The points in the graph's descending diagonal are given to display what
variable is being used for the x and y axes horizontally and vertically from
that point

•	 Each of the mini-graphs portrays a simple scatter plot of the intersecting
axis variables

Some of the mini-graphs will have ranges if the values are close together,
as shown here:

I like to use this graph to be able to quickly focus on the relationships of interest.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[199]

splom – display matrix data
The lattice package has a similar function called splom to display matrix data. The
splom function only requires a matrix to use and it will default to a useful graphic.
Again, there are quite a few additional, optional arguments that can be applied to
adjust labels and subgraphics.

For our dataset, the call will be as follows:

> library(lattice)
> splom(data)

The resulting graphic is very similar to the previous graph and has the
following information:

•	 splom uses the ascending diagonal as the label descriptor
•	 All of the subgraphics have scale information
•	 Blue is the default data point color, which is odd

Overall, I like the previous display from pairs better:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[200]

The same car library referenced earlier has a scatterplot.matrix function for
matrices that we can use as well:

> library(car)
> scatterplot.matrix(data)

We end up with the following graphic with some further embellishments,
as listed here:

•	 The descending diagonal is the key for the variable being used
•	 Each key point has a scatter plot of just that variable, which is interesting
•	 Like the car package, in the scatterplot function too, we have these for

each of the subgraphics:
°° A simple regression line (shown in green)
°° A smoothing line (shown in solid red)
°° Two dotted red lines showing the upper and lower jittered ranges of

the smoothed data

I am not sure whether I think this is a better use of the scatter plot for an entire
matrix. It feels like there is a little too much detail at this level, as shown in the
output here:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[201]

cpairs – plot matrix data
The glucs package includes the cpairs function to graph matrix data. It works
and displays a graphic equivalent to the previous pairs function. The points of
interest are functions in the glucs package that allow the order of presentation
to be rearranged so that higher correlation is displayed closer to the diagonal.

So, let's use the standard cpairs function call:

> library(gclus)
> cpairs(data)

We end up with a graphic that is very similar to that of the pairs function
(see the following graph).

However, we can rearrange the order of presentation, as follows:

> data.r <- abs(cor(data))
Error in cor(data) : 'x' must be numeric

We have to remove the species data, as it is not numeric, and the cor function only
operates on numeric data points:

> df <- subset(data, select = -c(species))

Let's compute the correlations of the data as follows:

> df.r <- abs(cor(df))

We will assign a color to each subgraph based on correlation:

> df.col <- dmat.color(df.r)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[202]

Finally, let's order the subgraphs based on correlation:

> df.o <- order.single(df.r)

> cpairs(df, df.o, panel.colors=NULL)

Comparing the two graphs, we make the following observations:

•	 We removed species; we could have converted that to a numeric. It seems
like we lost information with that process.

•	 The use of colors to encode the correlation extent was iffy. Maybe if there
were a larger number of variables in use, this would have helped us focus
on the more interesting data. As it is, in this dataset, over half of the data is
highly correlated.

•	 Similarly, moving the more correlated relationships closer to the axis made
little difference with such few variables.

•	 I can definitely see using these highlighters with a big dataset where it is
really not obvious what the key data points might be.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[203]

Here's what the resulting graph looks like:

Density scatter plots
With data with a high degree of overlap with the data points, a standard scatter plot
becomes less useful in being able to recognize attributes of the data. An alternative in
R is to use a density scatter plot.

The hexbin package and function provide a mechanism to display high overlap
among two variables. We first produce the hexbin result on our data items and
then plot that.

The usage is as follows:

hexbin(x,y)

Using our iris data, we use these commands:

> library(hexbin)
> bin<-hexbin(data$sepal_length, data$petal_length)
> summary(bin)
'hexbin' object from call: hexbin(x = data$sepal_length, y =
data$petal_length)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[204]

n = 149 points in nc = 108 hexagon cells in grid dimensions 36 by
31
 cell count xcm ycm
 Min. : 1.0 Min. :1.00 Min. :4.300 Min. :1.000
 1st Qu.: 161.5 1st Qu.:1.00 1st Qu.:5.375 1st Qu.:1.900
 Median : 637.5 Median :1.00 Median :5.950 Median :4.500
 Mean : 559.6 Mean :1.38 Mean :5.955 Mean :3.998
 3rd Qu.: 765.5 3rd Qu.:2.00 3rd Qu.:6.500 3rd Qu.:5.100
 Max. :1114.0 Max. :4.00 Max. :7.900 Max. :6.900

In the hexbin result, we find the following observations:

•	 We have used the default value of 30 bins.
•	 We generated a hexagon of 36 x 31 cells or 1,116 cells.
•	 The lowest cell used is 1, with the highest being 1,114—looks like a good spread.
•	 The count for cells has a median of 1.38. It does not seem like we have

enough overlap.

If we change the call to use 10 bins, for example, we get the following output:

> bin<-hexbin(data$sepal_length, data$petal_length, xbins=10)
> summary(bin)
'hexbin' object from call: hexbin(x = data$sepal_length, y =
data$petal_length, xbins = 10)
n = 149 points in nc = 38 hexagon cells in grid dimensions 14 by 11
 cell count xcm ycm
 Min. : 1.00 Min. : 1.000 Min. :4.300 Min. :1.100
 1st Qu.: 24.25 1st Qu.: 1.000 1st Qu.:5.112 1st Qu.:1.900
 Median : 80.00 Median : 3.000 Median :5.914 Median :4.487
 Mean : 68.08 Mean : 3.921 Mean :5.923 Mean :3.934
 3rd Qu.:102.00 3rd Qu.: 5.750 3rd Qu.:6.565 3rd Qu.:5.438
 Max. :131.00 Max. :15.000 Max. :7.900 Max. :6.725

We can see much better density numbers in the cell counts (the mean has now
become more than double).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[205]

Let's plot the hexbin object directly (originally using 30 bins):

> plot(bin)

The same data organized over 10 bins results in a tighter resolution, as follows.
I think the second density graph shows a much better picture of the overlap of data.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[206]

Bar charts and plots
In this section, I will show you how to generate bar charts and bar plots using R.
I think whether you call a particular graphic a bar chart or a bar plot is up to you.
There are minor differences between bar charts and bar plots. In both cases, we
have bars representing counts; we display them across your graphic. The steps
(and results) involved are similar.

Bar plot
R programming allows us to create bar charts in a variety of ways. The standard
function in R is the barplot function. The barplot function only requires a list
of the heights to be displayed. All of the following parameters are optional.

Usage
The barplot function is used as follows:

> barplot(data)

The various parameters are as follows:

 height, width = 1, space = NULL,
 names.arg = NULL, legend.text = NULL, beside = FALSE,
 horiz = FALSE, density = NULL, angle = 45,
 col = NULL, border = par("fg"),
 main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
 xlim = NULL, ylim = NULL, xpd = TRUE, log = "",
 axes = TRUE, axisnames = TRUE,
 cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
 inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0,
 add = FALSE, args.legend = NULL, ...)

Some of these parameters are described in the following table:

Parameter Description
height This is the main data vector.
width This is the vector of bar widths.
space This is the amount of space to the left of each bar
names.arg This contains the vector of names
legend.text This plots the legend

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

For bar plots, we will use the hair/eye color dataset from the MASS package:

> library(MASS)
> summary(HairEyeColor)
Number of cases in table: 592
Number of factors: 3
Test for independence of all factors:
 Chisq = 164.92, df = 24, p-value = 5.321e-23
 Chi-squared approximation may be incorrect
> HairEyeColor
, , Sex = Male

 Eye
Hair Brown Blue Hazel Green
 Black 32 11 10 3
 Brown 53 50 25 15
 Red 10 10 7 7
 Blond 3 30 5 8

, , Sex = Female

 Eye
Hair Brown Blue Hazel Green
 Black 36 9 5 2
 Brown 66 34 29 14
 Red 16 7 7 7
 Blond 4 64 5 8

> counts <- table(HairEyeColor)
> barplot(counts)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[208]

The x axis is the combination count. The y axis is the number of times that
combination count occurred. For example, there were five instances with a
combination (eye and hair color occurrence) out of seven. (You can verify
this with the data displayed in the previous graph.)

The MASS package also contains a Cars93 dataset (auto information from 1993 models).
Plotting that data, we can see the following result:

produce counts of the number cylinders in each vehicle
> count <- table(Cars93$Cylinders)

> barplot(count)

This is a bar plot of the count of cars with a specified number of cylinders. We can
produce a stacked chart of the same data using these commands:

want the number of cylinders by manufacturer
> count <- table(Cars93$Cylinders, Cars93$Manufacturer)

> barplot(count)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

Bar chart
Similarly, we can produce a bar chart of the data using the following commands:

count the number of models by cylinder by manufacturer
> count <- table(Cars93$Cylinders, Cars93$Manufacturer)
> barplot(count)

We end up with a simple chart showing how many models were produced with a
given number of cylinders in that year, as follows:

ggplot2
The qplot function in ggplot2 also produces bar charts, as follows:

#need to load the ggplot2 library
> library(ggplot2)

#call upon the qplot function for our chart
> qplot(Cars93$Cylinders)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[210]

The chart from qplot appears to be crisper than that displayed above from barplot.
I like having the default background, colors, grid, and scale automatically applied.

Word cloud
A common feature of R programming is producing a word cloud. Since R is so good
at loading large amounts of data and easily manipulating that data, the concept of
doing the same to make a word cloud seems to fit well.

R can be used to access data in a variety of formats. I was originally interested in
accessing the home page of a site but could not find a package to remove all of the
HTML and other web coding from the results. I didn't want to produce a word cloud
where the DIV tag was at the highest frequency.

So, I went to the current page of http://finance.yahoo.com and copied the text on
the page to a file, finance.yahoo.txt. The following steps produce a word cloud
based on that text.

When working with text in R, the fundamental building block is a corpus. A corpus
is just a collection of texts. In R, in this example, it is a collection of lines of text from
the web page.

www.it-ebooks.info

http://finance.yahoo.com
http://www.it-ebooks.info/

Chapter 8

[211]

Once your text is in a corpus, there are several tools built into R that allow you to
easily manipulate the text en masse. For example, you can remove all punctuation,
numbers, and the like.

The word cloud coding operates on a matrix of words with their frequency.
R provides a means to convert a corpus to a matrix cleanly, as shown here:

read the web page text, line by line
> page <- readLines("http://finance.yahoo.com")
produce a corpus of the text
> corpus = Corpus(VectorSource(page))
convert all of the text to lower case (standard practice for text)
> corpus <- tm_map(corpus, tolower)
remove any punctuation
> corpus <- tm_map(corpus, removePunctuation)
remove numbers
> corpus <- tm_map(corpus, removeNumbers)
remove English stop words
> corpus <- tm_map(corpus, removeWords, stopwords("english"))
create a document term matrix
> dtm = TermDocumentMatrix(corpus)
not sure why this occurs, but the next statement clears
Error: inherits(doc, "TextDocument") is not TRUE
reconfigure the corpus as a text document
> corpus <- tm_map(corpus, PlainTextDocument)
> dtm = TermDocumentMatrix(corpus)
convert the document matrix to a standard matrix for use in the
cloud
> m = as.matrix(dtm)
sort the data so we end up with the highest as biggest
> v = sort(rowSums(m), decreasing = TRUE)
finally produce the word cloud
> wordcloud(names(v), v, min.freq = 10)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – Plotting

[212]

I thought it is interesting that bloomberg showed up as the top frequency word on
Yahoo's finance page. The rest of the terms are consistent.

Questions
Factual

•	 The barplot function has a number of optional parameters. It might be
interesting to play with a dataset and the parameters.

•	 When you are displaying a word cloud, the function might complain that
some words might not fit. Determine whether there is a way that this can
be overcome.

When, how, and why?

•	 What is the best way to determine the number of bins to be used in the
hexbin function?

•	 It was very unclear when producing a stacked bar chart as to how to
organize the data to arrive at the correct result. Select a dataset and
produce a stacked chart that meets your needs.

Challenges

•	 There are several packages to produce plots. How would you select one of
the packages to use for your plotting needs?

•	 If there was a package that extracted just the text from a web page, that
would be of tremendous use for R programming. Investigate whether
anyone has made such a package or at least taken the initial steps.

Summary
In this chapter, we explored a variety of plotting methods in R. We covered scatter
plots, step diagrams, and histograms. We added a regression line and a lowess line
to a plot. We used a couple of different tools to plot matrices. We saw a density
scatter plot. We used bar graphs. And finally, we generated a word cloud.

In the next chapter, we will cover 3D modeling.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D
R programming has several methods to display and visualize data in three
dimensions. There are many times when this display technique gives you a
clearer picture of the relationships involved.

This chapter will cover 3D in the following ways:

•	 3D methods.
•	 Visualizing Big Data using 3D. Big Data is a special case where we normally

have a large volume of observations to work with. Many times, visualizing
data in a graphical form, especially in 3D, helps to determine the characteristics
of the data.

•	 Research areas for advanced visualization techniques.

Packages
In R, there are several packages available that provide 3D plotting for the
programmer. We will use the following packages in the examples:

•	 car: This stands for Companion to Applied Regression
•	 copula: This has multivariate dependence with copulas
•	 lattice: This has a high-level data visualization system, especially for

multivariate data
•	 rgl: This provides 3D visualization using OpenGL
•	 vrmlgen: This provides 3D visualization
•	 Rcpp: This gives C++ integration with R
•	 swirl: This provides R training in R

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[214]

Generating 3D graphics
One of the built-in functions to generate 3D graphics is persp. The persp function
draws perspective plots of a surface over the x-y plane. The persp function has many
optional parameters and will likely produce the graphics that you need. As a test,
you can use the following example function, and it will generate three 3D graphics:

> example(persp)

This function call will generate three graphics.

(Included in the output are all of the commands necessary to generate the graphics.)

The first generated image shows a 3D plot of a rotated sine function. The associated
R commands (also generated for you) are as follows:

> persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col =
"lightblue")

Here's the first generated image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[215]

The next image is a more detailed view of the same data:

Lastly, we have a simulated 3D surface area presentation:

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[216]

The persp function looks like this:

persp(x = seq(0, 1, length.out = nrow(z)),
 y = seq(0, 1, length.out = ncol(z)),
 z, xlim = range(x), ylim = range(y),
 zlim = range(z, na.rm = TRUE),
 xlab = NULL, ylab = NULL, zlab = NULL,
 main = NULL, sub = NULL,
 theta = 0, phi = 15, r = sqrt(3), d = 1,
 scale = TRUE, expand = 1,
 col = "white", border = NULL, ltheta = -135, lphi = 0,
 shade = NA, box = TRUE, axes = TRUE, nticks = 5,
 ticktype = "simple", ...)

Some of the parameters of this function are described in the following table:

Parameter Description
x, y These are the locations of grid lines.
z These are the values.
xlim, ylim,
zlim

These are the limits of the three axes.

xlab, ylab,
zlab

These are the labels for the three axes.

main, sub These are the main title and the subtitle.
theta, phi These are the viewing angles; theta is azimuth and phi is the colatitude
r This is the distance of the eye point from the center of the box.
d This is the perspective strength adjustment. The values greater than 1

diminish. Values less than 1 increase.
scale This has a Boolean value to maintain the aspect ratio when scaling. TRUE

means transform each axis separately. FALSE means maintain aspect
ratio.

I have borrowed a nice, simple example (see references). Here, we have gumbel copula
data as our x and y, and we will use the dCopula value as our z. The gumbelCopula
function generates an Archimedean copula; dCopula is the density function for the
copula. The example code is as follows:

> install.packages("copula")
> library(copula)
> gc <- gumbelCopula(1.5, dim=2)
> persp(gc, dCopula, col="red")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[217]

There is a difficulty in using the persp function: both the x and y values must
increase over the vectors supplied. You can easily dream up a mathematical
function that has this property, but it was difficult for me to find data where x
and y increase together. I ended up using the women built-in dataset available in R:

> summary(women)
 height weight
 Min. :58.0 Min. :115.0
 1st Qu.:61.5 1st Qu.:124.5
 Median :65.0 Median :135.0
 Mean :65.0 Mean :136.7
 3rd Qu.:68.5 3rd Qu.:148.0
 Max. :72.0 Max. :164.0

There are 15 samples that show increases in the women's height and weight over
time. The persp function needs a z factor as well. I built a simple function that
provides the product of the height and weight values:

> fun <- function(x,y) {x * y}

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[218]

Then, to produce a persp 3D graphic with the women dataset, we apply the function:

> persp(x=women$height,
 y=women$weight,
 z=outer(women$height,women$weight,fun))

Lattice Cloud – 3D scatterplot
The lattice package has a cloud function that will produce 3D scatterplots. We load
the package, as follows:

> install.packages("lattice")
> library(lattice)

We are using the automobile dataset that was referenced in Chapter 4,
Data Analysis – Regression Analysis, as follows:

> mydata <- read.table("http://archive.ics.uci.edu/ml/machine-
learning-databases/auto-mpg/auto-mpg.data")
> colnames(mydata) <- c("mpg","cylinders","displacement","horsepower",
"weight","acceleration","model.year","origin","car.name")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[219]

We are going to plot the number of cylinders in the x axis, weight of the vehicle in
the y axis, and use the miles per gallon as the z axis, as follows:

> cloud(mpg~cylinders*weight, data=mydata)

The graphic shows the miles per gallon (mpg) increasing with the number of
cylinders and is somewhat ignorant of the weight of the vehicle. I'd not have
expected either result.

The cloud function has many optional parameters:

cloud(x,
 data,
 allow.multiple = is.null(groups) || outer,
 outer = FALSE,
 auto.key = FALSE,
 aspect = c(1,1),
 panel.aspect = 1,
 panel = lattice.getOption("panel.cloud"),

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[220]

 prepanel = NULL,
 scales = list(),
 strip = TRUE,
 groups = NULL,
 xlab, ylab, zlab,
 xlim, ylim, zlim,
 at,
 drape = FALSE,
 pretty = FALSE,
 drop.unused.levels,
 ...,
 lattice.options = NULL,
 default.scales =
 list(distance = c(1, 1, 1),
 arrows = TRUE,
 axs = axs.default),
 default.prepanel = lattice.getOption("prepanel.default.cloud"),
 colorkey,
 col.regions,
 alpha.regions,
 cuts = 70,
 subset = TRUE,
 axs.default = "r")

The parameters are described in the following table:

Parameter Description
x This is normally the function to apply
data This is the dataset to draw variables from
allow.multiple, outer, auto.key, prepanel,
strip, groups, xlab, xlim, ylab, ylim, drop.
unused.levels, lattice.options, default.scales,
subset

These are the same arguments for several
methods of the lattice package for plotting

I think that in most cases, just x and the data parameters are specified, with maybe
some labeling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[221]

scatterplot3d
Another method to generate 3D graphics is the scatterplot3d package and
function. The function has a number of parameters as well, most of them optional,
as follows:

scatterplot3d(x, y=NULL, z=NULL, color=par("col"), pch=par("pch"),
 main=NULL, sub=NULL, xlim=NULL, ylim=NULL, zlim=NULL,
 xlab=NULL, ylab=NULL, zlab=NULL, scale.y=1, angle=40,
 axis=TRUE, tick.marks=TRUE, label.tick.marks=TRUE,
 x.ticklabs=NULL, y.ticklabs=NULL, z.ticklabs=NULL,
 y.margin.add=0, grid=TRUE, box=TRUE, lab=par("lab"),
 lab.z=mean(lab[1:2]), type="p", highlight.3d=FALSE,
 mar=c(5,3,4,3)+0.1, bg=par("bg"), col.axis=par("col.axis"),
 col.grid="grey", col.lab=par("col.lab"),
 cex.symbols=par("cex"), cex.axis=0.8 * par("cex.axis"),
 cex.lab=par("cex.lab"), font.axis=par("font.axis"),
 font.lab=par("font.lab"), lty.axis=par("lty"),
 lty.grid=par("lty"), lty.hide=NULL, lty.hplot=par("lty"),
 log="", ...)

The parameters are described in the following table:

Parameter Description
x This is the primary data or function to plot.
y This is the y axis data.
z This is the z axis data.
color This is the color palette to be used.

Using our auto data with the scatterplot3d function, we get a graphic, as shown
after the following code:

> scatterplot3d(data$mpg~data$cylinders*data$weight)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[222]

Again, we are using the same coordinates: the x axis is the number of cylinders, the y
axis is the weight of the vehicle, and the z axis is the mpg.

It is interesting that using the same data and the same general graphing technique,
we end up with a completely different graphic. Here, we see that the mpg and
weights are clustered around the three typical engine sizes: four cylinders, six
cylinders, and eight cylinders. Also, there is a marked decrease in mpg with an
increase in cylinders as opposed to the prior graphic, implying that mpg increased
with cylinders. The scatterplot3d result is what I expected.

scatter3d
The scatter3d function in the car package produces a 3D graphic with the help
of the rgl package. Note that the rgl package is primarily used to manipulate a
rotating graphic. So, in our case, we create the graphic we specify in the following
command, reorient the graphic to our liking, and then finally use an rgl function
to store the graphic (in our required state) to a PNG file on disk.

First, we have to load everything needed, as follows:

> install.packages("rgl")
> library(rgl)
> install.packages("car")
> library(car)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[223]

Then, we produce the graphic. Again, it will be displayed in an RGL screen so that
you can manipulate the layout of the graphic as required.

Then, we save to the disk in the selected form:

> rgl.snapshot("0860OS_9_8.png")

It is interesting that the same data in essentially the same format looks different
yet again!

We can see the data aligned to three groups according to the number of cylinders
in the car. While it is not obvious, upon close examination, you can see a marked
decrease in mpg with the increase in the number of cylinders. Also, you can finally
see a decrease in mpg with an increase in the weight of the vehicle (by the slant of
the plane). All of these points are nicely displayed.

I found it very pleasing to adjust the axes to their best effect. I also liked the idea of
having the plane cut across the mean (?) of the data points.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[224]

cloud3d
If you normally use VRML files, there is support for generating VRML files in R as
well. Assuming you have a standalone VRML viewer or an add-in to your favorite
browser, you can view and manipulate the resulting image. In my case, I installed
the Cortona add-in for Internet Explorer.

The commands are slightly different, as follows:

> install.packages("vrmlgen")
> library(vrmlgen)
> cloud3d(mydata$mpg~mydata$cylinders*mydata$weight,filename="out.
wrl")

This set of commands will produce the out.wrl file in your current R directory.
There are options to change the name of the file and/or directory. The file is a VRML
file. You will need a VRML viewer/editor to display/manipulate the file. VRML
viewing is not built into standard browsers. Popular VRML viewers are Cortona3D
(used in the following example), FreeWRL, and ORBISNAP.

Double-clicking on the file will bring up your VRML viewer, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[225]

As you can see in the display:

•	 It is displaying the file in a new window
•	 The viewer has controls to manipulate the layout of the graphic
•	 We see the same alignment along the three cylinder sizes
•	 I think it is clear that the lower number of cylinders have a higher mpg
•	 Overall, the graphics are superb

The cloud3d function has similar parameters to the other 3D functions we saw,
as shown here:

cloud3d(x, y = NULL, z = NULL, labels = rownames(data),
 filename = "out.wrl", type = "vrml",
 pointstyle = c("s", "b", "c"), metalabels = NULL,
 hyperlinks = NULL, cols = rainbow(length(unique(labels))),
 scalefac = 4, autoscale = "independent",
 lab.axis = c("X-axis", "Y-axis", "Z-axis"),
 col.axis = "black", showaxis = TRUE, col.lab = "black",
 col.bg = "white", cex.lab = 1, htmlout = NULL,
 hwidth = 1200, hheight = 800, showlegend = TRUE,
 vrml_navigation = "EXAMINE", vrml_showdensity = FALSE,
 vrml_fov = 0.785, vrml_pos = rep(scalefac + 4, 3),
 vrml_dir = c(0.19, 0.45, 0.87, 2.45),
 vrml_transparency = 0, lg3d_ambientlight = 0.5)

We have very similar parameters to the other functions. Noted differences are
as follows:

•	 The filename parameter assumes that you want to generate a file from
the output

•	 The size parameters for the resulting window display
•	 There are several VRML commands
•	 It is interesting that many of the parameters do not default to NULL, but to

realistic values

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[226]

RgoogleMaps
Google produces the RgoogleMaps package. Included in the package are functions
to produce 3D maps. For this example, we focus on Mount Washington, NH,
as shown here:

> size <- "small"
> col <- "red"
> char <- ""
> library(RgoogleMaps)
> lat <- c(44.26,44.28)
> lon <- c(-71.2,-71.4)
> mymarkers <- cbind.data.frame(lat, lon, size, col, char)
> terrain_close <- GetMap.bbox(lonR= range(lon), latR= range(lat),
destfile= "terrclose.png", markers= mymarkers, zoom=13,
maptype="hybrid")

We set up some of the markers to use when drawing the map. Lastly, just set the
coordinates to Mount Washington, producing the following 3D map:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[227]

The function call looks like this:

GetMap.bbox(lonR, latR, center, size = c(640, 640), destfile =
"MyTile.png",
 MINIMUMSIZE = FALSE, RETURNIMAGE = TRUE, GRAYSCALE = FALSE,
 NEWMAP = TRUE, zoom, verbose = 0, SCALE = 1, ...)

The parameters are described in the following table:

Parameter Description
lonR This is the longitude range.
latR This is the latitude range.
center This is the optional center.
size This is the desired size of the map.
destfile This is the file to save an image to.
MINIMUMSIZE This is the minimum size of the map.
RETURNIMAGE This defines whether the function returns a map. The default value is

TRUE.
GRAYSCALE This stores a Boolean value. TRUE means use black and white.
NEWMAP This stores a Boolean value: TRUE means save image, FALSE means load

image.
zoom This is the optional zoom level.
verbose This is the verbosity level.
SCALE This is the scaling factor.
… These are the arguments to be passed to the GetMap function.
maptype The GetMap argument—this is the only argument we used in our

example.

vrmlgenbar3D
We can combine a typical graphic, a bar chart, with a map using the bar3d function
of vrmlgen, as follows:

> library(vrmlgen)

> data("uk_topo")

> bar3d(uk_topo, autoscale = FALSE, cols = "blue", space = 0, showaxis
= FALSE, filename = "example6.wrl", htmlout = "example6.html")

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[228]

We saw the vrlmgen library earlier in this chapter. The bar3d function looks as follows:

bar3d(data, row.labels = rownames(data),
 col.labels = colnames(data), metalabels = NULL,
 filename = "out.wrl", type = "vrml", space = 0.5,
 cols = rainbow(length(as.matrix(data))),
 rcols = NULL, ccols = NULL, origin = c(0, 0, 0),
 scalefac = 4, lab.axis = c("X-axis", "Y-axis", "Z-axis"),
 lab.vertical = FALSE, col.axis = "black",
 showaxis = TRUE, autoscale = TRUE,
 ignore_zeros = TRUE, col.lab = "black",
 col.bg = "white", cex.lab = 1, cex.rowlab = 1,
 cex.collab = 1, htmlout = NULL, hwidth = 1200,
 hheight = 800, showlegend = TRUE,
 vrml_navigation = "EXAMINE", vrml_transparency = 0,
 vrml_fov = 0.785, vrml_pos = rep(scalefac + 4, 3),
 vrml_dir = c(0.19, 0.45, 0.87, 2.45),
 lg3d_ambientlight = 0.5)

Some of the parameters are described in the following table:

Parameter Description
data This is the dataset being plotted.
row.labels, col.labels These are the labels for rows and columns.
filename This is the output filename.
type This is the output file type.

Again, most the parameters are not NULL and have specific values that will work
in many cases. Even in our example, we only specified the data source and the
filenames. The rest is built into the VRML output.

The result of the previous command is a WRL virtual map. I have extracted part of
the display, most of Ireland, as an example of what it looks like:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[229]

Big Data
Big Data with R caters to two areas of concern:

•	 The amount of data that you want to analyze might not fit in the memory of
one machine

•	 The amount of time needed to process all of the data might be considerable,
and you can split up the processing among machines or nodes in a cluster

Along with this effort, an interesting avenue is running your R program against
Big Data on an Amazon cluster. Amazon AWS offers support for R in its service
offerings. There is also a free trial period where you can try out these services. I have
used AWS for other projects and found it very convenient and reasonably priced.

Also, note that many of the packages used in Big Data are not available for your
typical Windows machine. You can attempt to install them, but the install will throw
an error message like Binaries not available for 3.1.1. Source available, which
means that the authors never counted on someone installing pbdR or its colleague
libraries on a desktop machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[230]

pbdR
The pbdR project was started to organize all of the separate efforts involved with
Programming with Big Data in R. The group has utility libraries available, such as
pdbDEMO, pdbMPI, and pdbPROF. The focus is on the single program / multiple data
model: one R program over various chunks of the data possibly distributed over
several machines.

A good showcase for pbdR is the pbdDEMO library. It provides prebuilt samples using
their other packages, so you can quickly see the effects of your implementation.

Common global values
There are some common global values referenced by pdbDEMO. It is expected that these
will be set before calling specific functions in the package. I am defining them here
rather than repeating as they will be required later on. These are referenced by the other
pbdDEMO functions. The .DEMO.CT library holds common global values, as follows:

Elements Default Usage
gbd.major 1L This is a default GBD row-major.
ictxt 0L This is a default BLACS context.
bldim c(2L,2L) This is a default block dimension.
divide.method block.cyclic This is a default balance method.

Similarly, the .SPMD.CT library contains more common global values:

Elements Default Usage
comm 0L This is a communicator index
intercomm 2L This is an inter-communicator index
info 0L This is an info index
newcomm 1L This is a new communicator index
op sum This is an operation
port.name spmdport This is an operation
print.all.rank FALSE This is to determine whether all ranks print message

print.quiet FALSE This is to determine whether to print/cat rank
information

rank.root 0L This is a rank of the root
rank.source 0L This is a rank of the source
rank.dest 1L This is a rank of the destination
…

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[231]

Distribute data across nodes
One of the features of the pdbR package lets you easily distribute your data among
the nodes available. As a part of the pbdR package, the system knows how many
nodes are available, so then you can use the load.balance function to distribute
the data evenly.

Let's load the library we want to use:

> library(pbdDEMO)

We can generate some sample data, as follows:

> N.gbd <- 5 * (comm.rank() * 2)
> X.gbd <- rnorm(N.gbd * 3)
> dim(X.gbd) <- c(N.gbd, 3)

Now, we will get the balancing information. This shows how the data will be balanced:

> bal.info <- balance.info(X.gbd)

Let's distribute the data evenly across the nodes available, as follows:

> new.X.gbd <- load.balance(X.gbd, bal.info)

Now, we'll revert the data back to its original location(s), as follows:

> org.X.gbd <- unload.balance(new.X.gbd, bal.info)

Distribute a matrix across nodes
There are methods to distribute a matrix across nodes and then reverting back to the
original matrix. They look like this:

gbd2dmat(X.gbd, skip.balance = FALSE, comm = .SPMD.CT$comm,
 gbd.major = .DEMO.CT$gbd.major, bldim = .DEMO.CT$bldim,
 ICTXT = .DEMO.CT$ictxt)
 dmat2gbd(X.dmat, bal.info = NULL, comm = .SPMD.CT$comm,
 gbd.major = .DEMO.CT$gbd.major)

The parameters are described in the following table:

Parameter Description
x This is the source matrix data
skip.balance This determines whether to skip running balance.info if already

performed
comm This is an index

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[232]

Parameter Description
gbd.major This is an index
bldim This is an index

The parameters are only needed if your matrix is abnormally indexed.

bigmemory
The bigmemory package is another utilitarian package that allows you to
manipulate a big matrix directly. For example, we can create a big matrix
using the following command:

x <- big.matrix(5, 2, type="integer", init=0,
dimnames=list(NULL, c("alpha", "beta")))
options(bigmemory.allow.dimnames=TRUE)

The big.matrix function looks like the following:

big.matrix(nrow, ncol, type = options()$bigmemory.default.type,
 init = NULL, dimnames = NULL, separated = FALSE,
 backingfile = NULL, backingpath = NULL, descriptorfile = NULL,
 binarydescriptor=FALSE, shared = TRUE)

The big.matrix function has the following parameters:

Parameter Description
nrow, ncol This is the dimension of the matrix.
type This is the cell atomic element type. This must be one of the

following options: double, integer, short, or char.
init This is the initial value for the matrix.
dimnames This is a list of row and column names (can be troublesome with

large datasets).
separated This determines whether to use a column organization.
backingfile This is the root name to be used for the cache of the dataset.
backingpath This is the directory for the previous parameter.
descriptorfile This is the description of the layout—if load is used.
binarydescriptor This is a flag to use a binary store for the description.
shared This is to determine whether shared memory is used. The value

TRUE is for file-backed matrices.

Similarly, there is a filebacked.big.matrix function with the same parameters but
is only used for file-backed matrices.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[233]

A standard big matrix is constrained by RAM. A file-backed matrix has no
effective limitation.

pdbMPI
Another useful Big Data package is pdbMPI. This package provides a runtime
interface to R that will work with multiple nodes directly—rather than trying
to make the R Studio or standard R interface make the connections somehow.

The usage looks like the following:

1.	 We load the library, as follows:
> library(pbdMPI)

2.	 Then use the mpiexec function to load our R script across nodes as follows:
> mpiexec -np 2 Rscriptsome_code.r

Here, np is the number of processors, and some_code.r is your script that you want
to run in all the nodes. Again, we are in the single processor/multiple data model.

snow
The snow (Simple Network of Workstations) package allows you to organize
a group of machines together for R programming tasks. The library provides
functions, grouping your workstations together in a cluster or parallel fashion.
Once organized, you can apply functions across your cluster or set of parallel
machines using the following functions.

The cluster functions are as follows:

•	 clusterSplit(cl, seq): split up a cluster
•	 clusterCall(cl, fun, ...): call a function on each node of the cluster
•	 clusterApply(cl, x, fun, ...): apply, as in a standard R apply(),

against all the nodes in the cluster
•	 clusterApplyLB(cl, x, fun, ...)

•	 clusterEvalQ(cl, expr)

•	 clusterExport(cl, list, envir = .GlobalEnv)

•	 clusterMap(cl, fun, ..., MoreArgs = NULL, RECYCLE = TRUE)

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[234]

Similarly, there are a number of functions to use in parallel:

•	 parLapply(cl, x, fun, ...)

•	 parSapply(cl, X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

•	 parApply(cl, X, MARGIN, FUN, ...)

•	 parRapply(cl, x, fun, ...)

•	 parCapply(cl, x, fun, ...)

Many of the other Big Data packages assume that you are using/have installed the
snow package. Another package, snowfall, was even developed to help with using
the snow package.

More Big Data
There are quite a few libraries that keep being added to and built, which help you
load, manipulate, and examine big datasets. Most of the packages I have seen were
built to help you distribute your data among nodes, script among nodes, and gather
results. The assumption is that you will run your single code in parallel on all the
nodes. If you are working in this space, you should keep tabs on the CRAN R Project
High Performance Computing area.

Some of the areas where a lot of work has already been done are as follows:

•	 Grid computing
•	 Hadoop
•	 Resource Managers
•	 Large data, out of memory

Only some packages are being developed that are specifically written to use
distributed data as the norm.

Research areas
There is quite a variety of research being done in new areas of R programming.
This section talks about some of the ideas I find interesting.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[235]

Rcpp
There are times when an R function simply takes too long. You know (or at least think)
that if you could rewrite that function, you could do better. Now, you have your
chance. The Rcpp package allows you to use C++ directly in your R script. If you are
using a Windows machine, the package will require you to install RTools to use (you
will get an error message when you try to use C++). Here's a simple example:

> install.packages("Rcpp")
> library(Rcpp)
> cppFunction('int add(int x, int y, int z) {
+ int sum = x + y + z;
+ return sum;
+ }')
Warning message:
running command 'make -f "C:/PROGRA~1/R/R-31~1.1/etc/i386/
Makeconf" -f "C:/PROGRA~1/R/R-31~1.1/share/make/winshlib.mk"
SHLIB_LDFLAGS='$(SHLIB_CXXLDFLAGS)' SHLIB_LD='$(SHLIB_CXXLD)'
SHLIB="sourceCpp_73208.dll" OBJECTS="filea0c4d7559e2.o"' had status
127
Error in sourceCpp(code = code, env = env, rebuild = rebuild,
showOutput = showOutput, :
 Error 1 occurred building shared library.
WARNING: Rtools is required to build R packages but is not currently
installed. Please download and install the appropriate version of
Rtools before proceeding:
http://cran.rstudio.com/bin/windows/Rtools/

This error occurs when running R on a Windows machine. On a Mac machine, the
necessary tools are installed. To install the tools on Windows, use the correct version
on the R Tools page, http://cran.r-project.org/bin/windows/Rtools/. Here's
how the tools are installed on Windows:

> cppFunction('int add(int x, int y, int z) {
+ int sum = x + y + z;
+ return sum;
+ }')
> add(1, 2, 3)
[1] 6

www.it-ebooks.info

http://cran.r-project.org/bin/windows/Rtools/
http://www.it-ebooks.info/

Data Visualization – 3D

[236]

parallel
The parallel package takes R programming for parallelism to the next level using
operating system capabilities directly. Some of the features include:

•	 The via function to start new processes
•	 The fork function, which is part of standard software development and

includes a way to "fork" the current process into two and have both continue
•	 The rewriting of snow and all the apply functions (example shown in text has

an 80 percent speed improvement)
•	 The rework of random number generation (can be problematic in

parallel environments)
•	 More control over load balancing

microbenchmark
The microbenchmark package and function provides submicrosecond accurate
timing functions. A typical use is to call upon an existing function (usually many
times) to gather a time of execution. For example:

> library(ggplot2)
> library(microbenchmark)
> tm <- microbenchmark(rchisq(100, 0),
+ rchisq(100, 1),
+ rchisq(100, 2),
+ rchisq(100, 3),
+ rchisq(100, 5), times=1000L)
> autoplot(tm)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[237]

The objective is to measure the run of different versions of your R script to arrive at
the best solution.

pqR
A recent development is pqR, (Pretty Quick R). It is based on a current version of R
but has rewrites of sections for speed. A significant feature includes built-in parallel
operations for multichip machines—no special programming is required!

This version does not run on Windows however, so I am unable to write much about
the experience.

SAP integration
With the release of SAP HANA, the SAP Corporation has provided integration
between the SAP system and R programming. You can pass variable values back
and forth, invoke scripts/statements in R from SAP, and receive the results of the
execution back in the SAP world.

roxygen2
The roxygen2 package is a latex-like system for documenting your R programs.
If you make slight formatting changes to include keywords that roxygen looks
for in your comments, you can quickly generate standardized documentation
for your scripts.

If you have a large script library, this is a must.

bioconductor
bioconductor.org provides tools for the analysis and comprehension of genomic
data using R. There are over 800 packages in use under bioconductor. If you work
in this area, most likely the scripts and packages you need are already there.

swirl
The swirl package uses the R system to teach you to program in R. Here is the first
part of the interaction (note that the layout fits my screen correctly—there are extra
line breaks here trying to fit in the document width):

> install.packages("swirl")
> library(swirl)

| Hi! I see that you have some variables saved in your workspace. To
keep things

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[238]

| running smoothly, I recommend you clean up before starting swirl.

| Type ls() to see a list of the variables in your workspace. Then,
type
| rm(list=ls()) to clear your workspace.

| Type swirl() when you are ready to begin.

> swirl()

| Welcome to swirl!

| Please sign in. If you've been here before, use the same name as you
did then.
| If you are new, call yourself something unique.

What shall I call you? Dan

| Thanks, Dan. Let's cover a few quick housekeeping items before we
begin our
| first lesson. First of all, you should know that when you see '...',
that
| means you should press Enter when you are done reading and ready to
continue.

... <-- That's your cue to press Enter to continue

| Also, when you see 'ANSWER:', the R prompt (>), or when you are
asked to
| select from a list, that means it's your turn to enter a response,
then press
| Enter to continue.

Select 1, 2, or 3 and press Enter

1: Continue.
2: Proceed.
3: Let's get going!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[239]

pipes
R programming now includes pipes denoted by %>% in your script. The idea is to
take whatever function/value is on the left-hand side of the pipe and transfer that
to the function/value on the right-hand side. They are used as follows:

> library(babynames) # data package
> library(dplyr) # provides data manipulating functions.
> library(magrittr) # pipes
> library(ggplot2) # for graphics
> babynames %>%
+ filter(name %>% substr(1, 3) %>% equals("Dan")) %>%
+ group_by(year, sex) %>%
+ summarize(total = sum(n)) %>%
+ qplot(year, total, color = sex, data = ., geom = "line") %>%
+ add(ggtitle('Names starting with "Dan"')) %>%
+ print

Here, we take all the baby names, pipe them to a filter function that pipes each name
to get the first three characters of the name, and pipe that to ….

As you can see, it is a very interesting programming paradigm.

www.it-ebooks.info

http://www.it-ebooks.info/

Data Visualization – 3D

[240]

Questions
Factual

•	 Do you have data that can be displayed using the persp function (x and y
increasing over the range of your dataset)?

•	 Don't you wish you knew about swirl when you first started getting into R?

When, how, and why?

•	 Determine how to adjust the viewing angle for the 3D maps.
•	 Sign up for an Amazon AWS free trial to use the Big Data aspects.
•	 Get access to a multiprocessor machine and try out the parallel packages.

Challenges

•	 Find an observed dataset that can be displayed using the persp function.
•	 What geographic data can you think of that'd be better displayed using a

3D graphic map?

Summary
In this chapter, we explored a variety of 3D plotting methods in R. We generated
3D graphics using the built-in persp function. We used Lattice Cloud to get a 3D
scatter plot using the cloud function and scatterplot3d. We used the scatter3d
function from the rgl package. We generated a 3D plot and a bar graph into a
VRML file using the vrmlgen package. We used RgoogleMaps for the map data and
corresponding map displays.

In the Big Data area, we used the pbdR tools to use Big Data and used several
methods that allow you to access Big Data in R.

Lastly, we looked at several research areas that seem promising, such as Rcpp (to
develop your own R methods using C++), parallel (for parallel processing of R
commands), and microbenchmark (allowing detailed timing to occur in your R coding).

In the next chapter, we will cover machine learning.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action
R programming has several methods for machine learning. With machine learning,
you can learn to automatically make better predictions. You are leaving the heavy
lifting to the software to figure out. The methods you use are somewhat dependent
on the characteristics of the data you are attempting to model.

This chapter will cover machine learning in the following ways:

•	 Organizing your dataset into training and testing sets
•	 Generating a model of your data
•	 Testing the efficacy of your model (with the part of your data allocated

for testing)

Packages
In R, there are several packages available that provide machine learning for the
programmer. We will be using the following packages in the chapter:

•	 ada: This is used for stochastic boosting
•	 caret: This is used for classification and regression testing
•	 class: This package has classification functions
•	 clue: This package has the cluster ensemble methods
•	 e1071: This package has miscellaneous functions for the statistics department
•	 kernlab: This has kernel-based machine learning methods
•	 MASS: This stands for Modern Applied Statistics with S
•	 neuralnet: This has artificial neural net support

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[242]

•	 randomForest: This has random forests for classification
•	 relaimpo: This package has functions to determine the relative importance

of regressors in linear models

Dataset
Machine learning works by featuring a dataset that we break up into a training
section and a testing section. We use the training data to come up with our model.
We can then prove or test that model against the remaining testing section data.

The first issue is finding a dataset with several variables and, hopefully, several
hundred observations. I am using the housing data from http://uci.edu. Let's
find the dataset using the following command:

> housing <- read.table("http://archive.ics.uci.edu/ml/machine-
learning-databases/housing/housing.data")
> colnames(housing) <- c("CRIM","ZN","INDUS","CHAS","NOX","RM","AGE","
DIS","RAD","TAX","PRATIO","B","LSTAT","MDEV")

There are close to 500 observations with 14 variables. We can see a summary for a
better idea, as follows:

> summary(housing)
 CRIM ZN INDUS CHAS
 Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
 1st Qu.: 0.08204 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
 Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
 Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
 Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000
 NOX RM AGE DIS
 Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
 Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
 Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
 Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
 RAD TAX PRATIO B
 Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
 Median : 5.000 Median :330.0 Median :19.05 Median :391.44
 Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
 Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90

www.it-ebooks.info

http://uci.edu
http://www.it-ebooks.info/

Chapter 10

[243]

 LSTAT MDEV
 Min. : 1.73 Min. : 5.00
 1st Qu.: 6.95 1st Qu.:17.02
 Median :11.36 Median :21.20
 Mean :12.65 Mean :22.53
 3rd Qu.:16.95 3rd Qu.:25.00
 Max. :37.97 Max. :50.00

The various variables are as follows:

Parameter Description
CRIM This is the per capita crime rate
ZN This is the residential zone rate percentage
INDUS This is the proportion of non-retail business in town
CHAS This is the proximity to the Charles river (Boolean)
NOX This is the nitric oxide concentration
RM This is the average rooms per dwelling
AGE This is the proportion of housing built before 1940
DIS This is the weighted distance to an employment center
RAD This is the accessibility to a highway
TAX This is the tax rate per $10,000
B This is calculated using the formula: 1000(Bk – 0.63)^2 Bk = African American

population percentage
LSTAT This is the lower-status population percentage
MDEV This is the median value of owner-occupied homes in $1,000s

As you can tell from the data descriptions, this is dated material. Modern statistics
would be in 10s if not 100s of thousands. And the idea of measuring the African
American population's effect is just bad.

> plot(housing)

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[244]

The plotted data looks like this:

I'm just getting an all x by all y to get a visual of what the relationships look like
above. Most of the data looks to be useful, except for the following ones:

•	 Charles river access (but that is binary)
•	 Highway access (I guess that should be expected)
•	 Tax rate (appears to be very lopsided, almost binary)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[245]

We can produce a correlation matrix to prove the data, as follows:

> install.packages("corrplot")
> library(corrplot)
> corrplot(cor(housing), method="number", tl.cex=0.5)

The highest correlations occurred with RAD (access to highway) and TAX (rate
per $1,000). Unfortunately, I don't think I can exclude these from the dataset.

The remaining variables are well within range.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[246]

Data partitioning
Now that we have our raw data, we need to go about splitting up between training
and test data. The training dataset will be used to train our system in how to predict
our values (in this case, housing prices). The testing data will be used to prove our
hypothesis. I am using 75 percent as the cutoff: 75 percent of the data will be for
training and 25 percent for testing.

Where the data is inherently geographic, it is better to make good samples that use
percentages of geographic areas, but that data is not available. I am assuming that
the data is inherently randomly organized, so random partitioning using the median
house value as the index is workable.

The caret package has a data partitioning function available, createDataPartition.
The function works on a vector of values, selects the records of interest as per your
parameters, and produces a vector of the indices selected. We can then extract the
records of interest into training and testing sets.

The vector passed to createDataPartition is assumed
to be sorted, so you must sort the data ahead of time.

I think this is a little problematic, as records would now most likely be clumped
together geographically. I chose to split up the housing based on median value
(MDEV). It seemed to have a good enough range that a randomized selection process
would pull values from all different areas. I thought many of the other values would
tend towards certain geographic pockets. Let's first install the caret package:

> housing <- housing[order(housing$MDEV),]
> install.packages("caret")
> library(caret)

The partitioning process uses a random number to select records. If we use set.
seed, we can reproduce the partitioning example that takes place, since we are
specifying the random starting place, as shown here:

> set.seed(3277)
> trainingIndices <- createDataPartition(housing$MDEV, p=0.75,
list=FALSE)
> housingTraining <- housing[trainingIndices,]
> housingTesting <- housing[-trainingIndices,]
> nrow(housingTraining)
[1] 381
> nrow(housingTesting)
[1] 125

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[247]

So, we end up with 381 records for training and 125 for testing. We could use other
approaches to split up the data. There are separate packages that just provide
different ways to partition your data.

Model
There are a variety of models that we can use for machine learning, some of which
we already covered in prior chapters.

Linear model
First, we will use linear regression, lm. This model will provide a baseline for our
testing, as shown in the following code:

> linearModel <- lm(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE +
DIS + RAD + TAX + PRATIO + B + LSTAT, data=housingTraining)
> summary(linearModel)

Call:
lm(formula = MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE +
 DIS + RAD + TAX + PRATIO + B + LSTAT, data = housingTraining)

Residuals:
 Min 1Q Median 3Q Max
-14.1317 -2.6258 -0.5413 1.5656 26.2551

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.196069 5.609316 7.344 1.35e-12 ***
CRIM -0.122053 0.032598 -3.744 0.000210 ***
ZN 0.052261 0.015412 3.391 0.000772 ***
INDUS 0.032047 0.068200 0.470 0.638709
CHAS 2.385849 0.959308 2.487 0.013324 *
NOX -17.566444 4.273389 -4.111 4.87e-05 ***
RM 3.485134 0.463397 7.521 4.23e-13 ***
AGE -0.003562 0.014443 -0.247 0.805317
DIS -1.545347 0.221048 -6.991 1.30e-11 ***
RAD 0.333380 0.076002 4.386 1.51e-05 ***
TAX -0.014973 0.004317 -3.468 0.000586 ***
PRATIO -0.995370 0.145592 -6.837 3.39e-11 ***
B 0.006718 0.002832 2.373 0.018180 *
LSTAT -0.521544 0.054005 -9.657 < 2e-16 ***

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[248]

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.549 on 367 degrees of freedom
Multiple R-squared: 0.7605, Adjusted R-squared: 0.752
F-statistic: 89.63 on 13 and 367 DF, p-value: < 2.2e-16

It is interesting that AGE does not appear to be a true factor. Similarly, TAX and B
have minimal impact.

Prediction
Now that we have a linear model, we can predict our test data and measure our
model results against actuals, as follows:

> predicted <- predict(linearModel,newdata=housingTesting)
> summary(predicted)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.8783 17.8400 21.0700 22.4300 27.2600 42.8900
> summary(housingTesting$MDEV)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 8.10 17.10 21.20 22.89 25.00 50.00
> plot(predicted,housingTesting$MDEV)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[249]

We appear to have close to a 45-degree regression with predicted versus actual.
There is an offset.

Now that we have our predictions on the test data, we need a way to measure the
results (and evaluate this method versus the others). I like the sum of squares as the
cleanest. Surprisingly, there does not appear to be a built-in function in R for this,
so we add our own, as follows:

> sumofsquares <- function(x) {
+ return(sum(x^2))
+ }

As a simple test, we can use a simple range, as follows:

> sumofsquares(1:5)
[1] 55

Now, we can evaluate the model, as follows:

> diff <- predicted - housingTesting$MDEV
> sumofsquares(diff)
[1] 3555.882

The sumofsquares result is the sum of the squares of the differences between
predicted and actual values. The 3,000+ values over a few hundred observations
don't sound particularly accurate, but we can try out other methods to see if we
can arrive at a better mode. So, we will use this to compare results among the
models going forward.

Logistic regression
The logistic regression function, glm, is built into the base R system. We can use it
directly, much like the previous lm function:

> lr <- glm(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE + DIS +
RAD + TAX + PRATIO + B + LSTAT, data=housingTraining)

> summary(lr)

Call:
glm(formula = MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE +
 DIS + RAD + TAX + PRATIO + B + LSTAT, data = housingTraining)

Deviance Residuals:
 Min 1Q Median 3Q Max

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[250]

-14.1317 -2.6258 -0.5413 1.5656 26.2551

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.196069 5.609316 7.344 1.35e-12 ***
CRIM -0.122053 0.032598 -3.744 0.000210 ***
ZN 0.052261 0.015412 3.391 0.000772 ***
INDUS 0.032047 0.068200 0.470 0.638709
CHAS 2.385849 0.959308 2.487 0.013324 *
NOX -17.566444 4.273389 -4.111 4.87e-05 ***
RM 3.485134 0.463397 7.521 4.23e-13 ***
AGE -0.003562 0.014443 -0.247 0.805317
DIS -1.545347 0.221048 -6.991 1.30e-11 ***
RAD 0.333380 0.076002 4.386 1.51e-05 ***
TAX -0.014973 0.004317 -3.468 0.000586 ***
PRATIO -0.995370 0.145592 -6.837 3.39e-11 ***
B 0.006718 0.002832 2.373 0.018180 *
LSTAT -0.521544 0.054005 -9.657 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 20.69378)

 Null deviance: 31707.3 on 380 degrees of freedom
Residual deviance: 7594.6 on 367 degrees of freedom
AIC: 2251.3

Number of Fisher Scoring iterations: 2
We then run the same prediction and tests:
> predicted <- predict(lr,newdata=housingTesting)
> summary(predicted)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.8783 17.8400 21.0700 22.4300 27.2600 42.8900
> plot(predicted,housingTesting$MDEV)
> diff <- predicted - housingTesting$MDEV
> sumofsquares(diff)
[1] 3555.882

We end up with exactly the same results! This shows that linear regression and
logistic regression boil down to the same underlying modeling algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[251]

Residuals
We can look at the residuals for the model (built into the result of the lm function).
Note, we can use the resid function against any of the model-fitting functions
available, as follows:

> plot(resid(linearModel))

The following plot shows a nice average of near zero for the residuals until we get to
the higher values:

Least squares regression
Least squares regression uses a line of the form b0 + b1*x as the line formula. Here,
we have b0 as the intercept and b1 as the slope of the line. Using the same data, we
can run a least squares regression using R functions directly.

Let's assign our variables to the normal x and Y for a least squares regression (makes
later calculations cleaner), as follows:

> x <- housingTesting$MDEV
> Y <- predicted

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[252]

Now, we will calculate our b0 and b1 from our x and Y, as follows:

> b1 <- sum((x-mean(x))*(Y-mean(Y)))/sum((x-mean(x))^2)
> b0 <- mean(Y)-b1*mean(x)
> c(b0,b1)
[1] 7.2106245 0.6648381

Let's plot the raw data using the following command:

> plot(x,Y)

We can add a least squares regression line to the plot, as follows:

> abline(c(b0,b1),col="blue",lwd=2)

There isn't a great match between the testing data and the prediction. The least
squares line looks too flat.

Relative importance
We can calculate the relative importance of the variables we used in the model using
the relaimpo package. The relative importance of the variables used in our model
will tell you which variables are providing the most effect on your results. In other
words, out of all of the variables available, which should we pay the most attention
to. Most of the time, you can only afford to investigate a few. In this case, maybe we
are a buyer looking to see what factors are most affecting the value of houses and
direct our search where those factors are maximized.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[253]

Let's calculate the relative importance using the relaimpo package, as follows:

> library(relaimpo)
> calc.relimp(linearModel,type=c("lmg","last","first","pratt"),
rela=TRUE)
Response variable: MDEV
Total response variance: 83.44019
Analysis based on 381 observations

13 Regressors:
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PRATIO B LSTAT
Proportion of variance explained by model: 76.05%
Metrics are normalized to sum to 100% (rela=TRUE).
Relative importance metrics:
 lmg last first pratt
CRIM 0.04378500 0.0423236380 0.05959783 0.069549551
ZN 0.04085431 0.0347151937 0.05480466 0.072324623
INDUS 0.04927578 0.0006666234 0.08442062 -0.015510766
CHAS 0.02068028 0.0186745066 0.01195166 0.016098916
NOX 0.04611049 0.0510155167 0.06866322 0.129797308
RM 0.23110043 0.1707701764 0.16468562 0.239015600
AGE 0.03211959 0.0001836714 0.05639641 0.005826449
DIS 0.04282755 0.1475559786 0.02469774 -0.125578499
RAD 0.03552896 0.0580913573 0.05929346 -0.172215184
TAX 0.05313897 0.0363198971 0.08310082 0.175938820
PRATIO 0.11235443 0.1411152591 0.09803364 0.165972509
B 0.02614223 0.0169947393 0.03917392 0.031322939
LSTAT 0.26608199 0.2815734421 0.19518041 0.407457734

Average coefficients for different model sizes:
 1X 2Xs 3Xs 4Xs
5Xs
CRIM -0.39658057 -0.27179045 -0.21108113 -0.17716944
-0.15605272
ZN 0.15016161 0.10008617 0.07724633 0.06573547
0.05920013
INDUS -0.66137913 -0.49760611 -0.38326657 -0.29972518
-0.23603446
CHAS 6.71617551 6.28502633 5.84865357 5.37351604
4.90522742
NOX -35.23627433 -24.37290112 -18.14707801 -14.72054067
-13.02167728
RM 9.10534876 7.97900568 7.33195455 6.85127499
6.43337784

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[254]

AGE -0.13074649 -0.08136606 -0.05484617 -0.03952753
-0.03003803
DIS 1.15243247 0.14262752 -0.45525720 -0.82823438
-1.06957328
RAD -0.43523357 -0.23718077 -0.11226188 -0.02648010
0.03740961
TAX -0.02681594 -0.02111878 -0.01748128 -0.01513793
-0.01363214
PRATIO -2.22931346 -1.79620241 -1.57371014 -1.43633047
-1.33810121
B 0.03185870 0.02040032 0.01517751 0.01236138
0.01063506
LSTAT -0.94731052 -0.89595398 -0.85129784 -0.81015368
-0.77115301
(more iterations available)

In the relative-importance metrics, we see computed values for each of the possible
parameters in our model. This is what the parameters are about:

•	 The lmg column is the coefficient of the variable from the model.
•	 The last column (also called usefulness) looks at what the effect of adding

this variable into the model would be, effectively removing it, on the other
variables. We are looking for the last values greater than lmg, as those
variables are generating more effect. This would include NOX, DIS, RAD,
PRATIO, and LSTAT.

•	 The first column (squared covariance between y and the variable) looks at the
variable as if none of the other variables were present in the model. We are
interested in cases where the first column value is greater than lmg, as those
variables are truly generating more effect. These include CRIM, ZN, INDUS,
NOX, AGE, RAD, and B.

•	 The pratt column (product of the standard coefficient and the correlation)
is based on Pratt's contribution in 1987. The downfall is that negative values
need to be ignored as not applicable. We are again looking for pratt values
over lmg such as CRIM, ZN, RM, and PRATIO.

The most interesting part of the results is the detail that the variables provided only
explain 76 percent of the value. This is a pretty good number, but we did not end up
being accurate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[255]

Stepwise regression
Stepwise regression is the process of adding/removing variables from the regression
model, adjusting for the effect of doing so, and continuing to evaluate each of the
variables involved. With forward stepwise regression, we start with an empty model
and successively add each of the variables, gauge their effect, decide whether they
remain in the model, and move on to the next variable. In backward regression,
we start with the full model variable set and successively attempt to remove each,
gauging their effect.

We can evaluate the predictors in stepwise regression using the MASS package,
as follows:

> library(MASS)

The results of the step(s) show the process of adding/removing variables from the
model and the result of doing so leading up to the final best set of variables for the
model. Let's use the stepAIC function to perform the same as follows:

> step <- stepAIC(linearModel, direction="both")
Start: AIC=1168.1
MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD +
 TAX + PRATIO + B + LSTAT

 Df Sum of Sq RSS AIC
- AGE 1 1.26 7595.9 1166.2
- INDUS 1 4.57 7599.2 1166.3
<none> 7594.6 1168.1
- B 1 116.49 7711.1 1171.9
- CHAS 1 128.00 7722.6 1172.5
- ZN 1 237.95 7832.6 1177.9
- TAX 1 248.95 7843.6 1178.4
- CRIM 1 290.10 7884.7 1180.4
- NOX 1 349.67 7944.3 1183.2
- RAD 1 398.17 7992.8 1185.6
- PRATIO 1 967.24 8561.9 1211.8
- DIS 1 1011.39 8606.0 1213.7
- RM 1 1170.50 8765.1 1220.7
- LSTAT 1 1929.98 9524.6 1252.4

Step: AIC=1166.17
MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + DIS + RAD + TAX +
 PRATIO + B + LSTAT

 Df Sum of Sq RSS AIC
- INDUS 1 4.53 7600.4 1164.4
<none> 7595.9 1166.2

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[256]

+ AGE 1 1.26 7594.6 1168.1
- B 1 115.79 7711.7 1169.9
- CHAS 1 127.38 7723.3 1170.5
- ZN 1 248.43 7844.3 1176.4
- TAX 1 250.17 7846.0 1176.5
- CRIM 1 290.16 7886.0 1178.5
- NOX 1 390.00 7985.9 1183.2
- RAD 1 402.64 7998.5 1183.8
- PRATIO 1 971.24 8567.1 1210.0
- DIS 1 1065.15 8661.0 1214.2
- RM 1 1189.61 8785.5 1219.6
- LSTAT 1 2153.07 9748.9 1259.2

Step: AIC=1164.39
MDEV ~ CRIM + ZN + CHAS + NOX + RM + DIS + RAD + TAX + PRATIO +
 B + LSTAT

 Df Sum of Sq RSS AIC
<none> 7600.4 1164.4
+ INDUS 1 4.53 7595.9 1166.2
+ AGE 1 1.22 7599.2 1166.3
- B 1 114.05 7714.5 1168.1
- CHAS 1 132.23 7732.6 1169.0
- ZN 1 244.48 7844.9 1174.5
- TAX 1 272.90 7873.3 1175.8
- CRIM 1 293.20 7893.6 1176.8
- NOX 1 398.54 7998.9 1181.9
- RAD 1 410.88 8011.3 1182.5
- PRATIO 1 968.88 8569.3 1208.1
- DIS 1 1148.81 8749.2 1216.0
- RM 1 1185.73 8786.1 1217.6
- LSTAT 1 2151.58 9752.0 1257.4

It is interesting to see that INDUS (percentage of industrial zoning) has the largest
effect in this model and LSTAT (lower-income status population) is really negligible.

The k-nearest neighbor classification
The k-nearest neighbor classification is in the class package. We load the package
and evaluate using our training data, as follows:

> library(class)
> knnModel <- knn(train=housingTraining, test=housingTesting,
cl=housingTraining$MDEV)
> summary(knnModel)
 20.8 14.9 21 18.6 18.7 19.3 11.5 13.4
13.8 14.1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[257]

 5 4 4 3 3 3 2 2
2 2
 18 18.9 19.4 20 20.4 20.6 20.9 21.4
21.5 22.8
 2 2 2 2 2 2 2 2
2 2
 22.9 23.1 24.6 24.8 25.3 27.5 28.4 29
33.2 50
 2 2 2 2 2 2 2 2
2 2
 6.3 7 10.2 11.7 12.7 13.1 13.2 13.3
15.2 15.4
 1 1 1 1 1 1 1 1
1 1
 15.6 16.1 16.2 16.3 16.6 16.7 17 17.1
17.7 18.2
 1 1 1 1 1 1 1 1
1 1
 18.3 18.4 19 19.1 19.2 19.9 20.3 20.5
21.2 21.7
 1 1 1 1 1 1 1 1
1 1
 22 22.4 23.8 23.9 24.2 24.3 24.4 25
26.6 28.5
 1 1 1 1 1 1 1 1
1 1
 29.6 29.8 30.1 32.2 32.4 32.9 33.1 33.8
35.1 35.2
 1 1 1 1 1 1 1 1
1 1
 36.2 37.2 37.9 46 48.8 5 5.6 7.2
7.4 7.5
 1 1 1 1 1 0 0 0
0 0
 8.3 8.4 8.5 8.7 8.8 9.5 9.6 9.7
10.4 (Other)
 0 0 0 0 0 0 0 0
0 0

I printed this with a slightly smaller font so that the
columns line up.

Interpreting the data goes as follows: five entries for the 20.8 bucket, four entries for
the 14.9 bucket, and so on. The buckets with the most hits are portrayed first, and
then in the order of decreasing occurrence.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[258]

A plot is useful. We can see a frequency where the 20.8 bucket is highest using the
following command:

plot(knnModel)

For purposes of comparison, here's a simple graph of the raw test data:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[259]

Just visually, there appears to be a good match. The upper-right tail is sparsely
populated and the mid-to-left section is heavily populated—matching our knn results.

Naïve Bayes
Naïve Bayes is the process of determining classifiers based on probability, assuming
the features are independent (the assumption is the naïve part).

We can use the e1071 package to use the naiveBayes function included. Let's load
the e1071 package as follows:

> install.packages("e1071")
> library(e1071)

We produce our estimates/model calling upon the naiveBayes function in much
the same manner as we did for the previous regression: the idea is that median value
is the product of all the associated data. We use the training data as the basis for the
model, as shown here:

> nb <- naiveBayes(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE +
DIS + RAD + TAX + PRATIO + B + LSTAT, data=housingTraining)

We can examine the parameters generated for the effect of each variable as follows:

> nb$tables$TAX
 TAX
Y [,1] [,2]
 5 666.0000 0.0000000
 5.6 666.0000 NA
 6.3 666.0000 NA
 7 688.5000 31.8198052
 7.2 666.0000 0.0000000
 7.4 666.0000 NA
 7.5 666.0000 NA
 8.3 666.0000 0.0000000
1 = mean
2 = stddev

Here, we see that taxes appear to have a very small effect on the data.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[260]

The apriori value of the Naïve Bayes result contains the class distribution for the
dependent variable. We can see this visually by plotting the result. I think it looks
very similar to the previous knn model result: again, we have the tight overlap in
the middle with both tails skewed. This does match our data. We can plot the result
using the following command:

> plot(nb$apriori)

The train Method
A standard method to develop a model, regardless of technique, is the train
method. The train method has only one required parameter—sample data.
All the other parameters are optional.

Some of the parameters of the train method are described in the following table:

Parameter Description
x This is the sample data
y This is the vector of outcomes
form This is the formula in the format result ~ var1 + var2 …
data This is the dataframe where variables referenced in the formula can be taken

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[261]

Parameter Description
weights This is the vector of case weights if applicable for the model
subset This is the vector of indices to use for training
method This can contain any of several methods listed at http://topepo.github.

io/caret/bytag.html

predict
Similar to the train method, we also have a generic function, predict, that can
be used to predict results based on a train model in order to be able to further test
whether our model is working.

The predict function, again similarly, only has two required arguments, a model
and new or test data to use with the model to predict results.

Support vector machines
With Support vector machines (SVM), we have a supervised learning process
that attempts to classify data into one of two categories. While this does not match
our housing dataset, walking through some of the steps is an interesting exercise.
The svm modeling tools are in the kernlab package. Note, the driver to the train
function that tells it to use svm is the method="svmRadial" parameter. For SVM, we
need a binary result value. For this example, I am using the Pima Indian diabetes
dataset available from http://uci.edu.

Let's load in the data and assign column names, as follows:

> pima <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-
databases/pima-indians-diabetes/pima-indians-diabetes.data")
> colnames(pima) <- c("pregnancies","glucose","bp","triceps","insulin"
,"bmi","pedigree","age","class")
> summary(pima)
 pregnancies glucose bp triceps
 Min. : 0.000 Min. : 0.0 Min. : 0.0 Min. : 0.00
 1st Qu.: 1.000 1st Qu.: 99.0 1st Qu.: 62.0 1st Qu.: 0.00
 Median : 3.000 Median :117.0 Median : 72.0 Median :23.00
 Mean : 3.842 Mean :120.9 Mean : 69.1 Mean :20.52
 3rd Qu.: 6.000 3rd Qu.:140.0 3rd Qu.: 80.0 3rd Qu.:32.00
 Max. :17.000 Max. :199.0 Max. :122.0 Max. :99.00
 insulin bmi pedigree age
 Min. : 0.0 Min. : 0.00 Min. :0.0780 Min. :21.00
 1st Qu.: 0.0 1st Qu.:27.30 1st Qu.:0.2435 1st Qu.:24.00
 Median : 32.0 Median :32.00 Median :0.3710 Median :29.00
 Mean : 79.9 Mean :31.99 Mean :0.4717 Mean :33.22

www.it-ebooks.info

http://topepo.github.io/caret/bytag.html
http://topepo.github.io/caret/bytag.html
http://uci.edu
http://www.it-ebooks.info/

Machine Learning in Action

[262]

 3rd Qu.:127.5 3rd Qu.:36.60 3rd Qu.:0.6250 3rd Qu.:41.00
 Max. :846.0 Max. :67.10 Max. :2.4200 Max. :81.00
 class
 Min. :0.0000
 1st Qu.:0.0000
 Median :0.0000
 Mean :0.3481
 3rd Qu.:1.0000
 Max. :1.0000

We need to split the training set from the testing dataset, as we did in the previous
section, as follows:

> set.seed(3277)
> library(caret)
> pimaIndices <- createDataPartition(pima$class, p=0.75, list=FALSE)
> pimaTraining <- pima[pimaIndices,]
> pimaTesting <- pima[-pimaIndices,]

Let's calculate the SVM model from the training data (note that this step takes
a while because of the boot control we pass in, telling the software to iterate
200 times over the data), as follows:

> library(kernlab)
> bootControl <- trainControl(number = 200)
> svmFit <- train(pimaTraining[,-9], pimaTraining[,9],
method="svmRadial", tuneLength=5, trControl=bootControl, scaled=FALSE)
> svmFit
Support Vector Machines with Radial Basis Function Kernel
576 samples
 8 predictor

No pre-processing
Resampling: Bootstrapped (200 reps)
Summary of sample sizes: 576, 576, 576, 576, 576, 576, ...
Resampling results across tuning parameters:
 C RMSE Rsquared RMSE SD Rsquared SD
 0.25 0.477 0.00915 0.01137 0.00789
 0.50 0.476 0.00953 0.00567 0.00831
 1.00 0.477 0.00955 0.00540 0.00834
 2.00 0.477 0.00955 0.00540 0.00834
 4.00 0.477 0.00955 0.00540 0.00834

Tuning parameter 'sigma' was held constant at a value of 0.1165912
RMSE was used to select the optimal model using the smallest value.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[263]

The final values used for the model were sigma = 0.1165912 and C =
0.5.
the predict method is described above
> predicted <- predict(svmFit$finalModel,newdata=pimaTesting[,-9])
> plot(pimaTesting$class,predicted)

As you can see, a simple plot of test versus predicted doesn't tell us a whole lot about
binary data. We need to use the svmFit results to determine whether the model is
working or not.

We can produce a confusion matrix between the predicted values and our data,
as follows:

> table(pred = predicted, true = pimaTesting[,9])
 true
pred 0 1
 0.307113553404879 1 0
 0.331403184095759 1 0
 0.333960027975998 1 0
 0.335008445959367 0 1
 0.36279279414314 0 1
(many more values)

Looking at the results of the matrix, we have a two-thirds success rate. It is really
not great:

> svmFit$finalModel
Support Vector Machine object of class "ksvm"
SV type: eps-svr (regression)
 parameter : epsilon = 0.1 cost C = 0.5

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[264]

Gaussian Radial Basis kernel function.
 Hyperparameter : sigma = 0.116591226197405
Number of Support Vectors : 576
Objective Function Value : -41.6404
Training error : 0.012664

The training error is really very low. So, I think we have somewhat accurate
predictors for diabetes for Pima Indians.

K-means clustering
We have seen k-means clustering in Chapter 2, Data Mining Sequences. In this case,
we will use the iris dataset using a subset for training and producing a k-means
model, applying that model to the remaining test data and verifying results.

First, we load in the iris data and partition it into test and training, as follows:

> iris <- read.csv("iris.csv")
> irisIndices <- createDataPartition(iris$Species, p=0.75, list=FALSE)
> irisTraining <- iris[irisIndices,]
> irisTesting <- iris[-irisIndices,]

Now, we can produce a model from the training data, as follows:

> bootControl <- trainControl(number = 20)
> km <- kmeans(irisTraining[,1:4], 3)
> km
K-means clustering with 3 clusters of sizes 38, 29, 47
Cluster means:
SepalLength SepalWidth PetalLength PetalWidth
1 5.068421 3.428947 1.476316 0.250000
2 6.893103 3.041379 5.786207 2.027586
3 5.912766 2.778723 4.374468 1.442553
Clustering vector:
 1 3 5 6 8 11 13 14 15 17 18 19 20 21 22 24 25
26 27 28
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1
 29 31 32 33 34 35 36 37 38 39 40 42 44 45 46 48 49
50 51 52
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 3
 53 55 58 60 61 62 65 66 67 68 69 71 72 73 74 75 76
77 78 79
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 2 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[265]

 80 81 82 83 85 86 87 89 90 92 93 95 97 98 99 100 101
103 104 105
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
2 2 2
106 107 108 109 111 112 114 115 117 118 119 120 121 123 124 125 127
128 129 130
 2 3 2 2 2 2 3 3 2 2 2 3 2 2 3 2 3
3 2 2
131 132 134 135 136 138 139 141 142 143 144 146 149 150
 2 2 3 2 2 2 3 2 2 3 2 2 2 3
Within cluster sum of squares by cluster:
[1] 10.90395 20.50138 30.71532
 (between_SS / total_SS = 88.0 %)

Available components:
[1] "cluster" "centers" "totss" "withinss" "tot.
withinss"
[6] "betweenss" "size" "iter" "ifault"

We can see the three clusters (as specified in the model generation). So, using our
remaining test data, we can predict which cluster the test data will be applied to.
We can use the clue package for testing out the k-means model, as shown here:

> install.packages("clue")
> library(clue)
> cl_predict(km,irisTesting[,-5])
Class ids:
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 2 2 2 2
2 3 2
> irisTesting[,5]
 [1] Iris-setosa Iris-setosa Iris-setosa Iris-setosa
 [5] Iris-setosa Iris-setosa Iris-setosa Iris-setosa
 [9] Iris-setosa Iris-setosa Iris-setosa Iris-setosa
[13] Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor
[17] Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor
[21] Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor
[25] Iris-virginica Iris-virginica Iris-virginica Iris-virginica
[29] Iris-virginica Iris-virginica Iris-virginica Iris-virginica
[33] Iris-virginica Iris-virginica Iris-virginica Iris-virginica
Levels: Iris-setosa Iris-versicolor Iris-virginica

I think this model works near perfectly.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[266]

Decision trees
There are several decision tree packages available in R. For this example, we use
the housing regression data. A package to produce decision trees from regression
data is rpart.

Let's load the rpart library using the following command:

> library(rpart)

Load and split the housing data (as done previously):

> set.seed(3277)
> housing <- read.csv("housing.csv")
> housing <- housing[order(housing$MDEV),]
> trainingIndices <- createDataPartition(housing$MDEV, p=0.75,
list=FALSE)
> housingTraining <- housing[trainingIndices,]
> housingTesting <- housing[-trainingIndices,]

Using the same modeling technique as in the previous section, we will generate a
model of the housing data using a decision tree, as follows:

> housingFit <- rpart(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM
+ AGE + DIS + RAD + TAX + PRATIO + B + LSTAT, method="anova",
data=housingTraining)

We can see the decision tree in a plot using the following command:

> plot(housingFit)
> text(housingFit, use.n=TRUE, all=TRUE, cex=.8)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[267]

While the plotting is not great, you can follow the decision points to arrive at a
valuation fairly easily.

Let's generate the predicted values using the test data, as follows:

> treePredict <- predict(housingFit,newdata=housingTesting)

We will verify the correctness of the model (using the sum of squares defined in the
previous section), as follows:

> diff <- treePredict - housingTesting$MDEV
> sumofsquares <- function(x) {return(sum(x^2))}
> sumofsquares(diff)
[1] 3926.297

Just for comparison, this is a worse result than direct linear regression. Maybe if the
data were non-continuous, this would be a better modeling technique.

AdaBoost
The ada package for R provides a boost using binary data. We can use the binary
data for the Pima Indian diabetes tests, as follows:

> adaModel <- ada(x=pimaTraining[,-9],y=pimaTraining$class,test.
x=pimaTesting[,-9],test.y=pimaTesting$class)
> adaModel
Call:
ada(pimaTraining[, -9], y = pimaTraining$class, test.x = pimaTesting[,
 -9], test.y = pimaTesting$class)
Loss: exponential Method: discrete Iteration: 50
Final Confusion Matrix for Data:
 Final Prediction
True value 0 1
 0 348 28
 1 31 169
Train Error: 0.102
Out-Of-Bag Error: 0.118 iteration= 47
Additional Estimates of number of iterations:
train.err1 train.kap1 test.err2 test.kap2
 42 42 30 3

It looks like the ada model is very accurate (348+169)/(348+169+28+31) 89%.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[268]

Neural network
There is a neural net package available in R to determine a model for data. Note
that the neuralnet function takes a long time to complete and even longer if you
increase repetitions.

First, we load the package and library, as follows:

> install.packages('neuralnet')
> library("neuralnet")

We use the same kind of model to develop the neural net, as follows:

> nnet <- neuralnet(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE
+ DIS + RAD + TAX + PRATIO + B + LSTAT,housingTraining, hidden=10,
threshold=0.01)

However, when I originally ran this, I saw the following error:

Warning message:
algorithm did not converge in 1 of 1 repetition(s) within the stepmax

Unfortunately, there does not appear to be any tried-and-trusted method for
converging. It takes some adjusting, and every iteration takes several minutes,
so it takes some patience as well.

I ended up using a simpler function call, as shown here:

> nnet <- neuralnet(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM + AGE +
DIS + RAD + TAX + PRATIO + B + LSTAT,housingTraining)
> plot(nnet, rep="best")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[269]

We evaluate the neural net performance much like the other methods, except that we
use the compute function. as follows:

> results <- compute(nnet, housingTesting[,-14])
> diff <- results$net.result - housingTesting$MDEV
> sumofsquares(diff)
[1] 11016.01873

Unfortunately, this method is by far the worst performer among the models. I am
assuming the data does not match up with the requirements for a neural net.

Random forests
Random forests is an algorithm where each data point is developed into a large
number of trees (in a forest) and the results are combined for a model.

We first load the random forest package/library, as follows:

> install.packages("randomForest")
> library(randomForest)

Let's use the randomForest method to produce a model for the housing data,
as follows:

> forestFit <- randomForest(MDEV ~ CRIM + ZN + INDUS + CHAS + NOX + RM
+ AGE + DIS + RAD + TAX + PRATIO + B + LSTAT, data=housingTraining)

We then generate predictions for the housing testing data using the following command:

> forestPredict <- predict(forestFit,newdata=housingTesting)

Let's evaluate the results of the random forest algorithm, as shown here:

> diff <- forestPredict - housingTesting$MDEV
> sumofsquares(diff)
[1] 2464.67

If we gather the results of the sumofsquares test from the models in the chapter, we
come across the following findings:

•	 3,555 from the linear regression
•	 3,926 from the decision tree
•	 11,016 from the neural net
•	 2,464 from the forest

The forest model produced the best-fitting data.

www.it-ebooks.info

http://www.it-ebooks.info/

Machine Learning in Action

[270]

Questions
Factual

•	 I have used the sum of squares differences for a crude comparison of models.
Do you think this is a fair method?

•	 What cutoff percentage accuracy would you use for your modeling?

When, how, and why?

•	 There are several methods to measure the performance of a model.
Investigate which you prefer.

•	 Which modeling technique appears to fit your data?

Challenges

•	 Determine a better way to determine whether a binary data model is accurate
against a simple percentage correct.

•	 What kind of data would be more suitable to developing a neural net?
•	 Work with the method argument predict to use other modeling techniques

for your data.

Summary
In this chapter, we investigated machine learning in action using R. We learned
about breaking up our dataset into a training and testing section. The examples
showed how to use the predict method from our models. We generated models
using linear regression, stepwise regression, k-nearest neighbor, Naïve Bayes,
k-clustering, decision trees, neural net, and the random forest algorithms. We
applied tests of the models' effectiveness.

In the next chapter, we will cover predicting events with machine learning.

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with
Machine Learning

R programming has several tools that can be used when dealing with events in
a time series. We can look at the time series from several aspects, evaluate the
components involved in the data, construct a model of the time series behavior,
and estimate or forecast time series events going forward.

This chapter covers the analysis of time series data with the objective of forecasting.
There are several areas in R programming that can be used for time series forecasting:

•	 Converting your data into an R-formatted time series
•	 Examining seasonality effects
•	 Simple smoothing
•	 Basic trend analysis, including decomposing your time series into seasonal,

trend, and irregular components
•	 Exponential smoothing, including Holt-Winters filtering, correlogram, and

box test
•	 ARIMA modeling

Automatic forecasting packages
In R, there are several packages that provide plotting for the programmer. We will be
using the following packages in the examples:

•	 forecast: This package is used to forecast functions for time series and
linear models

•	 TTR: This package has functions and data to create technical trading rules

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[272]

Time series
In R programming, a time series is a sequence of data points measured evenly over
uniform time intervals—typically, monthly or yearly frequencies are used. You can
coerce (convert) a standard dataset into a time series using the as.ts function.

For the initial time series, we will use the Fraser River monthly flows (available at
http://www.cmu.edu). I couldn't find a source for the dataset, so I copied it from the
site to a local file. The data is the monthly flow starting from March 1913. There are
over 900 measurements. The data has a definite frequency:

> fraser <- scan("fraser.txt")
Read 946 items

If we look at the data with a standard plot, we don't see anything significant:

> plot(fraser)

Just poking at the head of the dataset is also unremarkable, as shown in the output:

> head(fraser)
[1] 485 1150 4990 6130 4780 3960

www.it-ebooks.info

http://www.cmu.edu
http://www.it-ebooks.info/

Chapter 11

[273]

My first attempt at trying to break out the seasonal/periodic effects failed:

> fraserc <- decompose(fraser)
Error in decompose(fraser) : time series has no or less than 2 periods
> stl(fraser)
Error in stl(fraser) :
 series is not periodic or has less than two periods

I forgot that while the data is obviously periodic, there is no way for the software to
know that. We have to specify a frequency and convert the dataset to a time series
using the ts function. The ts function looks like this:

ts(data = NA, start = 1, end = numeric(), frequency = 1,
 deltat = 1, ts.eps = getOption("ts.eps"), class = , names =)

The various parameters of the ts function are described in the following table:

Parameter Description
data This is the matrix or data frame.
start This is the time of first observation.
end This is the time of last observation.
frequency This is the observations per unit of time.
deltat This is the fractional observation to use per unit of time, for example, 1/12

for monthly intervals of time. Either deltat or frequency is used.
ts.eps This is the time series comparison tolerance; it is the factor to determine if

observations are equal.
class This is the result class.
names This contains the naming convention to use for results.

In this case, we have monthly data, so frequency is 12. The data starts from
March 1913, as shown here:

> fraser.ts <- ts(fraser, frequency=12, start=c(1913,3))

We can jump right into the seasonal decomposition of the time series using the stl
function. The stl function looks like this:

stl(x, s.window, s.degree = 0,
 t.window = NULL, t.degree = 1,
 l.window = nextodd(period), l.degree = t.degree,
 s.jump = ceiling(s.window/10),
 t.jump = ceiling(t.window/10),
 l.jump = ceiling(l.window/10),

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[274]

 robust = FALSE,
 inner = if(robust) 1 else 2,
 outer = if(robust) 15 else 0,
 na.action = na.fail)

The various parameters of the stl function are described in the following table:

Parameter Description
x This is the matrix
s.window This has either the string "periodic" or the Loess span
… A number of parameters that allow you to make \ to the period data

In our case, we have simple periodic (monthly) data:

> stl(fraser.ts, s.window="periodic")
 Call:
 stl(x = fraser.ts, s.window = "periodic")

Components
 seasonal trend remainder
Mar 1913 -1856.6973 2338.515 3.1821923
Apr 1913 -985.4948 2338.237 -202.7426140
May 1913 2171.2016 2337.960 480.8385830
Jun 1913 4329.7017 2335.951 -535.6526956
Jul 1913 2860.2269 2333.942 -414.1691653
(… many more)

We need to populate a variable so we can do further work, starting with a summary:

> fraser.stl = stl(fraser.ts, s.window="periodic")
> summary(fraser.stl)
 Call:
 stl(x = fraser.ts, s.window = "periodic")

 Time.series components:
 seasonal trend remainder
 Min. :-1856.697 Min. :1881.592 Min. :-2281.467
 1st Qu.:-1578.745 1st Qu.:2440.579 1st Qu.: -305.858
 Median : -759.841 Median :2674.528 Median : -39.336
 Mean : 3.821 Mean :2704.522 Mean : 0.231
 3rd Qu.: 1843.843 3rd Qu.:2919.516 3rd Qu.: 257.289
 Max. : 4329.702 Max. :3775.743 Max. : 3408.070
 IQR:
 STL.seasonalSTL.trendSTL.remainder data

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[275]

 3422.6 478.9 563.1 2937.5
 % 116.5 16.3 19.2 100.0
 Weights: all == 1
 Other components: List of 5
 $ win : Named num [1:3] 9461 19 13
 $ deg : Named int [1:3] 0 1 1
 $ jump : Named num [1:3] 947 2 2
 $ inner: int 2
 $ outer: int 0

We can see the following observations from the raw results:

•	 There is a definite trend.
•	 The seasonality varies widely from positive to negative (I guess that

makes sense).
•	 An odd remainder factor was discovered. It turns out the remainder is the

catchall to allow the seasonality and the trend to be discovered. This kind
of error allowance occurs all over math.

There is a monthplot function in the same package that produces a plot specifically
geared towards monthly data display:

> monthplot(fraster.stl)

The plot organizes the time series into monthly patterns. It is good that we can see
the definite seasonal effect on the river flow—it starts to increase in the spring, crests
by early summer, and then tails off into winter.

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[276]

The arguments of the monthplot function are as shown here:

monthplot(x, labels = NULL, ylab = choice, choice = "sea", ...)

The various parameters of the monthplot function are described in the following table:

Parameter Description
x This is the dataset
labels These are the season labels
ylab This is the y label
choice This determines which series to plot from the stl result

A similar plot is the seasonplot function of the timeseries package. The only
argument is the time series. We can invoke it for our data using the following command:

> library(forecast)
> seasonplot(fraser.ts)

So, we see the same seasonal data plot; however, we now have detail of every year.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[277]

We can produce a plot of the data, which plots the various components of the stl
results as follows:

> plot(fraser.stl)

From the plot of the stl results, we can make some interesting observations:

•	 We can see the raw data graph, but there is not much to notice
•	 The seasonality graph is perfect (I have noticed that the seasonality graph out

of stl is always perfect due to the remainder)
•	 There doesn't appear to be any real trend to the data; a few years were wetter

than others (must have had more snowfall in the mountains)
•	 Even the remainder (noise/error) is pretty constant

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[278]

The SMA function
If we are looking for some kind of trend with the flows, we can try to smooth them
using the SMA function of the TTR package (assuming a year at a time). The SMA
function computes the mean of a series:

> library(TTR)
> fraser.SMA3 <- SMA(fraser,n=12)
> plot(fraser.SMA3)

The SMA function looks like this:

SMA(x, n = 10, ...)

The various parameters of the SMA function are described in the following table:

Parameter Description
x This is the data
n This is the number of periods to average over
… These are the parameters to be passed to subfunctions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[279]

I am starting to see some patterns to the data. I am curious what would happen if we
stretched out to 5 years using the following command:

> fraser.SMA60 <- SMA(fraser,n=60)
> plot(fraser.SMA60)

There are clear, long-term changes to the flow rate. It is interesting that it doesn't
really trend in either direction, as shown in the following graph:

The decompose function
We can extract the specific seasonality from our data using the decompose function.
The decompose function breaks down a time series into its seasonal, trend, and
irregular components.

We decompose the components of the time series as follows:

> fraser.components <- decompose(fraser.ts)

Let's recalculate without seasonality with the following command:

> fraser.adjusted <- fraser - fraser.components$season

We will now take a look at the adjusted data in a plot with the following command:

> plot(fraser.adjusted)

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[280]

This confirms there is no long term trend with the flows—we have close to a
horizontal line. There are wide variances at times, but I am still guessing that
is due to some shorter-term weather patterns, as shown in the following graph:

Exponential smoothing
We can use exponential smoothing to make a short-term forecast from our time
series data using Holt-Winters filtering. The time series used by the function is
expected to have seasonality and a trend. The HoltWinters function looks like this:

HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
 seasonal = c("additive", "multiplicative"),
 start.periods = 2, l.start = NULL, b.start = NULL,
 s.start = NULL,
 optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1),
 optim.control = list())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[281]

The various parameters of the HoltWinters function are described in the
following table:

Parameter Description
x This is the time series
alpha This is the alpha parameter to filter
beta This is the beta parameter. If FALSE, the filter will perform exponential

filtering
gamma This is the seasonal component parameter. It is set to FALSE for no

seasonality
seasonal This determines whether to use an additive or multiplicative model
… These are several parameters to make on-the-fly adjustments to your time

series

In our case, we want exponential filtering and we have seasonality, so we use the
following code:

> fraser.forecast <- HoltWinters(fraser.ts,beta=FALSE)
> fraser.forecast
Holt-Winters exponential smoothing without trend and with additive
seasonal component.
Call:
HoltWinters(x = fraser.ts, beta = FALSE)
Smoothing parameters:
 alpha: 0.2444056
 beta : FALSE
 gamma: 0.2255549
Coefficients:
 [,1]
a 2799.6752
s1 -1575.5719
s2 -1710.0222
s3 -1590.4821
s4 -425.0325
s5 2155.3889
s6 4257.5759
s7 2425.0119
s8 645.3606
s9 -520.1605
s10 -903.6552
s11 -844.6340
s12 -1479.8460

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[282]

We can make the following observations from the results:

•	 The alpha, beta, and gamma values used. The alpha value is the smoothing
factor. The beta value used is a flag whether to use exponential filtering or
not—in our case, yes. The gamma value is the calculated seasonality component.
These are calculated values. If you feel any of them were incorrect, you could
provide their values explicitly in the call (rather than using defaults as I have
done in this code).

•	 Vector of named components containing the estimated values for level, trend,
and seasonal components.

The computed SSE (sum of squared errors) value is of particular interest—how
far off is our model? I think this is a very big error, but I am not sure if exponential
smoothing worked. Let's compute the SSE and find out:

> fraser.forecast$SSE
[1] 500776934
> plot(fraser.forecast)

The plot overlays the estimated values with the raw data. The estimated data appears
to have the same level of variance, but I am not sure we have a good fit. We can look
at the forecast fit (fitted variable in results). The fitted variable contains values for the
filtered series, and the level, trend, and seasonal components, as shown here:

> fraser.forecast$fitted
 xhat level season

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[283]

Mar 1914 -33.19476 2177.385 -2210.57986
Apr 1914 444.89609 2324.809 -1879.91319
May 1914 2275.15610 2456.569 -181.41319
Jun 1914 7969.67128 2557.959 5411.71181
Jul 1914 6224.30902 2633.806 3590.50347
Aug 1914 5771.34300 2696.298 3075.04514
Sep 1914 2490.95066 2749.739 -258.78819
Oct 1914 2216.03738 3101.451 -885.41319
Nov 1914 1737.32929 2989.992 -1252.66319
Dec 1914 1266.81594 2812.229 -1545.41319
Jan 1915 731.66488 2682.495 -1950.82986
Feb 1915 848.05110 2760.298 -1912.24653
Mar 1915 637.59781 2745.376 -2107.77859
Apr 1915 1022.94060 2810.975 -1788.03480

Forecast
We can use the forecast.HoltWinters function in the forecast package that uses
Holt-Winters filtering for forecasting, as follows:

> install.packages("forecast")
> library(forecast)

We forecast eight periods from our model data. The function takes a HoltWinters
forecast and a number of periods to forecast, as follows:

> fraser.forecast2 <- forecast.HoltWinters(fraser.forecast, h=8)

Looking at the raw result is not particularly interesting. It is bothersome to see
negative numbers. The river flow will not be negative. Here is the output:

> fraser.forecast2
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1992 1224.103 285.2139 2162.993 -211.8041 2660.011
Feb 1992 1089.653 123.1285 2056.177 -388.5187 2567.825
Mar 1992 1209.193 215.8019 2202.584 -310.0677 2728.454
Apr 1992 2374.643 1355.0925 3394.193 815.3753 3933.910
May 1992 4955.064 3910.0096 6000.119 3356.7912 6553.337
Jun 1992 7057.251 5987.3000 8127.202 5420.9021 8693.600
Jul 1992 5224.687 4130.4058 6318.968 3551.1282 6898.246
Aug 1992 3445.036 2326.9535 4563.118 1735.0765 5154.995

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[284]

We can plot the results. Notice the forecast data on the right-hand side of the plot in
a different color. The forecast looks to have just as much variance as the other data,
as shown here:

> plot.forecast(fraser.forecast2)

Correlogram
We can produce a correlogram using the acf function to give us a better idea of
whether the forecast appears to be working.

The acf function computes (and by default plots) the autocorrelation of your data.
The acf function looks like this:

acf(x, lag.max = NULL,
 type = c("correlation", "covariance", "partial"),
 plot = TRUE, na.action = na.fail, demean = TRUE, ...)

The various parameters of the acf function are described in the following table:

Parameter Description
x This is the dataset
lag.max This is the maximum lag to calculate
type This is the type of acf to calculate: covariance, correlation, or

partial

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[285]

Parameter Description
plot This is a Boolean value to determine whether to plot results
na.action This is the function to be called upon NA values
demean This is a Boolean value to determine should the covariances be about the

simple means

In our case, we use the residuals from our forecast, lagged over 20, as follows:

> acf(fraser.forecast2$residuals,lag.max=20)

In the plot, there are several points worth noticing:

•	 The blue dotted line is a the boundary of the 95 percent confidence interval
•	 We have significant breaching the boundary several times under 0.5
•	 Overall, the most recent flow rate of the river has the biggest effect on the

current flow rate, as expected

Box test
We can use a Box test for the forecast as well in the Box.test function.
The Box.test function looks like this:

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[286]

The various parameters of the Box.test function are described in the following table:

Parameter Description
x This is the data
lag This is the lag periods to be used
type This is the type of box test, either Box-Pierce or Ljung-Box
fitdf This is the number of degrees of freedom to be subtracted (if x is residuals).

In this case, we use the residuals of the forecast, with a lag of 20, as shown here:

> Box.test(fraser.forecast2$residuals,lag=20,type="Ljung-Box")
Box-Ljung test
data: fraser.forecast2$residuals
X-squared = 144.8534, df = 20, p-value < 2.2e-16

We have a very small p-value, so we have a good fit. Just to look at the residuals,
we use the following code:

> plot.ts(fraser.forecast2$residuals)

Nothing jumps out particularly. Still, it seems like a large variance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[287]

Holt exponential smoothing
We can use Holt exponential smoothing to forecast from a time series; however, the
data is expected to not have seasonality. I found the b2 test results from the Santa Fe
Time Series Competition at http://www.physionet.org/physiobank/database/
santa-fe/. The data is composed of a number of readings from a patient regarding
his/her heart rate, chest expansion (breathing), and oxygen rate while sleeping. This
is a different time series, really just to explore R and see its versatility:

> sleep <- read.table("http://physionet.org/physiobank/database/santa-
fe/b2.txt")
> colnames(sleep) <- c("heart","chest","oxygen")
> head(sleep)
 heart chest oxygen
1 71.36 16337 6715
2 71.29 29381 6776
3 70.88 16929 6774
4 69.72 8066 6816
5 70.50 -32734 6880
6 72.14 -24870 6886
> sleepts <- ts(sleep)
> plot.ts(sleepts)

www.it-ebooks.info

http://www.physionet.org/physiobank/database/santa-fe/
http://www.physionet.org/physiobank/database/santa-fe/
http://www.it-ebooks.info/

Predicting Events with Machine Learning

[288]

It looks like there is some irregular breathing at the start of the test. That makes some
sense. I think I would be a little nervous in this kind of test as well.

You might notice that we have two episodes that jump out from the graphics:

•	 There is a period where the chest expansion stopped and the patient stopped
breathing for a few seconds—sleep apnea?

•	 There is a period where there was no reading for the heart rate or oxygen
rate. I can't believe the patient died during their sleep and resuscitated.
The contacts must have slipped.

There are several other points of interest as well:

•	 The heart rate jumped several times
•	 The heart rate seems to trend down over the test, but that may be normal

while falling into a deeper sleep
•	 There was another, smaller sleep apnea episode about halfway through

the test

We can generate forecasts for each of the variables as follows:

> heart.ts <- ts(sleep$heart)
> heart.forecast <- HoltWinters(heart.ts, gamma=FALSE)
Warning message:
In HoltWinters(heart.ts, gamma = FALSE) :
 optimization difficulties: ERROR: ABNORMAL_TERMINATION_IN_LNSRCH

I am guessing the ERROR is the result of the NA values.

We can look at the forecast by displaying it's value:

> heart.forecast
Holt-Winters exponential smoothing with trend and without seasonal
component.
Call:
HoltWinters(x = heart.ts, gamma = FALSE)
Smoothing parameters:
 alpha: 1
 beta : 0.0001553464
 gamma: FALSE
Coefficients:
 [,1]
a 57.920000000
b -0.006217031

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[289]

From the results, we can conclude the following points:

•	 Heart rate average at 58. I think that is normal.
•	 Slight downward trend—again, I think that is normal as you get more into

sleep mode.

Looking at a plot of the forecast, we have an excellent match:

> plot(heart.forecast)

We do the same analysis for the chest (breathing) as follows:

> chest.ts <- ts(sleep$chest)
> chest.forecast <- HoltWinters(chest.ts, gamma=FALSE)
> chest.forecast
Holt-Winters exponential smoothing with trend and without seasonal
component.
Call:
HoltWinters(x = chest.ts, gamma = FALSE)
Smoothing parameters:
 alpha: 1
 beta : 0.02508202
 gamma: FALSE
Coefficients:
 [,1]

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[290]

a 13287.000000
b -7.373061
> plot(chest.forecast)

From the breathing results, we find the following points:

•	 Looks like a very good fit to the data (red overlay only partially visible)
•	 It took some time for the algorithm to adjust (from the wide variance at the

start of the plot
•	 I liked that the display was able to accommodate the apnea periods

We analyze the oxygen rate of the patient during the test as well, as shown in the
following code:

> oxygen.ts <- ts(sleep$oxygen)
> oxygen.forecast <- HoltWinters(oxygen.ts, gamma=FALSE)
Warning message:
In HoltWinters(oxygen.ts, gamma = FALSE) :
 optimization difficulties: ERROR: ABNORMAL_TERMINATION_IN_LNSRCH
> oxygen.forecast
Holt-Winters exponential smoothing with trend and without seasonal
component.
Call:
HoltWinters(x = oxygen.ts, gamma = FALSE)
Smoothing parameters:
 alpha: 1
 beta : 0.001198299

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[291]

 gamma: FALSE
Coefficients:
 [,1]
a 8023.000000
b 6.077048
> plot(oxygen.forecast)

The bad data from the slipped electrodes is distorting the results completely,
as shown in the following graph:

Automated forecasting
The forecast package has an ets function that will automatically select exponential
and ARIMA models. The ets (which stands for exponential smoothing space model)
function looks like this:

ets(y, model="ZZZ", damped=NULL, alpha=NULL, beta=NULL, gamma=NULL,
 phi=NULL, additive.only=FALSE, lambda=NULL,
 lower=c(rep(0.0001,3), 0.8), upper=c(rep(0.9999,3),0.98),
 opt.crit=c("lik","amse","mse","sigma","mae"), nmse=3,
 bounds=c("both","usual","admissible"), ic=c("aicc","aic","bic"),
 restrict=TRUE, use.initial.values=FALSE, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[292]

The various parameters of the ets function are described in the following table:

Parameter Description
y This is the time series.
model This is a three letter string identifying the method:

•	 The first letter denotes the error type (A, M, or Z)
•	 The second letter denotes the trend type (N, A, M, or Z)
•	 The third letter denotes the season type (N, A, M, or Z)

In all cases, N stands for none, A for additive, M for multiplicative, and
Z for automatically selected.
So, for example, ANN is simple exponential smoothing with additive
errors, MAM is multiplicative Holt-Winters' method with multiplicative
errors, and so on.

damped This is a Boolean value: if TRUE, use a damped trend.
alpha, beta,
gamma, phi

These values are specified or set to NULL, meaning estimate value.

… These are the other arguments to be defined with greater precision for
the model selected.

Using our river data, we generate a forecast as follows (note that this may take some
time depending on the size of your time series):

> fraser.ets <- ets(fraser.ts)
> summary(fraser.ts)
ETS(M,N,M)
Call:
 ets(y = fraser.ts)
 Smoothing parameters:
 alpha = 0.5967
 gamma = 1e-04
 Initial states:
 l = 2391.3065
 s=0.3115 0.3383 0.4222 0.5911 0.7162 0.8674
 1.2955 2.0465 2.6331 1.8528 0.6322 0.2933
 sigma: 0.2332
 AIC AICcBIC
18169.33 18169.79 18237.27
Training set error measures:
 ME RMSE MAE MPE MAPE MASE
ACF1
Training set -13.32012 816.7776 488.1696 -3.466517 17.46853 0.4502517
0.2286761

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[293]

We see from the results:

•	 MNM was chosen, which means multiplicative error, no trend, and
multiplicative season

•	 The alpha value is about double the values chosen in the previous examples
•	 The gamma (seasonality) value is enormous

Let's plot the data generated:

> plot(fraser.ets)

The results are a match to the previous similar graph from the results of the stl call.

ARIMA
We can use ARIMA (short for autoregressive integrated moving average) modeling
with our time series using the arima function. The arima function looks like this:

arima(x, order = c(0L, 0L, 0L),
 seasonal = list(order = c(0L, 0L, 0L), period = NA),
 xreg = NULL, include.mean = TRUE,
 transform.pars = TRUE,
 fixed = NULL, init = NULL,
 method = c("CSS-ML", "ML", "CSS"), n.cond,

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[294]

 SSinit = c("Gardner1980", "Rossignol2011"),
 optim.method = "BFGS",
 optim.control = list(), kappa = 1e6)

The various parameters of the arima function are described in the following table:

Parameter Description
x This is the univariate time series
order This is the three integer components of the ARIMA model: p, d, and q, where

p is AR order, d the degree of differencing, and q the MA order
seasonal This is the specification of the seasonal part of the model
… These are the other arguments to be defined

Generate an ARIMA model of our river data with the following code:

> fraser.arima <- arima(fraser.ts, order=c(2,0,0))
> summary(fraser.arima)
Series: fraser.ts
ARIMA(2,0,0) with non-zero mean
Coefficients:
 ar1 ar2 intercept
 1.1606 -0.6043 2708.4393
s.e. 0.0259 0.0259 85.4871
sigma^2 estimated as 1360268: log likelihood=-8023.41
AIC=16054.82AICc=16054.86 BIC=16074.23
Training set error measures:
 ME RMSE MAE MPE MAPE MASE
ACF1
Training set -0.4317943 1166.305 856.2903 -27.14596 46.69703 0.7897792
0.02744368

From the result, we find the following points:

•	 Sigma squared of 1.3 million, which is very high
•	 Log likelihood of 8,000

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[295]

We can generate a plot of the result (shown in the following graph) using the
following command:

> tsdisplay(arima.errors(fraser.arima))

From the plot, we can see:

•	 The errors plot looks similar to others we have seen earlier in the chapter
•	 The ACF with different lags seems to vary with the seasonality recurrence
•	 The PACF is very similar to the ACF earlier, but it shows summary data

using several lag periods

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[296]

We can produce a forecast using the ARIMA results as follows:

> fraser.farima <- forecast(fraser.arima, h=8)
> summary(fraser.farima)
Forecast method: ARIMA(2,0,0) with non-zero mean
Model Information:
Series: fraser.ts
ARIMA(2,0,0) with non-zero mean
Coefficients:
 ar1 ar2 intercept
 1.1606 -0.6043 2708.4393
s.e. 0.0259 0.0259 85.4871
sigma^2 estimated as 1360268: log likelihood=-8023.41
AIC=16054.82AICc=16054.86 BIC=16074.23
Error measures:
 ME RMSE MAE MPE MAPE MASE
ACF1
Training set -0.4317943 1166.305 856.2903 -27.14596 46.69703 1.307243
0.02744368
Forecasts:
 Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1992 1307.705 -186.97489 2802.386 -978.2109 3593.622
Feb 1992 2000.231 -289.63543 4290.097 -1501.8175 5502.279
Mar 1992 2732.871 188.04303 5277.700 -1159.1077 6624.850
Apr 1992 3164.733 608.57983 5720.887 -744.5660 7074.033
May 1992 3223.264 637.23996 5809.287 -731.7182 7178.245
Jun 1992 3030.241 375.50226 5684.981 -1029.8318 7090.315
Jul 1992 2770.847 76.60463 5465.090 -1349.6414 6891.336
Aug 1992 2586.422 -113.23588 5286.080 -1542.3483 6715.192

Again, it is bothersome that we have negative numbers in the forecast, as shown in
the following output:

> plot(fraser.farima)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[297]

The plot shows the eight periods (months) that we forecast in blue on the right-hand
side of the plot. However, it is bothersome that the blue appears to extend below the
axis, implying a negative flow.

Automated ARIMA forecasting
We can also perform automated forecasting using an ARIMA model as follows:

> fraser.aarima <- auto.arima(fraser.ts)
> summary(fraser.aarima)
Series: fraser.ts
ARIMA(4,0,1)(2,0,0)[12] with non-zero mean
Coefficients:
 ar1 ar2 ar3 ar4 ma1 sar1 sar2
intercept
 -0.4171 0.3436 -0.0320 0.0655 0.9644 0.4834 0.4258
2683.7915
s.e. 0.0400 0.0345 0.0357 0.0328 0.0197 0.0301 0.0301
485.1957
sigma^2 estimated as 513502: log likelihood=-7561.8
AIC=15142.33 AICc=15142.53 BIC=15186
Training set error measures:
 ME RMSE MAE MPE MAPE MASE
ACF1
Training set -0.103399 705.9058 463.8549 -7.331119 19.98075 0.4278256
0.006710881

www.it-ebooks.info

http://www.it-ebooks.info/

Predicting Events with Machine Learning

[298]

From the results, we find the following points:

•	 Sigma squared of 500,000
•	 Log likelihood of 7,500

If we regenerate the model using the values chosen, we get the following output:

> fraser.arima3 <- arima(fraser.ts, order=c(4,0,1),
seasonal=list(order=c(2,0,0), period=12))
> summary(fraser.arima3)
Series: fraser.ts
ARIMA(4,0,1)(2,0,0)[12] with non-zero mean
Coefficients:
 ar1 ar2 ar3 ar4 ma1 sar1 sar2
intercept
 -0.4383 0.3783 -0.0408 0.0584 1.0000 0.4934 0.4247
2684.4636
s.e. 0.0332 0.0357 0.0362 0.0330 0.0026 0.0300 0.0305
460.3653
sigma^2 estimated as 518522: log likelihood=-7576.7
AIC=15171.4 AICc=15171.6 BIC=15215.07
Training set error measures:
 ME RMSE MAE MPE MAPE MASE
ACF1
Training set 4.19843 720.0847 476.552 -7.320212 20.63867 0.4395365
-0.0001388267

Negative likelihood shows an excellent fit.

We can then forecast using the ARIMA model as follows:

> fraser.farima3 <- forecast(fraser.arima3, h=8)
> plot(fraser.farima3)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[299]

We can see a larger value in the forecast part of the plot. The forecast also does not
appear to go as far below the axis (negative) as in our previous example. The y axis
is also shorter.

Questions
Factual

•	 How would you compare the results of the different models and forecasts to
select the appropriate constraints?

•	 In the initial plot of the river data, is there something that could be used
to foresee the seasonality and/or trend immediately without breaking
into components?

When, how, and why?

•	 While the automated selection provided ARIMA values, how would you
select the different parameters?

•	 How would you decide on the different modeling techniques used for
your dataset?

Challenges

•	 Several of the forecasts involved negative values for the river flow. How can
that be avoided?

•	 Either use a time series that you have available or find one that has the
components addressed in the chapter and apply the analysis available in R.

Summary
In this chapter, we investigated predicting events using machine learning by using R.
We formatted a dataset into an R time series. We used a few methods to extract the
constituent parts of the time series into trend, seasonal, and irregular components.
We used different smoothing methods on the time series to arrive at a model. We
used different mechanisms to forecast the time series based on the models.

In the next chapter, we will discuss supervised and unsupervised learning.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and
Unsupervised Learning

The two basic methods of machine learning are supervised and unsupervised
machine learning. In machine learning, we are usually dealing with a target variable
and predictor variables. The target variable is the object of the prediction or what
we are trying to learn. We want to learn how to predict that variable going forward.
The predictor variables are the variables we put into our model to obtain information
about the target variable. We want to learn how changes in our predictor variables
affect the target variable.

Supervised learning involves the use of a target variable and a number of predictor
variables that are put into a model to enable the system to predict the target. This is
also known as predictive modeling.

Unsupervised modeling has no target variable. We want to discover the predictor
variables that are present. This is sometimes called pattern discovery.

This chapter covers techniques in R programming for supervised and unsupervised
learning. Many of these techniques have been discussed in earlier chapters. The
various techniques are listed as follows:

•	 Supervised learning techniques
°° Decision trees
°° Regression
°° Neural networks
°° Instance-based learning (k-NN)
°° Ensemble learning
°° Support vector machines

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[302]

°° Bayesian learning
°° Bayesian inference
°° Random forests

•	 Unsupervised learning techniques
°° Cluster analysis
°° Density estimation
°° Expectation-maximization algorithm
°° Hidden Markov models
°° Blind signal separation

Packages
We will use the following packages available in R for supervised and
unsupervised learning:

•	 rattle: This is a data mining GUI in R
•	 rpart.plot: This is used to plot the r.part models
•	 caret: This is used for classification and regression training
•	 kknn: These are the weighted k nearest neighbors
•	 kernlab: This is used for kernel-based machine learning
•	 e1071: This package contains miscellaneous functions of the Department

of Statistics
•	 MCMCpack: This package contains the functions for Markov chain Monte

Carlo algorithm
•	 randomForest: This is used for classification and regression based on a forest

of trees using random inputs
•	 FactoMineR: This is used for multivariate exploratory data analysis and data

mining with R

Supervised learning
In supervised learning we have a target variable and a number of possible predictor
variables. The objective is to associate the predictor variables in such a way so as
to accurately predict the target variable. We are using some portion of observed
data to learn how our model behaves and then testing that model on the remaining
observations for accuracy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[303]

We will go over the following supervised learning techniques:

•	 Decision trees
•	 Regression
•	 Neural networks
•	 Instance based learning (k-NN)
•	 Ensemble learning
•	 Support vector machines
•	 Bayesian learning
•	 Bayesian inference
•	 Random forests

Decision tree
For decision tree machine learning, we develop a logic tree that can be used to
predict our target value based on a number of predictor variables. The tree has
logical points, such as if the month is December, follow the tree logic to the left; otherwise,
follow the tree logic to the right. The last leaf of the tree has a predicted value.

For this example, we will use the weather data in the rattle package. We will
develop a decision tree to be used to determine whether it will rain tomorrow
or not based on several variables. Let's load the rattle package as follows:

> library(rattle)

We can see a summary of the weather data. This shows that we have some real data
over a year from Australia:

> summary(weather)
 Date Location MinTemp
 Min. :2007-11-01 Canberra :366 Min. :-5.300
 1st Qu.:2008-01-31 Adelaide : 0 1st Qu.: 2.300
 Median :2008-05-01 Albany : 0 Median : 7.450
 Mean :2008-05-01 Albury : 0 Mean : 7.266
 3rd Qu.:2008-07-31 AliceSprings : 0 3rd Qu.:12.500
 Max. :2008-10-31 BadgerysCreek: 0 Max. :20.900
 (Other) : 0
 MaxTemp Rainfall Evaporation Sunshine
 Min. : 7.60 Min. : 0.000 Min. : 0.200 Min. : 0.000
 1st Qu.:15.03 1st Qu.: 0.000 1st Qu.: 2.200 1st Qu.: 5.950
 Median :19.65 Median : 0.000 Median : 4.200 Median : 8.600
 Mean :20.55 Mean : 1.428 Mean : 4.522 Mean : 7.909

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[304]

 3rd Qu.:25.50 3rd Qu.: 0.200 3rd Qu.: 6.400 3rd Qu.:10.500
 Max. :35.80 Max. :39.800 Max. :13.800 Max. :13.600
 NA's :3
WindGustDir WindGustSpeed WindDir9am WindDir3pm
 NW : 73 Min. :13.00 SE : 47 WNW : 61
 NNW : 44 1st Qu.:31.00 SSE : 40 NW : 61
 E : 37 Median :39.00 NNW : 36 NNW : 47
 WNW : 35 Mean :39.84 N : 31 N : 30
 ENE : 30 3rd Qu.:46.00 NW : 30 ESE : 27
 (Other):144 Max. :98.00 (Other):151 (Other):139
 NA's : 3 NA's :2 NA's : 31 NA's : 1
 WindSpeed9am WindSpeed3pm Humidity9am Humidity3pm
 Min. : 0.000 Min. : 0.00 Min. :36.00 Min. :13.00
 1st Qu.: 6.000 1st Qu.:11.00 1st Qu.:64.00 1st Qu.:32.25
 Median : 7.000 Median :17.00 Median :72.00 Median :43.00
 Mean : 9.652 Mean :17.99 Mean :72.04 Mean :44.52
 3rd Qu.:13.000 3rd Qu.:24.00 3rd Qu.:81.00 3rd Qu.:55.00
 Max. :41.000 Max. :52.00 Max. :99.00 Max. :96.00
 NA's :7
 Pressure9am Pressure3pm Cloud9am Cloud3pm
 Min. : 996.5 Min. : 996.8 Min. :0.000 Min. :0.000
 1st Qu.:1015.4 1st Qu.:1012.8 1st Qu.:1.000 1st Qu.:1.000
 Median :1020.1 Median :1017.4 Median :3.500 Median :4.000
 Mean :1019.7 Mean :1016.8 Mean :3.891 Mean :4.025
 3rd Qu.:1024.5 3rd Qu.:1021.5 3rd Qu.:7.000 3rd Qu.:7.000
 Max. :1035.7 Max. :1033.2 Max. :8.000 Max. :8.000

 Temp9am Temp3pm RainToday RISK_MM
 Min. : 0.100 Min. : 5.10 No :300 Min. : 0.000
 1st Qu.: 7.625 1st Qu.:14.15 Yes: 66 1st Qu.: 0.000
 Median :12.550 Median :18.55 Median : 0.000
 Mean :12.358 Mean :19.23 Mean : 1.428
 3rd Qu.:17.000 3rd Qu.:24.00 3rd Qu.: 0.200
 Max. :24.700 Max. :34.50 Max. :39.800

 RainTomorrow
 No :300
 Yes: 66

We will be using the rpart function to develop a decision tree. The rpart function
looks like this:

rpart(formula, data, weights, subset, na.action = na.rpart, method,
model = FALSE, x = FALSE, y = TRUE, parms, control, cost, ...)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[305]

The various parameters of the rpart function are described in the following table:

Parameter Description
formula This is the formula used for the prediction.
data This is the data matrix.
weights These are the optional weights to be applied.
subset This is the optional subset of rows of data to be used.
na.action This specifies the action to be taken when y, the target value, is missing.
method This is the method to be used to interpret the data. It should be one of these:

anova, poisson, class, or exp. If not specified, the algorithm decides
based on the layout of the data.

… These are the additional parameters to be used to control the behavior of the
algorithm.

Let's create a subset as follows:

> weather2 <- subset(weather,select=-c(RISK_MM))
> install.packages("rpart")
>library(rpart)
> model <- rpart(formula=RainTomorrow ~ .,data=weather2,
method="class")
> summary(model)
Call:
rpart(formula = RainTomorrow ~ ., data = weather2, method = "class")
 n= 366

CPn split rel error xerror xstd
1 0.19696970 0 1.0000000 1.0000000 0.1114418
2 0.09090909 1 0.8030303 0.9696970 0.1101055
3 0.01515152 2 0.7121212 1.0151515 0.1120956
4 0.01000000 7 0.6363636 0.9090909 0.1073129

Variable importance
Humidity3pm WindGustSpeed Sunshine WindSpeed3pm Temp3pm
 24 14 12 8 6
 Pressure3pm MaxTemp MinTemp Pressure9am Temp9am
 6 5 4 4 4
 Evaporation Date Humidity9am Cloud3pm Cloud9am
 3 3 2 2 1
 Rainfall
 1
Node number 1: 366 observations, complexity param=0.1969697
 predicted class=No expected loss=0.1803279 P(node) =1
 class counts: 300 66

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[306]

 probabilities: 0.820 0.180
 left son=2 (339 obs) right son=3 (27 obs)
 Primary splits:
 Humidity3pm < 71.5 to the left, improve=18.31013, (0 missing)
 Pressure3pm < 1011.9 to the right, improve=17.35280, (0 missing)
 Cloud3pm < 6.5 to the left, improve=16.14203, (0 missing)
 Sunshine < 6.45 to the right, improve=15.36364, (3 missing)
 Pressure9am < 1016.35 to the right, improve=12.69048, (0 missing)
 Surrogate splits:
 Sunshine < 0.45 to the right, agree=0.945, adj=0.259, (0 split)
(many more)…

As you can tell, the model is complicated. The summary shows the progression of
the model development using more and more of the data to fine-tune the tree. We
will be using the rpart.plot package to display the decision tree in a readable
manner as follows:

> library(rpart.plot)
> fancyRpartPlot(model,main="Rain Tomorrow",sub="Chapter 12")

This is the output of the fancyRpartPlot function

Now, we can follow the logic of the decision tree easily. For example, if the humidity
is over 72, we are predicting it will rain.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[307]

Regression
We can use a regression to predict our target value by producing a regression model
from our predictor variables.

We will be using the forest fire data from http://archive.ics.uci.edu. We will
load the data and get the following summary:

> forestfires <- read.csv("http://archive.ics.uci.edu/ml/machine-
learning-databases/forest-fires/forestfires.csv")
> summary(forestfires)
 X Y month day FFMC
 Min. :1.000 Min. :2.0 aug :184 fri:85 Min. :18.70
 1st Qu.:3.000 1st Qu.:4.0 sep :172 mon:74 1st Qu.:90.20
 Median :4.000 Median :4.0 mar : 54 sat:84 Median :91.60
 Mean :4.669 Mean :4.3 jul : 32 sun:95 Mean :90.64
 3rd Qu.:7.000 3rd Qu.:5.0 feb : 20 thu:61 3rd Qu.:92.90
 Max. :9.000 Max. :9.0 jun : 17 tue:64 Max. :96.20
 (Other): 38 wed:54
 DMC DC ISI temp
 Min. : 1.1 Min. : 7.9 Min. : 0.000 Min. : 2.20
 1st Qu.: 68.6 1st Qu.:437.7 1st Qu.: 6.500 1st Qu.:15.50
 Median :108.3 Median :664.2 Median : 8.400 Median :19.30
 Mean :110.9 Mean :547.9 Mean : 9.022 Mean :18.89
 3rd Qu.:142.4 3rd Qu.:713.9 3rd Qu.:10.800 3rd Qu.:22.80
 Max. :291.3 Max. :860.6 Max. :56.100 Max. :33.30

 RH wind rain area
 Min. : 15.00 Min. :0.400 Min. :0.00000 Min. : 0.00
 1st Qu.: 33.00 1st Qu.:2.700 1st Qu.:0.00000 1st Qu.: 0.00
 Median : 42.00 Median :4.000 Median :0.00000 Median : 0.52
 Mean : 44.29 Mean :4.018 Mean :0.02166 Mean : 12.85
 3rd Qu.: 53.00 3rd Qu.:4.900 3rd Qu.:0.00000 3rd Qu.: 6.57
 Max. :100.00 Max. :9.400 Max. :6.40000 Max. :1090.84

I will just use the month, temperature, wind, and rain data to come up with a model
of the area (size) of the fires using the lm function. The lm function looks like this:

lm(formula, data, subset, weights, na.action,
 method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
 singular.ok = TRUE, contrasts = NULL, offset, ...)

www.it-ebooks.info

http://archive.ics.uci.edu
http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[308]

The various parameters of the lm function are described in the following table:

Parameter Description
formula This is the formula to be used for the model
data This is the dataset
subset This is the subset of dataset to be used
weights These are the weights to apply to factors
… These are the additional parameters to be added to the function

Let's load the data as follows:

> model <- lm(formula = area ~ month + temp + wind + rain,
data=forestfires)

Looking at the generated model, we see the following output:

> summary(model)
Call:
lm(formula = area ~ month + temp + wind + rain, data = forestfires)
Residuals:
 Min 1Q Median 3Q Max
 -33.20 -14.93 -9.10 -1.66 1063.59
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.390 24.532 -0.709 0.4787
monthaug -10.342 22.761 -0.454 0.6498
monthdec 11.534 30.896 0.373 0.7091
monthfeb 2.607 25.796 0.101 0.9196
monthjan 5.988 50.493 0.119 0.9056
monthjul -8.822 25.068 -0.352 0.7251
monthjun -15.469 26.974 -0.573 0.5666
monthmar -6.630 23.057 -0.288 0.7738
monthmay 6.603 50.053 0.132 0.8951
monthnov -8.244 67.451 -0.122 0.9028
monthoct -8.268 27.237 -0.304 0.7616
monthsep -1.070 22.488 -0.048 0.9621
temp 1.569 0.673 2.332 0.0201 *
wind 1.581 1.711 0.924 0.3557
rain -3.179 9.595 -0.331 0.7406

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 63.99 on 502 degrees of freedom
Multiple R-squared: 0.01692, Adjusted R-squared: -0.0105
F-statistic: 0.617 on 14 and 502 DF, p-value: 0.8518

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[309]

Surprisingly, the month has a significant effect on the size of the fires. I would have
guessed that whether or not the fires occurred in August or similar months would
have effected any discernable difference. Also, the temperature has such a minimal
effect. Further, the model is using the month data as categorical.

If we redevelop the model (without temperature), we have a better fit (notice the
multiple R-squared value drops to 0.006 from 0.01), as shown here:

> model <- lm(formula = area ~ month + wind + rain, data=forestfires)
> summary(model)

Call:
lm(formula = area ~ month + wind + rain, data = forestfires)

Residuals:
 Min 1Q Median 3Q Max
 -22.17 -14.39 -10.46 -3.87 1072.43

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.0126 22.8496 0.176 0.861
monthaug 4.3132 21.9724 0.196 0.844
monthdec 1.3259 30.7188 0.043 0.966
monthfeb -1.6631 25.8441 -0.064 0.949
monthjan -6.1034 50.4475 -0.121 0.904
monthjul 6.4648 24.3021 0.266 0.790
monthjun -2.4944 26.5099 -0.094 0.925
monthmar -4.8431 23.1458 -0.209 0.834
monthmay 10.5754 50.2441 0.210 0.833
monthnov -8.7169 67.7479 -0.129 0.898
monthoct -0.9917 27.1767 -0.036 0.971
monthsep 10.2110 22.0579 0.463 0.644
wind 1.0454 1.7026 0.614 0.540
rain -1.8504 9.6207 -0.192 0.848

Residual standard error: 64.27 on 503 degrees of freedom
Multiple R-squared: 0.006269, Adjusted R-squared: -0.01941
F-statistic: 0.2441 on 13 and 503 DF, p-value: 0.9971

From the results, we can see R-squared of close to 0 and p-value almost 1; this is a
very good fit.

If you plot the model, you will get a series of graphs. The plot of the residuals versus
fitted values is the most revealing, as shown in the following graph:

> plot(model)

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[310]

You can see from the graph that the regression model is very accurate:

Neural network
In a neural network, it is assumed that there is a complex relationship between the
predictor variables and the target variable. The network allows the expression of
each of these relationships.

For this model, we will use the liver disorder data from http://archive.ics.uci.
edu. The data has a few hundred observations from patients with liver disorders.
The variables are various measures of blood for each patient as shown here:

> bupa <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/liver-disorders/bupa.data")
> colnames(bupa) <- c("mcv","alkphos","alamine","aspartate","glutamyl"
,"drinks","selector")
> summary(bupa)
 mcv alkphos alamine
 Min. : 65.00 Min. : 23.00 Min. : 4.00
 1st Qu.: 87.00 1st Qu.: 57.00 1st Qu.: 19.00
 Median : 90.00 Median : 67.00 Median : 26.00
 Mean : 90.17 Mean : 69.81 Mean : 30.36
 3rd Qu.: 93.00 3rd Qu.: 80.00 3rd Qu.: 34.00
 Max. :103.00 Max. :138.00 Max. :155.00
 aspartate glutamyl drinks
 Min. : 5.00 Min. : 5.00 Min. : 0.000

www.it-ebooks.info

http://archive.ics.uci.edu
http://archive.ics.uci.edu
http://www.it-ebooks.info/

Chapter 12

[311]

 1st Qu.:19.00 1st Qu.: 15.00 1st Qu.: 0.500
 Median :23.00 Median : 24.50 Median : 3.000
 Mean :24.64 Mean : 38.31 Mean : 3.465
 3rd Qu.:27.00 3rd Qu.: 46.25 3rd Qu.: 6.000
 Max. :82.00 Max. :297.00 Max. :20.000
 selector
 Min. :1.000
 1st Qu.:1.000
 Median :2.000
 Mean :1.581
 3rd Qu.:2.000
 Max. :2.000

We generate a neural network using the neuralnet function. The neuralnet
function looks like this:

neuralnet(formula, data, hidden = 1, threshold = 0.01,
 stepmax = 1e+05, rep = 1, startweights = NULL,
 learningrate.limit = NULL,
 learningrate.factor = list(minus = 0.5, plus = 1.2),
 learningrate=NULL, lifesign = "none",
 lifesign.step = 1000, algorithm = "rprop+",
 err.fct = "sse", act.fct = "logistic",
 linear.output = TRUE, exclude = NULL,
 constant.weights = NULL, likelihood = FALSE)

The various parameters of the neuralnet function are described in the following table:

Parameter Description
formula This is the formula to converge.
data This is the data matrix of predictor values.
hidden This is the number of hidden neurons in each layer.
stepmax This is the maximum number of steps in each

repetition. Default is 1+e5.
rep This is the number of repetitions.

Let's generate the neural network as follows:

> nn <- neuralnet(selector~mcv+alkphos+alamine+aspartate+glutamyl+drin
ks, data=bupa, linear.output=FALSE, hidden=2)

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[312]

We can see how the model was developed via the result.matrix variable in the
following output:

> nn$result.matrix
 1
error 100.005904355153
reached.threshold 0.005904330743
steps 43.000000000000
Intercept.to.1layhid1 0.880621509705
mcv.to.1layhid1 -0.496298308044
alkphos.to.1layhid1 2.294158313786
alamine.to.1layhid1 1.593035613921
aspartate.to.1layhid1 -0.407602506759
glutamyl.to.1layhid1 -0.257862634340
drinks.to.1layhid1 -0.421390527261
Intercept.to.1layhid2 0.806928998059
mcv.to.1layhid2 -0.531926150470
alkphos.to.1layhid2 0.554627946150
alamine.to.1layhid2 1.589755874579
aspartate.to.1layhid2 -0.182482440722
glutamyl.to.1layhid2 1.806513419058
drinks.to.1layhid2 0.215346602241
Intercept.to.selector 4.485455617018
1layhid.1.to.selector 3.328527160621
1layhid.2.to.selector 2.616395644587

The process took 43 steps to come up with the neural network once the threshold
was under 0.01 (0.005 in this case). You can see the relationships between the
predictor values.

Looking at the network developed, we can see the hidden layers of relationship
among the predictor variables. For example, sometimes mcv combines at one ratio
and on other times at another ratio, depending on its value. Let's load the neural
network as follows:

> plot(nn)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[313]

Instance-based learning
R programming has a nearest neighbor algorithm (k-NN). The k-NN algorithm takes
the predictor values and organizes them so that a new observation is applied to the
organization developed and the algorithm selects the result (prediction) that is most
applicable based on nearness of the predictor values in the new observation. The
nearest neighbor function is knn. The knn function call looks like this:

knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE)

The various parameters of the knn function are described in the following table:

Parameter Description
train This is the training data.
test This is the test data.
cl This is the factor of true classifications.
k This is the Number of neighbors to consider.
l This is the minimum vote for a decision.
prob This is a Boolean flag to return proportion of winning votes.
use.all This is a Boolean variable for tie handling. TRUE means use all votes of max

distance

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[314]

I am using the auto MPG dataset in the example of using knn.

First, we load the dataset (we have already used this dataset in a previous chapter):

> data <- read.table("http://archive.ics.uci.edu/ml/machine-learning-
databases/auto-mpg/auto-mpg.data", na.string="?")
> colnames(data) <- c("mpg","cylinders","displacement","horsepower","w
eight","acceleration","model.year","origin","car.name")
> summary(data)
 mpg cylinders displacement horsepower
 Min. : 9.00 Min. :3.000 Min. : 68.0 150 : 22
 1st Qu.:17.50 1st Qu.:4.000 1st Qu.:104.2 90 : 20
 Median :23.00 Median :4.000 Median :148.5 88 : 19
 Mean :23.51 Mean :5.455 Mean :193.4 110 : 18
 3rd Qu.:29.00 3rd Qu.:8.000 3rd Qu.:262.0 100 : 17
 Max. :46.60 Max. :8.000 Max. :455.0 75 : 14
 (Other):288
 weight acceleration model.year origin
 Min. :1613 Min. : 8.00 Min. :70.00 Min. :1.000
 1st Qu.:2224 1st Qu.:13.82 1st Qu.:73.00 1st Qu.:1.000
 Median :2804 Median :15.50 Median :76.00 Median :1.000
 Mean :2970 Mean :15.57 Mean :76.01 Mean :1.573
 3rd Qu.:3608 3rd Qu.:17.18 3rd Qu.:79.00 3rd Qu.:2.000
 Max. :5140 Max. :24.80 Max. :82.00 Max. :3.000

 car.name
 ford pinto : 6
 amc matador : 5
 ford maverick : 5
 toyota corolla: 5
 amc gremlin : 4
 amc hornet : 4
 (Other) :369

There are close to 400 observations in the dataset. We need to split the data
into a training set and a test set. We will use 75 percent for training. We use the
createDataPartition function in the caret package to select the training rows.
Then, we create a test dataset and a training dataset using the partitions as follows:

> library(caret)
> training <- createDataPartition(data$mpg, p=0.75, list=FALSE)
> trainingData <- data[training,]
> testData <- data[-training,]
> model <- knn(train=trainingData, test=testData, cl=trainingData$mpg)
NAs introduced by coercion

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[315]

The error message means that some numbers in the dataset have a bad format. The
bad numbers were automatically converted to NA values. Then the inclusion of the NA
values caused the function to fail, as NA values are not expected in this function call.

First, there are some missing items in the dataset loaded. We need to eliminate those
NA values as follows:

> completedata <- data[complete.cases(data),]

After looking over the data several times, I guessed that the car name fields were
being parsed as numerical data when there was a number in the name, such as Buick
Skylark 320. I removed the car name column from the test and we end up with the
following valid results;

> drops <- c("car.name")
> completeData2 <- completedata[,!(names(completedata) %in% drops)]
> training <- createDataPartition(completeData2$mpg, p=0.75,
list=FALSE)
> trainingData <- completeData2[training,]
> testData <- completeData2[-training,]
> model <- knn(train=trainingData, test=testData, cl=trainingData$mpg)

We can see the results of the model by plotting using the following command.
However, the graph doesn't give us much information to work on.

> plot(model)

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[316]

We can use a different kknn function to compare our model with the test data. I like
this version a little better as you can plainly specify the formula for the model. Let's
use the kknn function as follows:

> library(kknn)
> model <- kknn(formula = formula(mpg~.), train = trainingData, test =
testData, k = 3, distance = 1)
> fit <- fitted(model)
> plot(testData$mpg, fit)
> abline(a=0, b=1, col=3)

I added a simple slope to highlight how well the model fits the training data. It looks
like as we progress to higher MPG values, our model has a higher degree of variance.
I think that means we are missing predictor variables, especially for the later model,
high MPG series of cars. That would make sense as government mandate and
consumer demand for high efficiency vehicles changed the mpg for vehicles. Here is
the graph generated by the previous code:

Ensemble learning
Ensemble learning is the process of using multiple learning methods to obtain
better predictions. For example, we could use a regression and k-NN, combine the
results, and end up with a better prediction. We could average the results of both or
provide heavier weight towards one or another of the algorithms, whichever appears
to be a better predictor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[317]

Support vector machines
We covered support vector machines (SVM) in Chapter 10, Machine Learning in
Action, but I will run through an example here. As a reminder, SVM is concerned
with binary data. We will use the spam dataset from Hewlett Packard (part of the
kernlab package). First, let's load the data as follows:

> library(kernlab)
> data("spam")
> summary(spam)
 make address all num3d
 Min. :0.0000 Min. : 0.000 Min. :0.0000 Min. : 0.00000
 1st Qu.:0.0000 1st Qu.: 0.000 1st Qu.:0.0000 1st Qu.: 0.00000
 Median :0.0000 Median : 0.000 Median :0.0000 Median : 0.00000
 Mean :0.1046 Mean : 0.213 Mean :0.2807 Mean : 0.06542
 3rd Qu.:0.0000 3rd Qu.: 0.000 3rd Qu.:0.4200 3rd Qu.: 0.00000
 Max. :4.5400 Max. :14.280 Max. :5.1000 Max. :42.81000
…

There are 58 variables with close to 5000 observations, as shown here:

> table(spam$type)
nonspam spam
 2788 1813

Now, we break up the data into a training set and a test set as follows:

> index <- 1:nrow(spam)
> testindex <- sample(index, trunc(length(index)/3))
> testset <- spam[testindex,]
> trainingset <- spam[-testindex,]

Now, we can produce our SVM model using the svm function. The svm function
looks like this:

svm(formula, data = NULL, ..., subset, na.action =na.omit, scale =
TRUE)

The various parameters of the svm function are described in the following table:

Parameter Description
formula This is the formula model
data This is the dataset
subset This is the subset of the dataset to be used
na.action This contains what action to take with NA values
scale This determines whether to scale the data

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[318]

Let's use the svm function to produce a SVM model as follows:

> library(e1071)
> model <- svm(type ~ ., data = trainingset, method =
"C-classification", kernel = "radial", cost = 10, gamma = 0.1)
> summary(model)
Call:
svm(formula = type ~ ., data = trainingset, method =
"C-classification",
 kernel = "radial", cost = 10, gamma = 0.1)
Parameters:
 SVM-Type: C-classification
 SVM-Kernel: radial
 cost: 10
 gamma: 0.1
Number of Support Vectors: 1555
 (645 910)
Number of Classes: 2
Levels:
 nonspam spam

We can test the model against our test dataset and look at the results as follows:

> pred <- predict(model, testset)
> table(pred, testset$type)
 pred nonspam spam
 nonspam 891 104
 spam 38 500

Note, the e1071 package is not compatible with the current version
of R. Given its usefulness I would expect the package to be updated
to support the user base.

So, using SVM, we have a 90 percent ((891+500) / (891+104+38+500)) accuracy rate
of prediction.

Bayesian learning
With Bayesian learning, we have an initial premise in a model that is adjusted with
new information. We can use the MCMCregress method in the MCMCpack package to
use Bayesian regression on learning data and apply the model against test data. Let's
load the MCMCpack package as follows:

> install.packages("MCMCpack")
> library(MCMCpack)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[319]

We are going to be using the transplant data on transplants available at http://lib.
stat.cmu.edu/datasets/stanford. (The dataset on the site is part of the web page,
so I copied into a local CSV file.)

The data shows expected transplant success factor, the actual transplant success factor,
and the number of transplants over a time period. So, there is a good progression over
time as to the success of the program. We can read the dataset as follows:

> transplants <- read.csv("transplant.csv")
> summary(transplants)
 expected actual transplants
 Min. : 0.057 Min. : 0.000 Min. : 1.00
 1st Qu.: 0.722 1st Qu.: 0.500 1st Qu.: 9.00
 Median : 1.654 Median : 2.000 Median : 18.00
 Mean : 2.379 Mean : 2.382 Mean : 27.83
 3rd Qu.: 3.402 3rd Qu.: 3.000 3rd Qu.: 40.00
 Max. :12.131 Max. :18.000 Max. :152.00

We use Bayesian regression against the data— note that we are modifying the
model as we progress with new information using the MCMCregress function.
The MCMCregress function looks like this:

MCMCregress(formula, data = NULL, burnin = 1000, mcmc = 10000,
 thin = 1, verbose = 0, seed = NA, beta.start = NA,
 b0 = 0, B0 = 0, c0 = 0.001, d0 = 0.001, sigma.mu = NA, sigma.var =
NA,
 marginal.likelihood = c("none", "Laplace", "Chib95"), ...)

The various parameters of the MCMCregress function are described in the
following table:

Parameter Description
formula This is the formula of model
data This is the dataset to be used for model
… These are the additional parameters for the function

Let's use the Bayesian regression against the data as follows:

> model <- MCMCregress(expected ~ actual + transplants,
data=transplants)
> summary(model)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

www.it-ebooks.info

http://lib.stat.cmu.edu/datasets/stanford
http://lib.stat.cmu.edu/datasets/stanford
http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[320]

1. Empirical mean and standard deviation for each variable,
 plus standard error of the mean:
 Mean SD Naive SE Time-series SE
(Intercept) 0.00484 0.08394 0.0008394 0.0008388
actual 0.03413 0.03214 0.0003214 0.0003214
transplants 0.08238 0.00336 0.0000336 0.0000336
sigma2 0.44583 0.05698 0.0005698 0.0005857
2. Quantiles for each variable:
 2.5% 25% 50% 75% 97.5%
(Intercept) -0.15666 -0.05216 0.004786 0.06092 0.16939
actual -0.02841 0.01257 0.034432 0.05541 0.09706
transplants 0.07574 0.08012 0.082393 0.08464 0.08890
sigma2 0.34777 0.40543 0.441132 0.48005 0.57228

The plot of the data shows the range of results, as shown in the following graph.
Look at this in contrast to a simple regression with one result.

> plot(model)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[321]

Random forests
Random forests is an algorithm that constructs a multitude of decision trees for the
model of the data and selects the best of the lot as the final result. We can use the
randomForest function in the kernlab package for this function. The randomForest
function looks like this:

randomForest(formula, data=NULL, ..., subset, na.action=na.fail)

The various parameters of the randomForest function are described in the
following table:

Parameter Description
formula This is the formula of model
data This is the dataset to be used
subset This is the subset of the dataset to be used
na.action This is the action to take with NA values

For an example of random forest, we will use the spam data, as in the section
Support vector machines.

First, let's load the package and library as follows:

> install.packages("randomForest")
> library(randomForest)

Now, we will generate the model with the following command (this may take a while):

> fit <- randomForest(type ~ ., data=spam)

Let's look at the results to see how it went:

> fit
Call:
 randomForest(formula = type ~ ., data = spam)
 Type of random forest: classification
 Number of trees: 500
No. of variables tried at each split: 7
 OOB estimate of error rate: 4.48%
Confusion matrix:
 nonspam spam class.error
nonspam 2713 75 0.02690100
spam 131 1682 0.07225593

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[322]

We can look at the relative importance of the data variables in the final model, as
shown here:

> head(importance(fit))
 MeanDecreaseGini
make 7.967392
address 12.654775
all 25.116662
num3d 1.729008
our 67.365754
over 17.579765

Ordering the data shows a couple of the factors to be critical to the determination.
For example, the presence of the exclamation character in the e-mail is shown as a
dominant indicator of spam mail:

charExclamation 256.584207
charDollar 200.3655348
remove 168.7962949
free 142.8084662
capitalAve 137.1152451
capitalLong 120.1520829
your 116.6134519

Unsupervised learning
With unsupervised learning, we do not have a target variable. We have a number of
predictor variables that we look into to determine if there is a pattern.

We will go over the following unsupervised learning techniques:

•	 Cluster analysis
•	 Density estimation
•	 Expectation-maximization algorithm
•	 Hidden Markov models
•	 Blind signal separation

Cluster analysis
Cluster analysis is the process of organizing data into groups (clusters) that are
similar to each other.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[323]

For our example, we will use the wheat seed data available at http://www.uci.edu,
as shown here:

> wheat <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-
databases/00236/seeds_dataset.txt", sep="\t")

Let's look at the raw data:

> head(wheat)
 X15.26 X14.84 X0.871 X5.763 X3.312 X2.221 X5.22 X1
1 14.88 14.57 0.8811 5.554 3.333 1.018 4.956 1
2 14.29 14.09 0.9050 5.291 3.337 2.699 4.825 1
3 13.84 13.94 0.8955 5.324 3.379 2.259 4.805 1
4 16.14 14.99 0.9034 5.658 3.562 1.355 5.175 1
5 14.38 14.21 0.8951 5.386 3.312 2.462 4.956 1
6 14.69 14.49 0.8799 5.563 3.259 3.586 5.219 1

We need to apply column names so we can see the data better:

> colnames(wheat) <- c("area", "perimeter", "compactness", "length",
"width", "asymmetry", "groove", "undefined")
> head(wheat)
 area perimeter compactness length width asymmetry groove undefined
1 14.88 14.57 0.8811 5.554 3.333 1.018 4.956 1
2 14.29 14.09 0.9050 5.291 3.337 2.699 4.825 1
3 13.84 13.94 0.8955 5.324 3.379 2.259 4.805 1
4 16.14 14.99 0.9034 5.658 3.562 1.355 5.175 1
5 14.38 14.21 0.8951 5.386 3.312 2.462 4.956 1
6 14.69 14.49 0.8799 5.563 3.259 3.586 5.219 1

The last column is not defined in the data description, so I am removing it:

> wheat <- subset(wheat, select = -c(undefined))
> head(wheat)
 area perimeter compactness length width asymmetry groove
1 14.88 14.57 0.8811 5.554 3.333 1.018 4.956
2 14.29 14.09 0.9050 5.291 3.337 2.699 4.825
3 13.84 13.94 0.8955 5.324 3.379 2.259 4.805
4 16.14 14.99 0.9034 5.658 3.562 1.355 5.175
5 14.38 14.21 0.8951 5.386 3.312 2.462 4.956
6 14.69 14.49 0.8799 5.563 3.259 3.586 5.219

www.it-ebooks.info

http://www.uci.edu
http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[324]

Now, we can finally produce the cluster using the kmeans function. The kmeans
function looks like this:

kmeans(x, centers, iter.max = 10, nstart = 1,
 algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
 "MacQueen"), trace=FALSE)

The various parameters of the kmeans function are described in the following table:

Parameter Description
x This is the dataset
centers This is the number of centers to coerce data towards
… These are the additional parameters of the function

Let's produce the cluster using the kmeans function:

> fit <- kmeans(wheat, 5)
Error in do_one(nmeth) : NA/NaN/Inf in foreign function call (arg 1)

Unfortunately, there are some rows with missing data, so let's fix this using the
following command:

> wheat <- wheat[complete.cases(wheat),]

Let's look at the data to get some idea of the factors using the following command:

> plot(wheat)

If we try looking at five clusters, we end up with a fairly good set of clusters with an
85 percent fit, as shown here:

> fit <- kmeans(wheat, 5)
> fit
K-means clustering with 5 clusters of sizes 29, 33, 56, 69, 15
Cluster means:
 area perimeter compactness length width asymmetry groove
1 16.45345 15.35310 0.8768000 5.882655 3.462517 3.913207 5.707655
2 18.95455 16.38879 0.8868000 6.247485 3.744697 2.723545 6.119455
3 14.10536 14.20143 0.8777750 5.480214 3.210554 2.368075 5.070000
4 11.94870 13.27000 0.8516652 5.229304 2.870101 4.910145 5.093333
5 19.58333 16.64600 0.8877267 6.315867 3.835067 5.081533 6.144400
Clustering vector:
...
Within cluster sum of squares by cluster:
[1] 48.36785 30.16164 121.63840 160.96148 25.81297
 (between_SS / total_SS = 85.4 %)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[325]

If we push to 10 clusters, the performance increases to 92 percent.

Density estimation
Density estimation is used to provide an estimate of the probability density function
of a random variable. For this example, we will use sunspot data from Vincent
arlbuck site. Not clear if sunspots are truly random.

Let's load our data as follows:

> sunspots <- read.csv("http://vincentarelbundock.github.io/Rdatasets/
csv/datasets/sunspot.month.csv")
> summary(sunspots)
 X time sunspot.month
 Min. : 1 Min. :1749 Min. : 0.00
 1st Qu.: 795 1st Qu.:1815 1st Qu.: 15.70
 Median :1589 Median :1881 Median : 42.00
 Mean :1589 Mean :1881 Mean : 51.96
 3rd Qu.:2383 3rd Qu.:1948 3rd Qu.: 76.40
 Max. :3177 Max. :2014 Max. :253.80
> head(sunspots)
 X time sunspot.month
1 1 1749.000 58.0
2 2 1749.083 62.6
3 3 1749.167 70.0
4 4 1749.250 55.7
5 5 1749.333 85.0
6 6 1749.417 83.5

We will now estimate the density using the following command:

> d <- density(sunspots$sunspot.month)
> d
Call:
 density.default(x = sunspots$sunspot.month)
Data: sunspots$sunspot.month (3177 obs.); Bandwidth 'bw' = 7.916
 x y
 Min. :-23.75 Min. :1.810e-07
 1st Qu.: 51.58 1st Qu.:1.586e-04
 Median :126.90 Median :1.635e-03
 Mean :126.90 Mean :3.316e-03
 3rd Qu.:202.22 3rd Qu.:5.714e-03
 Max. :277.55 Max. :1.248e-02

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[326]

A plot is very useful for this function, so let's generate one using the following command:

> plot(d)

It is interesting to see such a wide variation; maybe the data is pretty random after all.

We can use the density to estimate additional periods as follows:

> N<-1000
> sunspots.new <- rnorm(N, sample(sunspots$sunspot.month, size=N,
replace=TRUE))
> lines(density(sunspots.new), col="blue")

It looks like our density estimate is very accurate.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[327]

Expectation-maximization
Expectation-maximization (EM) is an unsupervised clustering approach that adjusts
the data for optimal values.

When using EM, we have to have some preconception of the shape of the data/model
that will be targeted. This example reiterates the example on the Wikipedia page, with
comments. The example tries to model the iris species from the other data points. Let's
load the data as shown here:

> iris <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-
databases/iris/iris.data")
> colnames(iris) <- c("SepalLength","SepalWidth","PetalLength","PetalW
idth","Species")
> modelName = "EEE"

Each observation has sepal length, width, petal length, width, and species,
as shown here:

> head(iris)
SepalLength SepalWidth PetalLength PetalWidth Species
1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa

We are estimating the species from the other points, so let's separate the data
as follows:

> data = iris[,-5]
> z = unmap(iris[,5])

Let's set up our mstep for EM, given the data, categorical data (z) relating to each
data point, and our model type name:

> msEst <- mstep(modelName, data, z)

We use the parameters defined in the mstep to produce our model, as shown here:

> em(modelName, data, msEst$parameters)
$z
 [,1] [,2] [,3]
 [1,] 1.000000e+00 4.304299e-22 1.699870e-42
…
 [150,] 8.611281e-34 9.361398e-03 9.906386e-01
$parameters$pro

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[328]

[1] 0.3333333 0.3294048 0.3372619
$parameters$mean
 [,1] [,2] [,3]
SepalLength 5.006 5.941844 6.574697
SepalWidth 3.418 2.761270 2.980150
PetalLength 1.464 4.257977 5.538926
PetalWidth 0.244 1.319109 2.024576
$parameters$variance$d
[1] 4
$parameters$variance$G
[1] 3
$parameters$variance$sigma
, , 1
 SepalLength SepalWidth PetalLength PetalWidth
SepalLength 0.26381739 0.09030470 0.16940062 0.03937152
SepalWidth 0.09030470 0.11251902 0.05133876 0.03082280
PetalLength 0.16940062 0.05133876 0.18624355 0.04183377
PetalWidth 0.03937152 0.03082280 0.04183377 0.03990165
, , 2
, , 3
… (there was little difference in the 3 sigma values)
Covariance
$parameters$variance$Sigma
 SepalLength SepalWidth PetalLength PetalWidth
SepalLength 0.26381739 0.09030470 0.16940062 0.03937152
SepalWidth 0.09030470 0.11251902 0.05133876 0.03082280
PetalLength 0.16940062 0.05133876 0.18624355 0.04183377
PetalWidth 0.03937152 0.03082280 0.04183377 0.03990165

$parameters$variance$cholSigma
 SepalLength SepalWidth PetalLength PetalWidth
SepalLength -0.5136316 -0.1758161 -0.32980960 -0.07665323
SepalWidth 0.0000000 0.2856706 -0.02326832 0.06072001
PetalLength 0.0000000 0.0000000 -0.27735855 -0.06477412
PetalWidth 0.0000000 0.0000000 0.00000000 0.16168899
attr(,"info")
 iterations error
4.000000e+00 1.525131e-06

There is quite a lot of output from the em function. The highlights for me were the
three sigma ranges were the same and the error from the function was very small.
So, I think we have a very good estimation of species using just the four data points.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[329]

Hidden Markov models
The hidden Markov models (HMM) is the idea of observing data assuming it has
been produced by a Markov model. The problem is to discover what that model is.

I am using the Python example on Wikipedia for HMM. For an HMM, we need
states (assumed to be hidden from observer), symbols, transition matrix between
states, emission (output) states, and probabilities for all.

The Python information presented is as follows:

states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
 }
emission_probability = {
 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
 }
trans <- matrix(c('Rainy', : {'Rainy': 0.7, 'Sunny': 0.3},
 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
 }

We convert these to use in R for the initHmm function by using the following command:

> hmm <- initHMM(c("Rainy","Sunny"), c('walk', 'shop', 'clean'),
c(.6,.4), matrix(c(.7,.3,.4,.6),2), matrix(c(.1,.4,.5,.6,.3,.1),3))
> hmm
$States
[1] "Rainy" "Sunny"
$Symbols
[1] "walk" "shop" "clean"
$startProbs
Rainy Sunny
 0.6 0.4
$transProbs
 to
from Rainy Sunny
 Rainy 0.7 0.4
 Sunny 0.3 0.6
$emissionProbs
 symbols
states walk shop clean
 Rainy 0.1 0.5 0.3
 Sunny 0.4 0.6 0.1

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[330]

The model is really a placeholder for all of the setup information needed for HMM.
We can then use the model to predict based on observations, as follows:

> future <- forward(hmm, c("walk","shop","clean"))
> future
 index
states 1 2 3
 Rainy -2.813411 -3.101093 -4.139551
 Sunny -1.832581 -2.631089 -5.096193

The result is a matrix of probabilities. For example, it is more likely to be Sunny when
we observe walk.

Blind signal separation
Blind signal separation is the process of identifying sources of signals from a mixed
signal. Primary component analysis is one method of doing this. An example is a
cocktail party where you are trying to listen to one speaker.

For this example, I am using the decathlon dataset in the FactoMineR package,
as shown here:

> library(FactoMineR)
> data(decathlon)

Let's look at the data to get some idea of what is available:

> summary(decathlon)
 100m Long.jump Shot.put High.jump
 Min. :10.44 Min. :6.61 Min. :12.68 Min. :1.850
 1st Qu.:10.85 1st Qu.:7.03 1st Qu.:13.88 1st Qu.:1.920
 Median :10.98 Median :7.30 Median :14.57 Median :1.950
 Mean :11.00 Mean :7.26 Mean :14.48 Mean :1.977
 3rd Qu.:11.14 3rd Qu.:7.48 3rd Qu.:14.97 3rd Qu.:2.040
 Max. :11.64 Max. :7.96 Max. :16.36 Max. :2.150
 400m 110m.hurdle Discus Pole.vault
 Min. :46.81 Min. :13.97 Min. :37.92 Min. :4.200
 1st Qu.:48.93 1st Qu.:14.21 1st Qu.:41.90 1st Qu.:4.500
 Median :49.40 Median :14.48 Median :44.41 Median :4.800
 Mean :49.62 Mean :14.61 Mean :44.33 Mean :4.762
 3rd Qu.:50.30 3rd Qu.:14.98 3rd Qu.:46.07 3rd Qu.:4.920
 Max. :53.20 Max. :15.67 Max. :51.65 Max. :5.400
 Javeline 1500m Rank Points
 Min. :50.31 Min. :262.1 Min. : 1.00 Min. :7313
 1st Qu.:55.27 1st Qu.:271.0 1st Qu.: 6.00 1st Qu.:7802
 Median :58.36 Median :278.1 Median :11.00 Median :8021

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[331]

 Mean :58.32 Mean :279.0 Mean :12.12 Mean :8005
 3rd Qu.:60.89 3rd Qu.:285.1 3rd Qu.:18.00 3rd Qu.:8122
 Max. :70.52 Max. :317.0 Max. :28.00 Max. :8893
 Competition
 Decastar:13
 OlympicG:28

The output looks like performance data from a series of events at a track meet:

> head(decathlon)
 100m Long.jump Shot.put High.jump 400m 110m.hurdle Discus
SEBRLE 11.04 7.58 14.83 2.07 49.81 14.69 43.75
CLAY 10.76 7.40 14.26 1.86 49.37 14.05 50.72
KARPOV 11.02 7.30 14.77 2.04 48.37 14.09 48.95
BERNARD 11.02 7.23 14.25 1.92 48.93 14.99 40.87
YURKOV 11.34 7.09 15.19 2.10 50.42 15.31 46.26
WARNERS 11.11 7.60 14.31 1.98 48.68 14.23 41.10
 Pole.vault Javeline 1500m Rank Points Competition
SEBRLE 5.02 63.19 291.7 1 8217 Decastar
CLAY 4.92 60.15 301.5 2 8122 Decastar
KARPOV 4.92 50.31 300.2 3 8099 Decastar
BERNARD 5.32 62.77 280.1 4 8067 Decastar
YURKOV 4.72 63.44 276.4 5 8036 Decastar
WARNERS 4.92 51.77 278.1 6 8030 Decastar

Further, this is performance of specific individuals in track meets.

We run the PCA function by passing the dataset to use, whether to scale the data or
not, and the type of graphs:

> res.pca = PCA(decathlon[,1:10], scale.unit=TRUE, ncp=5, graph=T)

This produces two graphs:

•	 Individual factors map
•	 Variables factor map

www.it-ebooks.info

http://www.it-ebooks.info/

Supervised and Unsupervised Learning

[332]

The individual factors map lays out the performance of the individuals. For example,
we see Karpov who is high in both dimensions versus Bourginon who is performing
badly (on the left in the following chart):

The variables factor map shows the correlation of performance between events.
For example, doing well in the 400 meters run is negatively correlated with the
performance in the long jump; if you did well in one, you likely did well in the
other as well. Here is the variables factor map of our data:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

[333]

Questions
Factual

•	 Which supervised learning technique(s) do you lean towards as your
"go to" solution?

•	 Why are the density plots for Bayesian results off-center?

When, how, and why?

•	 How would you decide on the number of clusters to use?
•	 Find a good rule of thumb to decide the number of hidden layers in a

neural net.

Challenges

•	 Investigate other blind signal separation techniques, such as ICA.
•	 Use other methods, such as poisson, in the rpart function (especially if you

have a natural occurring dataset).

Summary
In this chapter, we looked into various methods of machine learning, including both
supervised and unsupervised learning. With supervised learning, we have a target
variable we are trying to estimate. With unsupervised, we only have a possible set
of predictor variables and are looking for patterns.

In supervised learning, we looked into using a number of methods, including
decision trees, regression, neural networks, support vector machines, and Bayesian
learning. In unsupervised learning, we used cluster analysis, density estimation,
hidden Markov models, and blind signal separation.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
3D graphics

generating 214-217
3D plotting functionality

packages 213
3D scatterplot

producing, cloud function used 218-220

A
abline function 193
abline function, parameters

a 193
b 193
coef 193
h 193
reg 193
untf 193
v 193

acf function
used, for creating correlogram 284, 285

acf function, parameters
demean 285
lag.max 284
na.action 285
plot 285
type 284
x 284

AdaBoost 267
ada package 241, 267
affinity propagation clustering 152-154
anomaly detection

about 7, 30

anomalies, calculating 34
example 35, 36
outliers, displaying 31
usage 34, 35

apcluster package 137
apriori

about 49
example 50-53
usage 49

apriori function, parameters
appearance 50
control 50
data 50
parameter 50

apriori rules library
appearance parameter 37
control parameter 37
data parameter 37
parameter 37

ARIMA
about 294
used, for automated forecasting 297-299
using 294-297

arima function, parameters
order 294
seasonal 294
x 294

arulesNBMiner
about 46
example 48, 49
usage 46-48

association rules
about 7, 36

www.it-ebooks.info

http://www.it-ebooks.info/

[336]

apriori rules library, using 37
confidence 36
example 37-39
lift 36
support 36
usage 37

automatic forecasting packages
about 271
forecast 271
TTR 271

autoregressive integrated moving average.
See ARIMA

B
bar3d function 227
bar3d function, parameters

data 228
filename 228
row.labels, col.labels 228
type 228

bar chart
about 206
producing 209
producing, qplot function used 209, 210

bar plot 206
barplot function

about 206
usage 206-208

barplot function, parameters
height 206
legend.text 206
names.arg 206
space 206
width 206

Bayesian information
cluster, selecting based on 150-152

Bayesian learning 318-320
Big Data, R

bigmemory package 232
concerns 229
pbdR project 230

big.matrix function, parameters
backingfile 232
backingpath 232

binarydescriptor 232
descriptorfile 232
dimnames 232
init 232
nrow, ncol 232
separated 232
shared 232
type 232

bigmemory package 232
bioconductor.org 237
bivariate binning display 167-169
blind signal separation 330-332
boxplot function 31, 32
Box test

using 286
Box.test function, parameters

fitdf 286
lag 286
type 286
x 286

build phase, K-medoids clustering 14
bw function

lower, upper parameter 29
method parameter 29
nb parameter 29
tol parameter 29
x parameter 29

C
calinski criterion graph 149
caret package 241, 246, 302
car (Companion to Applied Regression)

package 189, 213
cascadeKM function 148
cascadeKM function, parameters

criterion 149
data 148
inf.gr 148
iter 148
sup.gr 148

chart.Correlation function, parameters
histogram 119
method 120
R 119

www.it-ebooks.info

http://www.it-ebooks.info/

[337]

chemometrics package
about 87, 100
problems 100

classIn package 161
class package 241
cloud3d function

about 224, 225
parameters 225

cloud function
about 218
used, for producing 3D scatterplot 218-220

clue package 241
clusGap function 155, 156
clusGap function, parameters

B 155
FUNcluster 155
K.max 155
verbose 155
x 155

cluster
selecting, based on Bayesian

information 150-152
cluster analysis

about 7, 137, 322-324
density estimation 27
expectation maximization (EM) 21
hierarchical clustering 18
k-means clustering 9
K-medoids clustering 13, 14

cluster analysis, model
connectivity 8
density 8
distribution models 8
partitioning 8

clustering 137
connectivity model 8
copula package 213
cor function

used, for performing correlation 114
cor function, parameters

method 114
use 114
x 114
y 114

corpus
about 67
creating 67
document term matrix 72, 73
numbers, removing 68
punctuation, removing 68
text, converting to lower case 67
VectorSource, using 74, 75
whitespaces, removing 69, 70
words, removing 69
word stems 70, 71

correlation
about 113, 114
example 114-117
packages 113
performing, cor function used 114
visualizing, corrgram()

function used 118-120
correlogram

creating, acf function used 284, 285
corrgram() function

used, for visualizing correlations 118-120
corrgram tool 113
cor.test function, parameters

alternative 121
continuity 121
exact 121
method 121
x 121
y 121

Cortona 224
covariance

measuring, cov function used 121-123
cpairs function

used, for plotting matrix data 201, 202
createDataPartition function 314

D
data

patterns, determining 41
data partitioning 246
dataset 242-245
data visualization 161
DBSCAN function 27

www.it-ebooks.info

http://www.it-ebooks.info/

[338]

decision tree 266, 267, 303-306
decompose function 279, 280
density estimation

about 27, 325, 326
example 29, 30
histograms 27
Parzen windows 27
usage 27, 28
vector quantization 27

density function
about 27
adjust parameter 28
bw parameter 28
from, to parameter 28
give.Rkern parameter 28
kernel parameter 28
na.rm parameter 28
N parameter 28
weights parameter 28
width parameter 28
window parameter 28
x parameter 28

density model 8
density scatter plots 203-205
distribution models 8
DMwR package 35
document term matrix 72, 73

E
e1071 package 241, 302
ECControl, parameter

sort 43
verbose 43

Eclat
about 42
example 45
frequent items, finding in dataset 44, 45
usage 42, 43
used, for finding similarities in adult

behavior 43, 44
eclat function, parameters

control 42
data 42
parameter 42

ECParameters
maxlen 42
minlen 42
support 42
target 42

elbow 145
ensemble learning 316
ets function

using 291-293
ets function, parameters

alpha 292
beta 292
damped 292
gamma 292
model 292
phi 292
y 292

expectation maximization (EM)
about 21, 327, 328
example 23-26
usage 21

exponential smoothing
using 280-282

F
facet_grid function 183
FactoMineR package 302
findAssocs function 75
forecast package

about 271, 283
Box test, using 285, 286
correlogram 284, 285

fpc package 137, 146

G
gap statistic

used, for estimating cluster count 155, 156
gbd2dmat function, parameters

bldim 232
comm 231
gbd.major 232
skip.balance 231
x 231

www.it-ebooks.info

http://www.it-ebooks.info/

[339]

gclus package 189
getElem function 74
GetMap.bbox function, parameters

center 227
destfile 227
GRAYSCALE 227
latR 227
lonR 227
maptype 227
MINIMUMSIZE 227
NEWMAP 227
RETURNIMAGE 227
SCALE 227
size 227
verbose 227
zoom 227

ggm function 113
ggplot2 package

about 161, 176, 189, 209
used, for producing scatter plots 176, 177

ggplot package
used, for producing histogram 185, 186

Google Maps 175
gpclib package 161
GTK+ toolkit

invoking, playwith function used 162-165

H
hard clustering 8
hclust function

about 19
d parameter 19
members parameter 19
method parameter 19

heterogeneous correlation matrix
generating 132, 133

hexbin function
about 167
used, for organizing bivariate data 167-169

hexbin function, parameters
shape 167
xbins 167
xbnds, ybnds 167

xlab, ylab 167
x, y 167

hexbin package 161, 203
hidden Markov models (HMM) 329
hierarchical clustering

about 18, 157-159
agglomerative (or bottom up) 18
divisive (or top down) 18
example 19, 20
usage 19

histograms 27
Hmisc 113
Holt exponential smoothing

about 28-291
ARIMA 293-297
ets function, using 291-293

HoltWinters function, parameters
alpha 281
beta 281
gamma 281
seasonal 281
x 281

I
identify function 31
initial terrain map

creating 175, 176
instance-based learning 313-316
interactive graphics 162

K
kernlab package 241, 302
kknn package 302
k-means clustering

about 9, 138, 264, 265
example 10-13, 138-142
optimal number, of clusters 143-145
usage 9, 10

kmeans function
about 9, 138-140, 324
algorithm parameter 10, 138
centers parameter 10, 138, 324
iter.max parameter 10, 138

www.it-ebooks.info

http://www.it-ebooks.info/

[340]

nstart parameter 10, 138
trace parameter 10, 138
x parameter 10, 138, 324

kmeans object
ault property 10
betweenss property 10
centers property 10
cluster property 10
iter property 10
size property 10
totss property 10
tot.withinss property 10
withinss property 10

K-medoids clustering
about 13, 14
build phase 14
example 15-18
swap phase 14
usage 14, 15

k-nearest neighbor classification 256-259
knn function 313
knn function, parameters

cl 313
k 313
l 313
prob 313
test 313
train 313
use.all 313

L
lattice package 189, 213
latticist package 161, 166, 167
least squares regression 251, 252
linear model 247, 248
line graph

generating 179-181
lm function 308
lm function, parameter

data 308
formula 308
subset 308
weights 308

lofactor function 35
logistic regression 249, 250
longest common prefix (LCP) 60
longest common subsequence (LCS) 60
lowess function 194
lowess function, parameters

delta 195
f 194
iter 195
x 194
y 194

lowess line 194

M
machine learning

packages 241, 242
mapdata package 161
map function 169
map function, parameters

add 170
bg 170
boundary 170
col 170
database 170
exact 170
fill 170
interior 170
mar 170
myborder 170
namesonly 170
orientation 170
parameters 170
plot 170
projection 170
regions 170
resolution 170
wrap 170
xlim, ylim 170

mapping 169
maps

points, plotting on 171
maps package 161, 169
maptools package 161

www.it-ebooks.info

http://www.it-ebooks.info/

[341]

MASS package 87, 189, 241
matrix data

displaying, splom function used 199, 200
plotting, cpairs function used 201, 202

Mclust function
about 22, 150
control parameter 22
data parameter 22
G parameter 22
initialization parameter 22
modelNames parameter 22
multivariate mixture dataset 22
prior parameter 22
single component dataset 23
univariate mixture dataset 22
warn parameter 22

mclust package 150
MCMCpack package 302
MCMCregress function 319
MCMCregress function, parameters

data 319
formula 319

medoids clusters 146, 147
microbenchmark package 236, 237
models

about 247
k-nearest neighbor classification 256-259
least squares regression 251, 252
linear model 247, 248
logistic regression 249, 250
Naïve Bayes 259, 260
prediction 248, 249
residuals 251
stepwise regression 255, 256

Modern Applied Statistics
in S+ (MASS) 109

monthplot function, parameters
choice 276
labels 276
x 276
ylab 276

multiple regression 94-100
multivariate regression analysis 100-106

N
Naïve Bayes 259, 260
NbClust function 143
NbClust function, parameters

alphaBeale 143
data 143
diss 143
distance 143
index 143
max.nc 143
method 143
min.nc 143

NbClust package 137
NBMiner function, parameter

control 46
data 46
parameter 46

NBMinerParameters, parameter
data 46
getdata 47
maxlen 47
minlen 47
pi 46
plot 47
rules 47
theta 46
trim 46
verbose 47

neuralnet function 268, 311
neuralnet function, parameter

data 311
formula 311
hidden 311
rep 311
stepmax 311

neuralnet package 241
neural network 268, 269, 310-312

O
OPTICS function 27
optimal matching (OM) distance 60

www.it-ebooks.info

http://www.it-ebooks.info/

[342]

outliers, anomaly detection
anomaly detection example 33, 34
displaying 31
example 31-33

P
packages

about 66
text clusters 75-78
text processing 66
tm 66
XML 66

packages, 3D plotting functionality
car 213
copula 213
lattice 213
Rcpp 213
rgl 213
swirl 213
vrmlgen 213

packages, clustering functionality
apcluster 137
fpc 137
NbClust 137
pvclust 137
vegan 137

packages, correlation functionality
about 113
corrgram 113
ggm 113
Hmisc 113
polycor 113

packages, machine learning functionality
ada 241
caret 241
class 241
clue 241
e1071 241
kernlab 241
MASS 241
neuralnet 241
randomForest 242
relaimpo 242

packages, plotting functionalities
car 189
gclus 189
ggplot2 189
lattice 189
MASS 189

packages, regression analysis
about 87
multiple regression 94-100
multivariate regression 100-106
robust regression 106-111
simple regression 87-94

packages, supervised/unsupervised learning
caret 302
e1071 302
FactoMineR 302
kernlab 302
kknn 302
MCMCpack 302
randomForest 302
rattle 302
rpart.plot 302

packages, visualization functionality
classIn 161
ggplot2 161
gpclib 161
hexbin 161
latticist 161
mapdata 161
maps 161
maptools 161
playwith 162
RColorBrewer 162
RgoogleMaps 162

pairs function 122, 198
pam function

about 14
cluster.only parameter 15
diss parameter 14
do.swap parameter 15
keep.data parameter 15
keep.diss parameter 15
k parameter 14
medoids parameter 14

www.it-ebooks.info

http://www.it-ebooks.info/

[343]

metric parameter 14
stand parameter 15
trace.lev parameter 15
x parameter 14

pamk function 146
pamk function, parameters

alpha 146
criterion 146
critout 146
data 146
diss 146
krange 146
ns 146
scaling 146
seed 146
usepam 146

parallel package 236
partial correlation

producing 134
partitioning model 8
partitioning rules

hierarchical 8
overlapping 8
strict 8

Parzen windows 27
pattern discovery 301
patterns

apriori 49
arulesNBMiner 46
determining, in data 41
Eclat 42
similarities, determining in sequences 60
TraMineR 53

pbdR project
about 230
common global values 230
data, distributing across nodes 231
matrix across nodes, distributing 231

pdbMPI package 233
Pearson correlation

producing, rcorr function used 123, 124
persp function 214
persp function, parameters

d 216
main, sub 216

r 216
scale 216
theta, phi 216
xlab, ylab, zlab 216
xlim, ylim, zlim 216
x, y 216
z 216

pipes 239
playwith function

about 162
used, for invoking GTK+ toolkit 162-165

playwith function, parameters
data.points 163
eval.args 163
expr 162
height 163
init.actions 163
labels 163
linkto 163
main.function 163
modal 163
on.close 163
parameters 163
playstate 163
plot.call 163
pointsize 163
prepplot.actions 163
title 162
tools 163
update.actions 163
viewport 163
width 163

playwith package 162
plot function 190
plot function, parameters

asp 190
main 190
sub 190
type 190
x 190
xlab 190
y 190
ylab 190

points
plotting, on maps 171

www.it-ebooks.info

http://www.it-ebooks.info/

[344]

plotting, on world map 171-174
points function, parameters

bg 172
cex 172
col 172
lwd 172
pch 172
x 172

polychor function 127
polychor function, parameters

delete 127
global 127
ML 127
na.rm 127
polycor 127
progress 127
smooth 127
std.err 127
weight 127
x 127

polychoric correlation 124-126
polycor package 113, 124
pqR package 237
predict function 261
prediction 248, 249
predictive modeling 301
pvclust function 157
pvclust function, parameters

data 157
method.dist 157
method.hclust 157
nboot 157
r 158
store 158
use.cor 157
weight 158

pvclust package 137

Q
qplot function

about 209
used, for producing bar charts 209, 210

R
randomForest function 321
randomForest function, parameters

data 321
formula 321
na.action 321
subset 321

randomForest package 242, 302
random forests 269, 321, 322
rattle package 302
RColorBrewer package 162
rcorr function

used, for producing Pearson
correlation 123, 124

rcorr function, parameters
type 123
x 123
y 123

Rcpp package 213, 235
regression 307-309
regression analysis 87
regression line

adding, to scatter plot 193
relaimpo package 242, 252, 253
relative importance, of variables

calculating 252-254
removeSparseTerms function 75
removeWords function 75
research areas, R

about 234
bioconductor 237
microbenchmark package 236, 237
parallel package 236
pipes 239
pqR package 237
Rcpp package 235
roxygen2 package 237
SAP integration 237
swirl package 237

resid function 251
residuals, models 251
rgl package 213

www.it-ebooks.info

http://www.it-ebooks.info/

[345]

RgoogleMaps package 162, 175, 226, 227
robust regression 106-111
roxygen2 package 237
rpart function 305
rpart function, parameters

data 305
formula 305
method 305
na.action 305
subset 305
weights 305

rpart.plot package 302
R Tools page

URL 235

S
scatter3d function

about 222
used, for generating 3D graphics 222, 223

scatter plot
about 190
example 191, 192
lowess line 194, 195
producing, ggplot2 package used 176, 177
regression line, adding to 193

scatterplot3d function, parameters
color 221
x 221
y 221
z 221

scatterplot3d package
about 221
used, for generating 3D graphics 221, 222

scatterplot function 195
scatterplot function, parameters

boxplots 196
data 196
formula 195
id.cex 196
id.col 196
id.method 196
id.n 196
jitter 196
labels 196

las 196
log 196
lty 196
lwd 196
reg.line 196
smooth 196
smoother 196
smoother.args 196
span 196
spread 196
subset 196
x 195
xlab 196
y 195
ylab 196
ylim, ylim 196

scatterplot matrices
about 198
cpairs function, used for plotting matrix

data 201, 202
splom function, used for displaying matrix

data 199, 200
scatterplotMatrix() function 117
seqdef function, parameters

alphabet 54
data 54
informat 54
states 54
stsep 54
var 54

seqdist function
example 61, 62
used, for determining similarities in

sequences 61
seqdist function, parameters

full.matrix 61
indl 61
method 61
norm 61
refseq 61
seqdata 61
sm 61
with.missing 61

seqST function 60

www.it-ebooks.info

http://www.it-ebooks.info/

[346]

sequences
determining, TraMineR used 53
similarities, determining 60

simple regression 87-94
SMA function 278, 279
SMA function, parameters

n 278
x 278

snow (Simple Network of Workstations)
package 233, 234

soft clustering 8
source 74
splom() function

about 115
used, for displaying matrix data 199, 200

splom() function, parameters
data 116
x 116

SSE (sum of squared errors) 282
stepNext function 74
stepwise regression 255, 256
stl function, parameters

s.window 274
x 274

summary command 24
supervised learning 302
supervised learning, techniques

Bayesian learning 318-320
decision tree 303-306
ensemble learning 316
instance-based learning 313-316
neural network 310-312
random forests 321, 322
regression 307, 309

support vector
machines (SVM) 261-264, 317, 318

svm function 317
svm function, parameters

data 317
formula 317
na.action 317
scale 317
subset 317

swap phase, K-medoids clustering 14
swirl package 213, 237

T
tetrachoric correlation

about 128
running 130, 131

tetrachoric function, parameters
correct 130
delete 130
global 130
na.rm 130
smooth 130
weight 130
x 130
y 130

text clusters
about 75-78
word graphics 78-81
XML text, analyzing 81-85

text operations
numbers, removing 67
punctuation, removing 67
stop words list, adjusting 67
text, converting to lower case 67
URLs, removing 67
word stems, working with 67

text processing
about 66
corpus, creating 67
example 66

text variable 67
time series 272-277
tm_map function 74
tm package 66
train method 260
train method, parameters

data 260
form 260
method 261
subset 261
weights 261
x 260
y 260

TraMineR
example 55, 57-60
seqdef function, using 54

www.it-ebooks.info

http://www.it-ebooks.info/

[347]

used, for determining sequences 53
TraMineR, datasets

actcal 54
biofam 54
mvad 54

ts function, parameters
class 273
data 273
deltat 273
end 273
frequency 273
names 273
start 273
ts.eps 273

TTR package
about 271
SMA function 278, 279

turbulence 60

U
unsupervised learning 322
unsupervised learning, techniques

blind signal separation 330-332
cluster analysis 322-325
density estimation 325, 326
expectation maximization (EM) 327, 328
hidden Markov models (HMM) 329

V
vector quantization 27
VectorSource

using 74, 75
vegan package 137
VEV 24
vrmlgenbar3D 227
vrmlgen package 213

W
word cloud

about 210, 211
generating 80

word graphics 78-81
word stems 70, 71
world map

points, plotting on 171-174

X
XML package 66
XML text

analyzing 81-85

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
R for Data Science

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

R Object-oriented Programming
ISBN: 978-1-78398-668-2 Paperback: 190 pages

A practical guide to help you learn and understand
the programming techniques necessary to exploit the
full power of R

1.	 Learn and understand the programming
techniques necessary to solve specific problems
and speed up development processes for
statistical models and applications.

2.	 Explore the fundamentals of building objects
and how they program individual aspects of
larger data designs.

3.	 Step-by-step guide to understand how OOP
can be applied to application and data models
within R.

R Graphs Cookbook
Second Edition
ISBN: 978-1-78398-878-5 Paperback: 368 pages

Over 70 recipes for building and customizing
publication-quality visualizations of powerful
and stunning R graphs

1.	 Create a wide range of powerful R graphs.

2.	 Leverage lattice and ggplot2 to create
high-quality graphs.

3.	 Develop well-structured maps for efficient
data visualization.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

R Graph Essentials
ISBN: 978-1-78355-455-3 Paperback: 190 pages

Use R's powerful graphing capabilities to design and
create professional-level graphics

1.	 Learn how to use Base R to analyze your data
and generate statistical graphs.

2.	 Create attractive graphics using advanced
functions such as qplot and ggplot for research
and analysis.

3.	 A step-by-step guide, packed with examples
using real-world datasets that can prove helpful
to R programmers.

Bioinformatics with R Cookbook
ISBN: 978-1-78328-313-2 Paperback: 340 pages

Over 90 practical recipes for computational biologists
to model and handle real-life data using R

1.	 Use the existing R-packages to handle
biological data.

2.	 Represent biological data with
attractive visualizations.

3.	 An easy-to-follow guide to handle
real-life problems in Bioinformatics
such as Next Generation Sequencing
and Microarray Analysis.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Mining Patterns
	Cluster analysis
	K-means clustering
	Usage
	Example

	K-medoids clustering
	Usage
	Example

	Hierarchical clustering
	Usage
	Example

	Expectation-maximization
	Usage
	List of model names
	Example

	Density estimation
	Usage
	Example

	Anomaly detection
	Show outliers
	Example
	Example
	Another anomaly detection example

	Calculating anomalies
	Usage
	Example 1
	Example 2

	Association rules
	Mine for associations
	Usage
	Example

	Questions
	Summary

	Chapter 2: Data Mining Sequences
	Patterns
	Eclat
	Usage
	Using eclat to find similarities in adult behavior
	Finding frequent items in a dataset
	An example focusing on highest frequency

	arulesNBMiner
	Usage
	Mining the Agrawal data for frequent sets

	Apriori
	Usage
	Evaluating associations in a shopping basket

	Determining sequences using TraMineR
	Usage
	Determining sequences in training and careers

	Similarities in the sequence
	Sequence metrics
	Usage
	Example

	Questions
	Summary

	Chapter 3: Text Mining
	Packages
	Text processing
	Example
	Creating a corpus

	Text clusters
	Word graphics
	Analyzing the XML text

	Questions
	Summary

	Chapter 4: Data Analysis – Regression Analysis
	Packages
	Simple regression
	Multiple regression
	Multivariate regression analysis
	Robust regression

	Questions
	Summary

	Chapter 5: Data Analysis – Correlation
	Packages
	Correlation
	Example

	Visualizing correlations
	Covariance
	Pearson correlation
	Polychoric correlation
	Tetrachoric correlation
	A heterogeneous correlation matrix
	Partial correlation

	Questions
	Summary

	Chapter 6: Data Analysis – Clustering
	Packages
	K-means clustering
	Example
	Optimal number of clusters

	Medoids clusters
	The cascadeKM function
	Selecting clusters based on Bayesian information
	Affinity propagation clustering
	Gap statistic to estimate the number of clusters
	Hierarchical clustering

	Questions
	Summary

	Chapter 7: Data Visualization –
R Graphics
	Packages
	Interactive graphics
	The latticist package
	Bivariate binning display
	Mapping
	Plotting points on a map
	Plotting points on a world map
	Google Maps

	The ggplot2 package

	Questions
	Summary

	Chapter 8: Data Visualization – Plotting
	Packages
	Scatter plots
	Regression line
	A lowess line
	scatterplot
	Scatterplot matrices
	splom – display matrix data
	cpairs – plot matrix data

	Density scatter plots

	Bar charts and plots
	Bar plot
	Usage

	Bar chart
	ggplot2
	Word cloud

	Questions
	Summary

	Chapter 9: Data Visualization – 3D
	Packages
	Generating 3D graphics
	Lattice Cloud – 3D scatterplot
	scatterplot3d
	scatter3d
	cloud3d
	RgoogleMaps
	vrmlgenbar3D
	Big Data
	pbdR
	bigmemory

	Research areas
	Rcpp
	parallel
	microbenchmark
	pqR
	SAP integration
	roxygen2
	bioconductor
	swirl
	pipes

	Questions
	Summary

	Chapter 10: Machine Learning in Action
	Packages
	Dataset
	Data partitioning
	Model
	Linear model
	Prediction
	Logistic regression
	Residuals
	Least squares regression
	Relative importance
	Stepwise regression
	The k-nearest neighbor classification
	Naïve Bayes

	The train Method
	predict
	Support vector machines
	K-means clustering
	Decision trees
	AdaBoost
	Neural network
	Random forests

	Questions
	Summary

	Chapter 11: Predicting Events with Machine Learning
	Automatic forecasting packages
	Time series
	The SMA function
	The decompose function
	Exponential smoothing
	Forecast
	Correlogram
	Box test

	Holt exponential smoothing
	Automated forecasting
	ARIMA
	Automated ARIMA forecasting

	Questions
	Summary

	Chapter 12: Supervised and Unsupervised Learning
	Packages
	Supervised learning
	Decision tree
	Regression
	Neural network
	Instance-based learning
	Ensemble learning
	Support vector machines
	Bayesian learning
	Random forests

	Unsupervised learning
	Cluster analysis
	Density estimation
	Expectation-maximization
	Hidden Markov models
	Blind signal separation

	Questions
	Summary

	Index

